at v2.6.17 402 lines 12 kB view raw
1/* 2 * linux/include/asm-arm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/config.h> 14#include <linux/sched.h> 15#include <linux/mm.h> 16 17#include <asm/glue.h> 18#include <asm/shmparam.h> 19 20#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 21 22/* 23 * Cache Model 24 * =========== 25 */ 26#undef _CACHE 27#undef MULTI_CACHE 28 29#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710) 30# ifdef _CACHE 31# define MULTI_CACHE 1 32# else 33# define _CACHE v3 34# endif 35#endif 36 37#if defined(CONFIG_CPU_ARM720T) 38# ifdef _CACHE 39# define MULTI_CACHE 1 40# else 41# define _CACHE v4 42# endif 43#endif 44 45#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 46 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 47# define MULTI_CACHE 1 48#endif 49 50#if defined(CONFIG_CPU_ARM926T) 51# ifdef _CACHE 52# define MULTI_CACHE 1 53# else 54# define _CACHE arm926 55# endif 56#endif 57 58#if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100) 59# ifdef _CACHE 60# define MULTI_CACHE 1 61# else 62# define _CACHE v4wb 63# endif 64#endif 65 66#if defined(CONFIG_CPU_XSCALE) 67# ifdef _CACHE 68# define MULTI_CACHE 1 69# else 70# define _CACHE xscale 71# endif 72#endif 73 74#if defined(CONFIG_CPU_XSC3) 75# ifdef _CACHE 76# define MULTI_CACHE 1 77# else 78# define _CACHE xsc3 79# endif 80#endif 81 82#if defined(CONFIG_CPU_V6) 83//# ifdef _CACHE 84# define MULTI_CACHE 1 85//# else 86//# define _CACHE v6 87//# endif 88#endif 89 90#if !defined(_CACHE) && !defined(MULTI_CACHE) 91#error Unknown cache maintainence model 92#endif 93 94/* 95 * This flag is used to indicate that the page pointed to by a pte 96 * is dirty and requires cleaning before returning it to the user. 97 */ 98#define PG_dcache_dirty PG_arch_1 99 100/* 101 * MM Cache Management 102 * =================== 103 * 104 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 105 * implement these methods. 106 * 107 * Start addresses are inclusive and end addresses are exclusive; 108 * start addresses should be rounded down, end addresses up. 109 * 110 * See Documentation/cachetlb.txt for more information. 111 * Please note that the implementation of these, and the required 112 * effects are cache-type (VIVT/VIPT/PIPT) specific. 113 * 114 * flush_cache_kern_all() 115 * 116 * Unconditionally clean and invalidate the entire cache. 117 * 118 * flush_cache_user_mm(mm) 119 * 120 * Clean and invalidate all user space cache entries 121 * before a change of page tables. 122 * 123 * flush_cache_user_range(start, end, flags) 124 * 125 * Clean and invalidate a range of cache entries in the 126 * specified address space before a change of page tables. 127 * - start - user start address (inclusive, page aligned) 128 * - end - user end address (exclusive, page aligned) 129 * - flags - vma->vm_flags field 130 * 131 * coherent_kern_range(start, end) 132 * 133 * Ensure coherency between the Icache and the Dcache in the 134 * region described by start, end. If you have non-snooping 135 * Harvard caches, you need to implement this function. 136 * - start - virtual start address 137 * - end - virtual end address 138 * 139 * DMA Cache Coherency 140 * =================== 141 * 142 * dma_inv_range(start, end) 143 * 144 * Invalidate (discard) the specified virtual address range. 145 * May not write back any entries. If 'start' or 'end' 146 * are not cache line aligned, those lines must be written 147 * back. 148 * - start - virtual start address 149 * - end - virtual end address 150 * 151 * dma_clean_range(start, end) 152 * 153 * Clean (write back) the specified virtual address range. 154 * - start - virtual start address 155 * - end - virtual end address 156 * 157 * dma_flush_range(start, end) 158 * 159 * Clean and invalidate the specified virtual address range. 160 * - start - virtual start address 161 * - end - virtual end address 162 */ 163 164struct cpu_cache_fns { 165 void (*flush_kern_all)(void); 166 void (*flush_user_all)(void); 167 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 168 169 void (*coherent_kern_range)(unsigned long, unsigned long); 170 void (*coherent_user_range)(unsigned long, unsigned long); 171 void (*flush_kern_dcache_page)(void *); 172 173 void (*dma_inv_range)(unsigned long, unsigned long); 174 void (*dma_clean_range)(unsigned long, unsigned long); 175 void (*dma_flush_range)(unsigned long, unsigned long); 176}; 177 178/* 179 * Select the calling method 180 */ 181#ifdef MULTI_CACHE 182 183extern struct cpu_cache_fns cpu_cache; 184 185#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 186#define __cpuc_flush_user_all cpu_cache.flush_user_all 187#define __cpuc_flush_user_range cpu_cache.flush_user_range 188#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 189#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 190#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page 191 192/* 193 * These are private to the dma-mapping API. Do not use directly. 194 * Their sole purpose is to ensure that data held in the cache 195 * is visible to DMA, or data written by DMA to system memory is 196 * visible to the CPU. 197 */ 198#define dmac_inv_range cpu_cache.dma_inv_range 199#define dmac_clean_range cpu_cache.dma_clean_range 200#define dmac_flush_range cpu_cache.dma_flush_range 201 202#else 203 204#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 205#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 206#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 207#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 208#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 209#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) 210 211extern void __cpuc_flush_kern_all(void); 212extern void __cpuc_flush_user_all(void); 213extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 214extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 215extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 216extern void __cpuc_flush_dcache_page(void *); 217 218/* 219 * These are private to the dma-mapping API. Do not use directly. 220 * Their sole purpose is to ensure that data held in the cache 221 * is visible to DMA, or data written by DMA to system memory is 222 * visible to the CPU. 223 */ 224#define dmac_inv_range __glue(_CACHE,_dma_inv_range) 225#define dmac_clean_range __glue(_CACHE,_dma_clean_range) 226#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 227 228extern void dmac_inv_range(unsigned long, unsigned long); 229extern void dmac_clean_range(unsigned long, unsigned long); 230extern void dmac_flush_range(unsigned long, unsigned long); 231 232#endif 233 234/* 235 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 236 * vmalloc, ioremap etc) in kernel space for pages. Since the 237 * direct-mappings of these pages may contain cached data, we need 238 * to do a full cache flush to ensure that writebacks don't corrupt 239 * data placed into these pages via the new mappings. 240 */ 241#define flush_cache_vmap(start, end) flush_cache_all() 242#define flush_cache_vunmap(start, end) flush_cache_all() 243 244/* 245 * Copy user data from/to a page which is mapped into a different 246 * processes address space. Really, we want to allow our "user 247 * space" model to handle this. 248 */ 249#define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 250 do { \ 251 flush_cache_page(vma, vaddr, page_to_pfn(page));\ 252 memcpy(dst, src, len); \ 253 flush_dcache_page(page); \ 254 } while (0) 255 256#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 257 do { \ 258 flush_cache_page(vma, vaddr, page_to_pfn(page));\ 259 memcpy(dst, src, len); \ 260 } while (0) 261 262/* 263 * Convert calls to our calling convention. 264 */ 265#define flush_cache_all() __cpuc_flush_kern_all() 266#ifndef CONFIG_CPU_CACHE_VIPT 267static inline void flush_cache_mm(struct mm_struct *mm) 268{ 269 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) 270 __cpuc_flush_user_all(); 271} 272 273static inline void 274flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 275{ 276 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) 277 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 278 vma->vm_flags); 279} 280 281static inline void 282flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 283{ 284 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 285 unsigned long addr = user_addr & PAGE_MASK; 286 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 287 } 288} 289#else 290extern void flush_cache_mm(struct mm_struct *mm); 291extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 292extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 293#endif 294 295/* 296 * flush_cache_user_range is used when we want to ensure that the 297 * Harvard caches are synchronised for the user space address range. 298 * This is used for the ARM private sys_cacheflush system call. 299 */ 300#define flush_cache_user_range(vma,start,end) \ 301 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 302 303/* 304 * Perform necessary cache operations to ensure that data previously 305 * stored within this range of addresses can be executed by the CPU. 306 */ 307#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 308 309/* 310 * Perform necessary cache operations to ensure that the TLB will 311 * see data written in the specified area. 312 */ 313#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 314 315/* 316 * flush_dcache_page is used when the kernel has written to the page 317 * cache page at virtual address page->virtual. 318 * 319 * If this page isn't mapped (ie, page_mapping == NULL), or it might 320 * have userspace mappings, then we _must_ always clean + invalidate 321 * the dcache entries associated with the kernel mapping. 322 * 323 * Otherwise we can defer the operation, and clean the cache when we are 324 * about to change to user space. This is the same method as used on SPARC64. 325 * See update_mmu_cache for the user space part. 326 */ 327extern void flush_dcache_page(struct page *); 328 329#define flush_dcache_mmap_lock(mapping) \ 330 write_lock_irq(&(mapping)->tree_lock) 331#define flush_dcache_mmap_unlock(mapping) \ 332 write_unlock_irq(&(mapping)->tree_lock) 333 334#define flush_icache_user_range(vma,page,addr,len) \ 335 flush_dcache_page(page) 336 337/* 338 * We don't appear to need to do anything here. In fact, if we did, we'd 339 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 340 */ 341#define flush_icache_page(vma,page) do { } while (0) 342 343#define __cacheid_present(val) (val != read_cpuid(CPUID_ID)) 344#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25)) 345#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25)) 346#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25)) 347#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23)) 348 349#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT) 350 351#define cache_is_vivt() 1 352#define cache_is_vipt() 0 353#define cache_is_vipt_nonaliasing() 0 354#define cache_is_vipt_aliasing() 0 355 356#elif defined(CONFIG_CPU_CACHE_VIPT) 357 358#define cache_is_vivt() 0 359#define cache_is_vipt() 1 360#define cache_is_vipt_nonaliasing() \ 361 ({ \ 362 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 363 __cacheid_vipt_nonaliasing(__val); \ 364 }) 365 366#define cache_is_vipt_aliasing() \ 367 ({ \ 368 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 369 __cacheid_vipt_aliasing(__val); \ 370 }) 371 372#else 373 374#define cache_is_vivt() \ 375 ({ \ 376 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 377 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \ 378 }) 379 380#define cache_is_vipt() \ 381 ({ \ 382 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 383 __cacheid_present(__val) && __cacheid_vipt(__val); \ 384 }) 385 386#define cache_is_vipt_nonaliasing() \ 387 ({ \ 388 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 389 __cacheid_present(__val) && \ 390 __cacheid_vipt_nonaliasing(__val); \ 391 }) 392 393#define cache_is_vipt_aliasing() \ 394 ({ \ 395 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 396 __cacheid_present(__val) && \ 397 __cacheid_vipt_aliasing(__val); \ 398 }) 399 400#endif 401 402#endif