at v2.6.17 675 lines 19 kB view raw
1/* 2 * linux/fs/mbcache.c 3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> 4 */ 5 6/* 7 * Filesystem Meta Information Block Cache (mbcache) 8 * 9 * The mbcache caches blocks of block devices that need to be located 10 * by their device/block number, as well as by other criteria (such 11 * as the block's contents). 12 * 13 * There can only be one cache entry in a cache per device and block number. 14 * Additional indexes need not be unique in this sense. The number of 15 * additional indexes (=other criteria) can be hardwired at compile time 16 * or specified at cache create time. 17 * 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid' 19 * in the cache. A valid entry is in the main hash tables of the cache, 20 * and may also be in the lru list. An invalid entry is not in any hashes 21 * or lists. 22 * 23 * A valid cache entry is only in the lru list if no handles refer to it. 24 * Invalid cache entries will be freed when the last handle to the cache 25 * entry is released. Entries that cannot be freed immediately are put 26 * back on the lru list. 27 */ 28 29#include <linux/kernel.h> 30#include <linux/module.h> 31 32#include <linux/hash.h> 33#include <linux/fs.h> 34#include <linux/mm.h> 35#include <linux/slab.h> 36#include <linux/sched.h> 37#include <linux/init.h> 38#include <linux/mbcache.h> 39 40 41#ifdef MB_CACHE_DEBUG 42# define mb_debug(f...) do { \ 43 printk(KERN_DEBUG f); \ 44 printk("\n"); \ 45 } while (0) 46#define mb_assert(c) do { if (!(c)) \ 47 printk(KERN_ERR "assertion " #c " failed\n"); \ 48 } while(0) 49#else 50# define mb_debug(f...) do { } while(0) 51# define mb_assert(c) do { } while(0) 52#endif 53#define mb_error(f...) do { \ 54 printk(KERN_ERR f); \ 55 printk("\n"); \ 56 } while(0) 57 58#define MB_CACHE_WRITER ((unsigned short)~0U >> 1) 59 60static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); 61 62MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); 63MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 64MODULE_LICENSE("GPL"); 65 66EXPORT_SYMBOL(mb_cache_create); 67EXPORT_SYMBOL(mb_cache_shrink); 68EXPORT_SYMBOL(mb_cache_destroy); 69EXPORT_SYMBOL(mb_cache_entry_alloc); 70EXPORT_SYMBOL(mb_cache_entry_insert); 71EXPORT_SYMBOL(mb_cache_entry_release); 72EXPORT_SYMBOL(mb_cache_entry_free); 73EXPORT_SYMBOL(mb_cache_entry_get); 74#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 75EXPORT_SYMBOL(mb_cache_entry_find_first); 76EXPORT_SYMBOL(mb_cache_entry_find_next); 77#endif 78 79struct mb_cache { 80 struct list_head c_cache_list; 81 const char *c_name; 82 struct mb_cache_op c_op; 83 atomic_t c_entry_count; 84 int c_bucket_bits; 85#ifndef MB_CACHE_INDEXES_COUNT 86 int c_indexes_count; 87#endif 88 kmem_cache_t *c_entry_cache; 89 struct list_head *c_block_hash; 90 struct list_head *c_indexes_hash[0]; 91}; 92 93 94/* 95 * Global data: list of all mbcache's, lru list, and a spinlock for 96 * accessing cache data structures on SMP machines. The lru list is 97 * global across all mbcaches. 98 */ 99 100static LIST_HEAD(mb_cache_list); 101static LIST_HEAD(mb_cache_lru_list); 102static DEFINE_SPINLOCK(mb_cache_spinlock); 103static struct shrinker *mb_shrinker; 104 105static inline int 106mb_cache_indexes(struct mb_cache *cache) 107{ 108#ifdef MB_CACHE_INDEXES_COUNT 109 return MB_CACHE_INDEXES_COUNT; 110#else 111 return cache->c_indexes_count; 112#endif 113} 114 115/* 116 * What the mbcache registers as to get shrunk dynamically. 117 */ 118 119static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask); 120 121 122static inline int 123__mb_cache_entry_is_hashed(struct mb_cache_entry *ce) 124{ 125 return !list_empty(&ce->e_block_list); 126} 127 128 129static void 130__mb_cache_entry_unhash(struct mb_cache_entry *ce) 131{ 132 int n; 133 134 if (__mb_cache_entry_is_hashed(ce)) { 135 list_del_init(&ce->e_block_list); 136 for (n=0; n<mb_cache_indexes(ce->e_cache); n++) 137 list_del(&ce->e_indexes[n].o_list); 138 } 139} 140 141 142static void 143__mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) 144{ 145 struct mb_cache *cache = ce->e_cache; 146 147 mb_assert(!(ce->e_used || ce->e_queued)); 148 if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) { 149 /* free failed -- put back on the lru list 150 for freeing later. */ 151 spin_lock(&mb_cache_spinlock); 152 list_add(&ce->e_lru_list, &mb_cache_lru_list); 153 spin_unlock(&mb_cache_spinlock); 154 } else { 155 kmem_cache_free(cache->c_entry_cache, ce); 156 atomic_dec(&cache->c_entry_count); 157 } 158} 159 160 161static void 162__mb_cache_entry_release_unlock(struct mb_cache_entry *ce) 163{ 164 /* Wake up all processes queuing for this cache entry. */ 165 if (ce->e_queued) 166 wake_up_all(&mb_cache_queue); 167 if (ce->e_used >= MB_CACHE_WRITER) 168 ce->e_used -= MB_CACHE_WRITER; 169 ce->e_used--; 170 if (!(ce->e_used || ce->e_queued)) { 171 if (!__mb_cache_entry_is_hashed(ce)) 172 goto forget; 173 mb_assert(list_empty(&ce->e_lru_list)); 174 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); 175 } 176 spin_unlock(&mb_cache_spinlock); 177 return; 178forget: 179 spin_unlock(&mb_cache_spinlock); 180 __mb_cache_entry_forget(ce, GFP_KERNEL); 181} 182 183 184/* 185 * mb_cache_shrink_fn() memory pressure callback 186 * 187 * This function is called by the kernel memory management when memory 188 * gets low. 189 * 190 * @nr_to_scan: Number of objects to scan 191 * @gfp_mask: (ignored) 192 * 193 * Returns the number of objects which are present in the cache. 194 */ 195static int 196mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask) 197{ 198 LIST_HEAD(free_list); 199 struct list_head *l, *ltmp; 200 int count = 0; 201 202 spin_lock(&mb_cache_spinlock); 203 list_for_each(l, &mb_cache_list) { 204 struct mb_cache *cache = 205 list_entry(l, struct mb_cache, c_cache_list); 206 mb_debug("cache %s (%d)", cache->c_name, 207 atomic_read(&cache->c_entry_count)); 208 count += atomic_read(&cache->c_entry_count); 209 } 210 mb_debug("trying to free %d entries", nr_to_scan); 211 if (nr_to_scan == 0) { 212 spin_unlock(&mb_cache_spinlock); 213 goto out; 214 } 215 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { 216 struct mb_cache_entry *ce = 217 list_entry(mb_cache_lru_list.next, 218 struct mb_cache_entry, e_lru_list); 219 list_move_tail(&ce->e_lru_list, &free_list); 220 __mb_cache_entry_unhash(ce); 221 } 222 spin_unlock(&mb_cache_spinlock); 223 list_for_each_safe(l, ltmp, &free_list) { 224 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 225 e_lru_list), gfp_mask); 226 } 227out: 228 return (count / 100) * sysctl_vfs_cache_pressure; 229} 230 231 232/* 233 * mb_cache_create() create a new cache 234 * 235 * All entries in one cache are equal size. Cache entries may be from 236 * multiple devices. If this is the first mbcache created, registers 237 * the cache with kernel memory management. Returns NULL if no more 238 * memory was available. 239 * 240 * @name: name of the cache (informal) 241 * @cache_op: contains the callback called when freeing a cache entry 242 * @entry_size: The size of a cache entry, including 243 * struct mb_cache_entry 244 * @indexes_count: number of additional indexes in the cache. Must equal 245 * MB_CACHE_INDEXES_COUNT if the number of indexes is 246 * hardwired. 247 * @bucket_bits: log2(number of hash buckets) 248 */ 249struct mb_cache * 250mb_cache_create(const char *name, struct mb_cache_op *cache_op, 251 size_t entry_size, int indexes_count, int bucket_bits) 252{ 253 int m=0, n, bucket_count = 1 << bucket_bits; 254 struct mb_cache *cache = NULL; 255 256 if(entry_size < sizeof(struct mb_cache_entry) + 257 indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0])) 258 return NULL; 259 260 cache = kmalloc(sizeof(struct mb_cache) + 261 indexes_count * sizeof(struct list_head), GFP_KERNEL); 262 if (!cache) 263 goto fail; 264 cache->c_name = name; 265 cache->c_op.free = NULL; 266 if (cache_op) 267 cache->c_op.free = cache_op->free; 268 atomic_set(&cache->c_entry_count, 0); 269 cache->c_bucket_bits = bucket_bits; 270#ifdef MB_CACHE_INDEXES_COUNT 271 mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT); 272#else 273 cache->c_indexes_count = indexes_count; 274#endif 275 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), 276 GFP_KERNEL); 277 if (!cache->c_block_hash) 278 goto fail; 279 for (n=0; n<bucket_count; n++) 280 INIT_LIST_HEAD(&cache->c_block_hash[n]); 281 for (m=0; m<indexes_count; m++) { 282 cache->c_indexes_hash[m] = kmalloc(bucket_count * 283 sizeof(struct list_head), 284 GFP_KERNEL); 285 if (!cache->c_indexes_hash[m]) 286 goto fail; 287 for (n=0; n<bucket_count; n++) 288 INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]); 289 } 290 cache->c_entry_cache = kmem_cache_create(name, entry_size, 0, 291 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL, NULL); 292 if (!cache->c_entry_cache) 293 goto fail; 294 295 spin_lock(&mb_cache_spinlock); 296 list_add(&cache->c_cache_list, &mb_cache_list); 297 spin_unlock(&mb_cache_spinlock); 298 return cache; 299 300fail: 301 if (cache) { 302 while (--m >= 0) 303 kfree(cache->c_indexes_hash[m]); 304 kfree(cache->c_block_hash); 305 kfree(cache); 306 } 307 return NULL; 308} 309 310 311/* 312 * mb_cache_shrink() 313 * 314 * Removes all cache entries of a device from the cache. All cache entries 315 * currently in use cannot be freed, and thus remain in the cache. All others 316 * are freed. 317 * 318 * @bdev: which device's cache entries to shrink 319 */ 320void 321mb_cache_shrink(struct block_device *bdev) 322{ 323 LIST_HEAD(free_list); 324 struct list_head *l, *ltmp; 325 326 spin_lock(&mb_cache_spinlock); 327 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 328 struct mb_cache_entry *ce = 329 list_entry(l, struct mb_cache_entry, e_lru_list); 330 if (ce->e_bdev == bdev) { 331 list_move_tail(&ce->e_lru_list, &free_list); 332 __mb_cache_entry_unhash(ce); 333 } 334 } 335 spin_unlock(&mb_cache_spinlock); 336 list_for_each_safe(l, ltmp, &free_list) { 337 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 338 e_lru_list), GFP_KERNEL); 339 } 340} 341 342 343/* 344 * mb_cache_destroy() 345 * 346 * Shrinks the cache to its minimum possible size (hopefully 0 entries), 347 * and then destroys it. If this was the last mbcache, un-registers the 348 * mbcache from kernel memory management. 349 */ 350void 351mb_cache_destroy(struct mb_cache *cache) 352{ 353 LIST_HEAD(free_list); 354 struct list_head *l, *ltmp; 355 int n; 356 357 spin_lock(&mb_cache_spinlock); 358 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 359 struct mb_cache_entry *ce = 360 list_entry(l, struct mb_cache_entry, e_lru_list); 361 if (ce->e_cache == cache) { 362 list_move_tail(&ce->e_lru_list, &free_list); 363 __mb_cache_entry_unhash(ce); 364 } 365 } 366 list_del(&cache->c_cache_list); 367 spin_unlock(&mb_cache_spinlock); 368 369 list_for_each_safe(l, ltmp, &free_list) { 370 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 371 e_lru_list), GFP_KERNEL); 372 } 373 374 if (atomic_read(&cache->c_entry_count) > 0) { 375 mb_error("cache %s: %d orphaned entries", 376 cache->c_name, 377 atomic_read(&cache->c_entry_count)); 378 } 379 380 kmem_cache_destroy(cache->c_entry_cache); 381 382 for (n=0; n < mb_cache_indexes(cache); n++) 383 kfree(cache->c_indexes_hash[n]); 384 kfree(cache->c_block_hash); 385 kfree(cache); 386} 387 388 389/* 390 * mb_cache_entry_alloc() 391 * 392 * Allocates a new cache entry. The new entry will not be valid initially, 393 * and thus cannot be looked up yet. It should be filled with data, and 394 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL 395 * if no more memory was available. 396 */ 397struct mb_cache_entry * 398mb_cache_entry_alloc(struct mb_cache *cache) 399{ 400 struct mb_cache_entry *ce; 401 402 atomic_inc(&cache->c_entry_count); 403 ce = kmem_cache_alloc(cache->c_entry_cache, GFP_KERNEL); 404 if (ce) { 405 INIT_LIST_HEAD(&ce->e_lru_list); 406 INIT_LIST_HEAD(&ce->e_block_list); 407 ce->e_cache = cache; 408 ce->e_used = 1 + MB_CACHE_WRITER; 409 ce->e_queued = 0; 410 } 411 return ce; 412} 413 414 415/* 416 * mb_cache_entry_insert() 417 * 418 * Inserts an entry that was allocated using mb_cache_entry_alloc() into 419 * the cache. After this, the cache entry can be looked up, but is not yet 420 * in the lru list as the caller still holds a handle to it. Returns 0 on 421 * success, or -EBUSY if a cache entry for that device + inode exists 422 * already (this may happen after a failed lookup, but when another process 423 * has inserted the same cache entry in the meantime). 424 * 425 * @bdev: device the cache entry belongs to 426 * @block: block number 427 * @keys: array of additional keys. There must be indexes_count entries 428 * in the array (as specified when creating the cache). 429 */ 430int 431mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, 432 sector_t block, unsigned int keys[]) 433{ 434 struct mb_cache *cache = ce->e_cache; 435 unsigned int bucket; 436 struct list_head *l; 437 int error = -EBUSY, n; 438 439 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 440 cache->c_bucket_bits); 441 spin_lock(&mb_cache_spinlock); 442 list_for_each_prev(l, &cache->c_block_hash[bucket]) { 443 struct mb_cache_entry *ce = 444 list_entry(l, struct mb_cache_entry, e_block_list); 445 if (ce->e_bdev == bdev && ce->e_block == block) 446 goto out; 447 } 448 __mb_cache_entry_unhash(ce); 449 ce->e_bdev = bdev; 450 ce->e_block = block; 451 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); 452 for (n=0; n<mb_cache_indexes(cache); n++) { 453 ce->e_indexes[n].o_key = keys[n]; 454 bucket = hash_long(keys[n], cache->c_bucket_bits); 455 list_add(&ce->e_indexes[n].o_list, 456 &cache->c_indexes_hash[n][bucket]); 457 } 458 error = 0; 459out: 460 spin_unlock(&mb_cache_spinlock); 461 return error; 462} 463 464 465/* 466 * mb_cache_entry_release() 467 * 468 * Release a handle to a cache entry. When the last handle to a cache entry 469 * is released it is either freed (if it is invalid) or otherwise inserted 470 * in to the lru list. 471 */ 472void 473mb_cache_entry_release(struct mb_cache_entry *ce) 474{ 475 spin_lock(&mb_cache_spinlock); 476 __mb_cache_entry_release_unlock(ce); 477} 478 479 480/* 481 * mb_cache_entry_free() 482 * 483 * This is equivalent to the sequence mb_cache_entry_takeout() -- 484 * mb_cache_entry_release(). 485 */ 486void 487mb_cache_entry_free(struct mb_cache_entry *ce) 488{ 489 spin_lock(&mb_cache_spinlock); 490 mb_assert(list_empty(&ce->e_lru_list)); 491 __mb_cache_entry_unhash(ce); 492 __mb_cache_entry_release_unlock(ce); 493} 494 495 496/* 497 * mb_cache_entry_get() 498 * 499 * Get a cache entry by device / block number. (There can only be one entry 500 * in the cache per device and block.) Returns NULL if no such cache entry 501 * exists. The returned cache entry is locked for exclusive access ("single 502 * writer"). 503 */ 504struct mb_cache_entry * 505mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, 506 sector_t block) 507{ 508 unsigned int bucket; 509 struct list_head *l; 510 struct mb_cache_entry *ce; 511 512 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 513 cache->c_bucket_bits); 514 spin_lock(&mb_cache_spinlock); 515 list_for_each(l, &cache->c_block_hash[bucket]) { 516 ce = list_entry(l, struct mb_cache_entry, e_block_list); 517 if (ce->e_bdev == bdev && ce->e_block == block) { 518 DEFINE_WAIT(wait); 519 520 if (!list_empty(&ce->e_lru_list)) 521 list_del_init(&ce->e_lru_list); 522 523 while (ce->e_used > 0) { 524 ce->e_queued++; 525 prepare_to_wait(&mb_cache_queue, &wait, 526 TASK_UNINTERRUPTIBLE); 527 spin_unlock(&mb_cache_spinlock); 528 schedule(); 529 spin_lock(&mb_cache_spinlock); 530 ce->e_queued--; 531 } 532 finish_wait(&mb_cache_queue, &wait); 533 ce->e_used += 1 + MB_CACHE_WRITER; 534 535 if (!__mb_cache_entry_is_hashed(ce)) { 536 __mb_cache_entry_release_unlock(ce); 537 return NULL; 538 } 539 goto cleanup; 540 } 541 } 542 ce = NULL; 543 544cleanup: 545 spin_unlock(&mb_cache_spinlock); 546 return ce; 547} 548 549#if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 550 551static struct mb_cache_entry * 552__mb_cache_entry_find(struct list_head *l, struct list_head *head, 553 int index, struct block_device *bdev, unsigned int key) 554{ 555 while (l != head) { 556 struct mb_cache_entry *ce = 557 list_entry(l, struct mb_cache_entry, 558 e_indexes[index].o_list); 559 if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) { 560 DEFINE_WAIT(wait); 561 562 if (!list_empty(&ce->e_lru_list)) 563 list_del_init(&ce->e_lru_list); 564 565 /* Incrementing before holding the lock gives readers 566 priority over writers. */ 567 ce->e_used++; 568 while (ce->e_used >= MB_CACHE_WRITER) { 569 ce->e_queued++; 570 prepare_to_wait(&mb_cache_queue, &wait, 571 TASK_UNINTERRUPTIBLE); 572 spin_unlock(&mb_cache_spinlock); 573 schedule(); 574 spin_lock(&mb_cache_spinlock); 575 ce->e_queued--; 576 } 577 finish_wait(&mb_cache_queue, &wait); 578 579 if (!__mb_cache_entry_is_hashed(ce)) { 580 __mb_cache_entry_release_unlock(ce); 581 spin_lock(&mb_cache_spinlock); 582 return ERR_PTR(-EAGAIN); 583 } 584 return ce; 585 } 586 l = l->next; 587 } 588 return NULL; 589} 590 591 592/* 593 * mb_cache_entry_find_first() 594 * 595 * Find the first cache entry on a given device with a certain key in 596 * an additional index. Additonal matches can be found with 597 * mb_cache_entry_find_next(). Returns NULL if no match was found. The 598 * returned cache entry is locked for shared access ("multiple readers"). 599 * 600 * @cache: the cache to search 601 * @index: the number of the additonal index to search (0<=index<indexes_count) 602 * @bdev: the device the cache entry should belong to 603 * @key: the key in the index 604 */ 605struct mb_cache_entry * 606mb_cache_entry_find_first(struct mb_cache *cache, int index, 607 struct block_device *bdev, unsigned int key) 608{ 609 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 610 struct list_head *l; 611 struct mb_cache_entry *ce; 612 613 mb_assert(index < mb_cache_indexes(cache)); 614 spin_lock(&mb_cache_spinlock); 615 l = cache->c_indexes_hash[index][bucket].next; 616 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], 617 index, bdev, key); 618 spin_unlock(&mb_cache_spinlock); 619 return ce; 620} 621 622 623/* 624 * mb_cache_entry_find_next() 625 * 626 * Find the next cache entry on a given device with a certain key in an 627 * additional index. Returns NULL if no match could be found. The previous 628 * entry is atomatically released, so that mb_cache_entry_find_next() can 629 * be called like this: 630 * 631 * entry = mb_cache_entry_find_first(); 632 * while (entry) { 633 * ... 634 * entry = mb_cache_entry_find_next(entry, ...); 635 * } 636 * 637 * @prev: The previous match 638 * @index: the number of the additonal index to search (0<=index<indexes_count) 639 * @bdev: the device the cache entry should belong to 640 * @key: the key in the index 641 */ 642struct mb_cache_entry * 643mb_cache_entry_find_next(struct mb_cache_entry *prev, int index, 644 struct block_device *bdev, unsigned int key) 645{ 646 struct mb_cache *cache = prev->e_cache; 647 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 648 struct list_head *l; 649 struct mb_cache_entry *ce; 650 651 mb_assert(index < mb_cache_indexes(cache)); 652 spin_lock(&mb_cache_spinlock); 653 l = prev->e_indexes[index].o_list.next; 654 ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket], 655 index, bdev, key); 656 __mb_cache_entry_release_unlock(prev); 657 return ce; 658} 659 660#endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ 661 662static int __init init_mbcache(void) 663{ 664 mb_shrinker = set_shrinker(DEFAULT_SEEKS, mb_cache_shrink_fn); 665 return 0; 666} 667 668static void __exit exit_mbcache(void) 669{ 670 remove_shrinker(mb_shrinker); 671} 672 673module_init(init_mbcache) 674module_exit(exit_mbcache) 675