at v2.6.17-rc2 2175 lines 52 kB view raw
1/* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <obz@Kodak.COM> 7 * Ross Biro 8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61#include <linux/config.h> 62#include <linux/mm.h> 63#include <linux/smp_lock.h> 64#include <linux/socket.h> 65#include <linux/file.h> 66#include <linux/net.h> 67#include <linux/interrupt.h> 68#include <linux/netdevice.h> 69#include <linux/proc_fs.h> 70#include <linux/seq_file.h> 71#include <linux/mutex.h> 72#include <linux/wanrouter.h> 73#include <linux/if_bridge.h> 74#include <linux/if_frad.h> 75#include <linux/if_vlan.h> 76#include <linux/init.h> 77#include <linux/poll.h> 78#include <linux/cache.h> 79#include <linux/module.h> 80#include <linux/highmem.h> 81#include <linux/divert.h> 82#include <linux/mount.h> 83#include <linux/security.h> 84#include <linux/syscalls.h> 85#include <linux/compat.h> 86#include <linux/kmod.h> 87#include <linux/audit.h> 88#include <linux/wireless.h> 89 90#include <asm/uaccess.h> 91#include <asm/unistd.h> 92 93#include <net/compat.h> 94 95#include <net/sock.h> 96#include <linux/netfilter.h> 97 98static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 99static ssize_t sock_aio_read(struct kiocb *iocb, char __user *buf, 100 size_t size, loff_t pos); 101static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *buf, 102 size_t size, loff_t pos); 103static int sock_mmap(struct file *file, struct vm_area_struct * vma); 104 105static int sock_close(struct inode *inode, struct file *file); 106static unsigned int sock_poll(struct file *file, 107 struct poll_table_struct *wait); 108static long sock_ioctl(struct file *file, 109 unsigned int cmd, unsigned long arg); 110#ifdef CONFIG_COMPAT 111static long compat_sock_ioctl(struct file *file, 112 unsigned int cmd, unsigned long arg); 113#endif 114static int sock_fasync(int fd, struct file *filp, int on); 115static ssize_t sock_readv(struct file *file, const struct iovec *vector, 116 unsigned long count, loff_t *ppos); 117static ssize_t sock_writev(struct file *file, const struct iovec *vector, 118 unsigned long count, loff_t *ppos); 119static ssize_t sock_sendpage(struct file *file, struct page *page, 120 int offset, size_t size, loff_t *ppos, int more); 121 122/* 123 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 124 * in the operation structures but are done directly via the socketcall() multiplexor. 125 */ 126 127static struct file_operations socket_file_ops = { 128 .owner = THIS_MODULE, 129 .llseek = no_llseek, 130 .aio_read = sock_aio_read, 131 .aio_write = sock_aio_write, 132 .poll = sock_poll, 133 .unlocked_ioctl = sock_ioctl, 134#ifdef CONFIG_COMPAT 135 .compat_ioctl = compat_sock_ioctl, 136#endif 137 .mmap = sock_mmap, 138 .open = sock_no_open, /* special open code to disallow open via /proc */ 139 .release = sock_close, 140 .fasync = sock_fasync, 141 .readv = sock_readv, 142 .writev = sock_writev, 143 .sendpage = sock_sendpage, 144 .splice_write = generic_splice_sendpage, 145}; 146 147/* 148 * The protocol list. Each protocol is registered in here. 149 */ 150 151static struct net_proto_family *net_families[NPROTO]; 152 153#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 154static atomic_t net_family_lockct = ATOMIC_INIT(0); 155static DEFINE_SPINLOCK(net_family_lock); 156 157/* The strategy is: modifications net_family vector are short, do not 158 sleep and veeery rare, but read access should be free of any exclusive 159 locks. 160 */ 161 162static void net_family_write_lock(void) 163{ 164 spin_lock(&net_family_lock); 165 while (atomic_read(&net_family_lockct) != 0) { 166 spin_unlock(&net_family_lock); 167 168 yield(); 169 170 spin_lock(&net_family_lock); 171 } 172} 173 174static __inline__ void net_family_write_unlock(void) 175{ 176 spin_unlock(&net_family_lock); 177} 178 179static __inline__ void net_family_read_lock(void) 180{ 181 atomic_inc(&net_family_lockct); 182 spin_unlock_wait(&net_family_lock); 183} 184 185static __inline__ void net_family_read_unlock(void) 186{ 187 atomic_dec(&net_family_lockct); 188} 189 190#else 191#define net_family_write_lock() do { } while(0) 192#define net_family_write_unlock() do { } while(0) 193#define net_family_read_lock() do { } while(0) 194#define net_family_read_unlock() do { } while(0) 195#endif 196 197 198/* 199 * Statistics counters of the socket lists 200 */ 201 202static DEFINE_PER_CPU(int, sockets_in_use) = 0; 203 204/* 205 * Support routines. Move socket addresses back and forth across the kernel/user 206 * divide and look after the messy bits. 207 */ 208 209#define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 210 16 for IP, 16 for IPX, 211 24 for IPv6, 212 about 80 for AX.25 213 must be at least one bigger than 214 the AF_UNIX size (see net/unix/af_unix.c 215 :unix_mkname()). 216 */ 217 218/** 219 * move_addr_to_kernel - copy a socket address into kernel space 220 * @uaddr: Address in user space 221 * @kaddr: Address in kernel space 222 * @ulen: Length in user space 223 * 224 * The address is copied into kernel space. If the provided address is 225 * too long an error code of -EINVAL is returned. If the copy gives 226 * invalid addresses -EFAULT is returned. On a success 0 is returned. 227 */ 228 229int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr) 230{ 231 if(ulen<0||ulen>MAX_SOCK_ADDR) 232 return -EINVAL; 233 if(ulen==0) 234 return 0; 235 if(copy_from_user(kaddr,uaddr,ulen)) 236 return -EFAULT; 237 return audit_sockaddr(ulen, kaddr); 238} 239 240/** 241 * move_addr_to_user - copy an address to user space 242 * @kaddr: kernel space address 243 * @klen: length of address in kernel 244 * @uaddr: user space address 245 * @ulen: pointer to user length field 246 * 247 * The value pointed to by ulen on entry is the buffer length available. 248 * This is overwritten with the buffer space used. -EINVAL is returned 249 * if an overlong buffer is specified or a negative buffer size. -EFAULT 250 * is returned if either the buffer or the length field are not 251 * accessible. 252 * After copying the data up to the limit the user specifies, the true 253 * length of the data is written over the length limit the user 254 * specified. Zero is returned for a success. 255 */ 256 257int move_addr_to_user(void *kaddr, int klen, void __user *uaddr, int __user *ulen) 258{ 259 int err; 260 int len; 261 262 if((err=get_user(len, ulen))) 263 return err; 264 if(len>klen) 265 len=klen; 266 if(len<0 || len> MAX_SOCK_ADDR) 267 return -EINVAL; 268 if(len) 269 { 270 if(copy_to_user(uaddr,kaddr,len)) 271 return -EFAULT; 272 } 273 /* 274 * "fromlen shall refer to the value before truncation.." 275 * 1003.1g 276 */ 277 return __put_user(klen, ulen); 278} 279 280#define SOCKFS_MAGIC 0x534F434B 281 282static kmem_cache_t * sock_inode_cachep __read_mostly; 283 284static struct inode *sock_alloc_inode(struct super_block *sb) 285{ 286 struct socket_alloc *ei; 287 ei = (struct socket_alloc *)kmem_cache_alloc(sock_inode_cachep, SLAB_KERNEL); 288 if (!ei) 289 return NULL; 290 init_waitqueue_head(&ei->socket.wait); 291 292 ei->socket.fasync_list = NULL; 293 ei->socket.state = SS_UNCONNECTED; 294 ei->socket.flags = 0; 295 ei->socket.ops = NULL; 296 ei->socket.sk = NULL; 297 ei->socket.file = NULL; 298 ei->socket.flags = 0; 299 300 return &ei->vfs_inode; 301} 302 303static void sock_destroy_inode(struct inode *inode) 304{ 305 kmem_cache_free(sock_inode_cachep, 306 container_of(inode, struct socket_alloc, vfs_inode)); 307} 308 309static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags) 310{ 311 struct socket_alloc *ei = (struct socket_alloc *) foo; 312 313 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 314 SLAB_CTOR_CONSTRUCTOR) 315 inode_init_once(&ei->vfs_inode); 316} 317 318static int init_inodecache(void) 319{ 320 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 321 sizeof(struct socket_alloc), 322 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 323 SLAB_MEM_SPREAD), 324 init_once, NULL); 325 if (sock_inode_cachep == NULL) 326 return -ENOMEM; 327 return 0; 328} 329 330static struct super_operations sockfs_ops = { 331 .alloc_inode = sock_alloc_inode, 332 .destroy_inode =sock_destroy_inode, 333 .statfs = simple_statfs, 334}; 335 336static struct super_block *sockfs_get_sb(struct file_system_type *fs_type, 337 int flags, const char *dev_name, void *data) 338{ 339 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC); 340} 341 342static struct vfsmount *sock_mnt __read_mostly; 343 344static struct file_system_type sock_fs_type = { 345 .name = "sockfs", 346 .get_sb = sockfs_get_sb, 347 .kill_sb = kill_anon_super, 348}; 349static int sockfs_delete_dentry(struct dentry *dentry) 350{ 351 return 1; 352} 353static struct dentry_operations sockfs_dentry_operations = { 354 .d_delete = sockfs_delete_dentry, 355}; 356 357/* 358 * Obtains the first available file descriptor and sets it up for use. 359 * 360 * These functions create file structures and maps them to fd space 361 * of the current process. On success it returns file descriptor 362 * and file struct implicitly stored in sock->file. 363 * Note that another thread may close file descriptor before we return 364 * from this function. We use the fact that now we do not refer 365 * to socket after mapping. If one day we will need it, this 366 * function will increment ref. count on file by 1. 367 * 368 * In any case returned fd MAY BE not valid! 369 * This race condition is unavoidable 370 * with shared fd spaces, we cannot solve it inside kernel, 371 * but we take care of internal coherence yet. 372 */ 373 374static int sock_alloc_fd(struct file **filep) 375{ 376 int fd; 377 378 fd = get_unused_fd(); 379 if (likely(fd >= 0)) { 380 struct file *file = get_empty_filp(); 381 382 *filep = file; 383 if (unlikely(!file)) { 384 put_unused_fd(fd); 385 return -ENFILE; 386 } 387 } else 388 *filep = NULL; 389 return fd; 390} 391 392static int sock_attach_fd(struct socket *sock, struct file *file) 393{ 394 struct qstr this; 395 char name[32]; 396 397 this.len = sprintf(name, "[%lu]", SOCK_INODE(sock)->i_ino); 398 this.name = name; 399 this.hash = SOCK_INODE(sock)->i_ino; 400 401 file->f_dentry = d_alloc(sock_mnt->mnt_sb->s_root, &this); 402 if (unlikely(!file->f_dentry)) 403 return -ENOMEM; 404 405 file->f_dentry->d_op = &sockfs_dentry_operations; 406 d_add(file->f_dentry, SOCK_INODE(sock)); 407 file->f_vfsmnt = mntget(sock_mnt); 408 file->f_mapping = file->f_dentry->d_inode->i_mapping; 409 410 sock->file = file; 411 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops; 412 file->f_mode = FMODE_READ | FMODE_WRITE; 413 file->f_flags = O_RDWR; 414 file->f_pos = 0; 415 file->private_data = sock; 416 417 return 0; 418} 419 420int sock_map_fd(struct socket *sock) 421{ 422 struct file *newfile; 423 int fd = sock_alloc_fd(&newfile); 424 425 if (likely(fd >= 0)) { 426 int err = sock_attach_fd(sock, newfile); 427 428 if (unlikely(err < 0)) { 429 put_filp(newfile); 430 put_unused_fd(fd); 431 return err; 432 } 433 fd_install(fd, newfile); 434 } 435 return fd; 436} 437 438static struct socket *sock_from_file(struct file *file, int *err) 439{ 440 struct inode *inode; 441 struct socket *sock; 442 443 if (file->f_op == &socket_file_ops) 444 return file->private_data; /* set in sock_map_fd */ 445 446 inode = file->f_dentry->d_inode; 447 if (!S_ISSOCK(inode->i_mode)) { 448 *err = -ENOTSOCK; 449 return NULL; 450 } 451 452 sock = SOCKET_I(inode); 453 if (sock->file != file) { 454 printk(KERN_ERR "socki_lookup: socket file changed!\n"); 455 sock->file = file; 456 } 457 return sock; 458} 459 460/** 461 * sockfd_lookup - Go from a file number to its socket slot 462 * @fd: file handle 463 * @err: pointer to an error code return 464 * 465 * The file handle passed in is locked and the socket it is bound 466 * too is returned. If an error occurs the err pointer is overwritten 467 * with a negative errno code and NULL is returned. The function checks 468 * for both invalid handles and passing a handle which is not a socket. 469 * 470 * On a success the socket object pointer is returned. 471 */ 472 473struct socket *sockfd_lookup(int fd, int *err) 474{ 475 struct file *file; 476 struct socket *sock; 477 478 if (!(file = fget(fd))) { 479 *err = -EBADF; 480 return NULL; 481 } 482 sock = sock_from_file(file, err); 483 if (!sock) 484 fput(file); 485 return sock; 486} 487 488static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 489{ 490 struct file *file; 491 struct socket *sock; 492 493 file = fget_light(fd, fput_needed); 494 if (file) { 495 sock = sock_from_file(file, err); 496 if (sock) 497 return sock; 498 fput_light(file, *fput_needed); 499 } 500 return NULL; 501} 502 503/** 504 * sock_alloc - allocate a socket 505 * 506 * Allocate a new inode and socket object. The two are bound together 507 * and initialised. The socket is then returned. If we are out of inodes 508 * NULL is returned. 509 */ 510 511static struct socket *sock_alloc(void) 512{ 513 struct inode * inode; 514 struct socket * sock; 515 516 inode = new_inode(sock_mnt->mnt_sb); 517 if (!inode) 518 return NULL; 519 520 sock = SOCKET_I(inode); 521 522 inode->i_mode = S_IFSOCK|S_IRWXUGO; 523 inode->i_uid = current->fsuid; 524 inode->i_gid = current->fsgid; 525 526 get_cpu_var(sockets_in_use)++; 527 put_cpu_var(sockets_in_use); 528 return sock; 529} 530 531/* 532 * In theory you can't get an open on this inode, but /proc provides 533 * a back door. Remember to keep it shut otherwise you'll let the 534 * creepy crawlies in. 535 */ 536 537static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 538{ 539 return -ENXIO; 540} 541 542const struct file_operations bad_sock_fops = { 543 .owner = THIS_MODULE, 544 .open = sock_no_open, 545}; 546 547/** 548 * sock_release - close a socket 549 * @sock: socket to close 550 * 551 * The socket is released from the protocol stack if it has a release 552 * callback, and the inode is then released if the socket is bound to 553 * an inode not a file. 554 */ 555 556void sock_release(struct socket *sock) 557{ 558 if (sock->ops) { 559 struct module *owner = sock->ops->owner; 560 561 sock->ops->release(sock); 562 sock->ops = NULL; 563 module_put(owner); 564 } 565 566 if (sock->fasync_list) 567 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 568 569 get_cpu_var(sockets_in_use)--; 570 put_cpu_var(sockets_in_use); 571 if (!sock->file) { 572 iput(SOCK_INODE(sock)); 573 return; 574 } 575 sock->file=NULL; 576} 577 578static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 579 struct msghdr *msg, size_t size) 580{ 581 struct sock_iocb *si = kiocb_to_siocb(iocb); 582 int err; 583 584 si->sock = sock; 585 si->scm = NULL; 586 si->msg = msg; 587 si->size = size; 588 589 err = security_socket_sendmsg(sock, msg, size); 590 if (err) 591 return err; 592 593 return sock->ops->sendmsg(iocb, sock, msg, size); 594} 595 596int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 597{ 598 struct kiocb iocb; 599 struct sock_iocb siocb; 600 int ret; 601 602 init_sync_kiocb(&iocb, NULL); 603 iocb.private = &siocb; 604 ret = __sock_sendmsg(&iocb, sock, msg, size); 605 if (-EIOCBQUEUED == ret) 606 ret = wait_on_sync_kiocb(&iocb); 607 return ret; 608} 609 610int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 611 struct kvec *vec, size_t num, size_t size) 612{ 613 mm_segment_t oldfs = get_fs(); 614 int result; 615 616 set_fs(KERNEL_DS); 617 /* 618 * the following is safe, since for compiler definitions of kvec and 619 * iovec are identical, yielding the same in-core layout and alignment 620 */ 621 msg->msg_iov = (struct iovec *)vec, 622 msg->msg_iovlen = num; 623 result = sock_sendmsg(sock, msg, size); 624 set_fs(oldfs); 625 return result; 626} 627 628static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 629 struct msghdr *msg, size_t size, int flags) 630{ 631 int err; 632 struct sock_iocb *si = kiocb_to_siocb(iocb); 633 634 si->sock = sock; 635 si->scm = NULL; 636 si->msg = msg; 637 si->size = size; 638 si->flags = flags; 639 640 err = security_socket_recvmsg(sock, msg, size, flags); 641 if (err) 642 return err; 643 644 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 645} 646 647int sock_recvmsg(struct socket *sock, struct msghdr *msg, 648 size_t size, int flags) 649{ 650 struct kiocb iocb; 651 struct sock_iocb siocb; 652 int ret; 653 654 init_sync_kiocb(&iocb, NULL); 655 iocb.private = &siocb; 656 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 657 if (-EIOCBQUEUED == ret) 658 ret = wait_on_sync_kiocb(&iocb); 659 return ret; 660} 661 662int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 663 struct kvec *vec, size_t num, 664 size_t size, int flags) 665{ 666 mm_segment_t oldfs = get_fs(); 667 int result; 668 669 set_fs(KERNEL_DS); 670 /* 671 * the following is safe, since for compiler definitions of kvec and 672 * iovec are identical, yielding the same in-core layout and alignment 673 */ 674 msg->msg_iov = (struct iovec *)vec, 675 msg->msg_iovlen = num; 676 result = sock_recvmsg(sock, msg, size, flags); 677 set_fs(oldfs); 678 return result; 679} 680 681static void sock_aio_dtor(struct kiocb *iocb) 682{ 683 kfree(iocb->private); 684} 685 686static ssize_t sock_sendpage(struct file *file, struct page *page, 687 int offset, size_t size, loff_t *ppos, int more) 688{ 689 struct socket *sock; 690 int flags; 691 692 sock = file->private_data; 693 694 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 695 if (more) 696 flags |= MSG_MORE; 697 698 return sock->ops->sendpage(sock, page, offset, size, flags); 699} 700 701static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 702 char __user *ubuf, size_t size, struct sock_iocb *siocb) 703{ 704 if (!is_sync_kiocb(iocb)) { 705 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 706 if (!siocb) 707 return NULL; 708 iocb->ki_dtor = sock_aio_dtor; 709 } 710 711 siocb->kiocb = iocb; 712 siocb->async_iov.iov_base = ubuf; 713 siocb->async_iov.iov_len = size; 714 715 iocb->private = siocb; 716 return siocb; 717} 718 719static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 720 struct file *file, struct iovec *iov, unsigned long nr_segs) 721{ 722 struct socket *sock = file->private_data; 723 size_t size = 0; 724 int i; 725 726 for (i = 0 ; i < nr_segs ; i++) 727 size += iov[i].iov_len; 728 729 msg->msg_name = NULL; 730 msg->msg_namelen = 0; 731 msg->msg_control = NULL; 732 msg->msg_controllen = 0; 733 msg->msg_iov = (struct iovec *) iov; 734 msg->msg_iovlen = nr_segs; 735 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 736 737 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 738} 739 740static ssize_t sock_readv(struct file *file, const struct iovec *iov, 741 unsigned long nr_segs, loff_t *ppos) 742{ 743 struct kiocb iocb; 744 struct sock_iocb siocb; 745 struct msghdr msg; 746 int ret; 747 748 init_sync_kiocb(&iocb, NULL); 749 iocb.private = &siocb; 750 751 ret = do_sock_read(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 752 if (-EIOCBQUEUED == ret) 753 ret = wait_on_sync_kiocb(&iocb); 754 return ret; 755} 756 757static ssize_t sock_aio_read(struct kiocb *iocb, char __user *ubuf, 758 size_t count, loff_t pos) 759{ 760 struct sock_iocb siocb, *x; 761 762 if (pos != 0) 763 return -ESPIPE; 764 if (count == 0) /* Match SYS5 behaviour */ 765 return 0; 766 767 x = alloc_sock_iocb(iocb, ubuf, count, &siocb); 768 if (!x) 769 return -ENOMEM; 770 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, 771 &x->async_iov, 1); 772} 773 774static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 775 struct file *file, struct iovec *iov, unsigned long nr_segs) 776{ 777 struct socket *sock = file->private_data; 778 size_t size = 0; 779 int i; 780 781 for (i = 0 ; i < nr_segs ; i++) 782 size += iov[i].iov_len; 783 784 msg->msg_name = NULL; 785 msg->msg_namelen = 0; 786 msg->msg_control = NULL; 787 msg->msg_controllen = 0; 788 msg->msg_iov = (struct iovec *) iov; 789 msg->msg_iovlen = nr_segs; 790 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 791 if (sock->type == SOCK_SEQPACKET) 792 msg->msg_flags |= MSG_EOR; 793 794 return __sock_sendmsg(iocb, sock, msg, size); 795} 796 797static ssize_t sock_writev(struct file *file, const struct iovec *iov, 798 unsigned long nr_segs, loff_t *ppos) 799{ 800 struct msghdr msg; 801 struct kiocb iocb; 802 struct sock_iocb siocb; 803 int ret; 804 805 init_sync_kiocb(&iocb, NULL); 806 iocb.private = &siocb; 807 808 ret = do_sock_write(&msg, &iocb, file, (struct iovec *)iov, nr_segs); 809 if (-EIOCBQUEUED == ret) 810 ret = wait_on_sync_kiocb(&iocb); 811 return ret; 812} 813 814static ssize_t sock_aio_write(struct kiocb *iocb, const char __user *ubuf, 815 size_t count, loff_t pos) 816{ 817 struct sock_iocb siocb, *x; 818 819 if (pos != 0) 820 return -ESPIPE; 821 if (count == 0) /* Match SYS5 behaviour */ 822 return 0; 823 824 x = alloc_sock_iocb(iocb, (void __user *)ubuf, count, &siocb); 825 if (!x) 826 return -ENOMEM; 827 828 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, 829 &x->async_iov, 1); 830} 831 832 833/* 834 * Atomic setting of ioctl hooks to avoid race 835 * with module unload. 836 */ 837 838static DEFINE_MUTEX(br_ioctl_mutex); 839static int (*br_ioctl_hook)(unsigned int cmd, void __user *arg) = NULL; 840 841void brioctl_set(int (*hook)(unsigned int, void __user *)) 842{ 843 mutex_lock(&br_ioctl_mutex); 844 br_ioctl_hook = hook; 845 mutex_unlock(&br_ioctl_mutex); 846} 847EXPORT_SYMBOL(brioctl_set); 848 849static DEFINE_MUTEX(vlan_ioctl_mutex); 850static int (*vlan_ioctl_hook)(void __user *arg); 851 852void vlan_ioctl_set(int (*hook)(void __user *)) 853{ 854 mutex_lock(&vlan_ioctl_mutex); 855 vlan_ioctl_hook = hook; 856 mutex_unlock(&vlan_ioctl_mutex); 857} 858EXPORT_SYMBOL(vlan_ioctl_set); 859 860static DEFINE_MUTEX(dlci_ioctl_mutex); 861static int (*dlci_ioctl_hook)(unsigned int, void __user *); 862 863void dlci_ioctl_set(int (*hook)(unsigned int, void __user *)) 864{ 865 mutex_lock(&dlci_ioctl_mutex); 866 dlci_ioctl_hook = hook; 867 mutex_unlock(&dlci_ioctl_mutex); 868} 869EXPORT_SYMBOL(dlci_ioctl_set); 870 871/* 872 * With an ioctl, arg may well be a user mode pointer, but we don't know 873 * what to do with it - that's up to the protocol still. 874 */ 875 876static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 877{ 878 struct socket *sock; 879 void __user *argp = (void __user *)arg; 880 int pid, err; 881 882 sock = file->private_data; 883 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 884 err = dev_ioctl(cmd, argp); 885 } else 886#ifdef CONFIG_WIRELESS_EXT 887 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 888 err = dev_ioctl(cmd, argp); 889 } else 890#endif /* CONFIG_WIRELESS_EXT */ 891 switch (cmd) { 892 case FIOSETOWN: 893 case SIOCSPGRP: 894 err = -EFAULT; 895 if (get_user(pid, (int __user *)argp)) 896 break; 897 err = f_setown(sock->file, pid, 1); 898 break; 899 case FIOGETOWN: 900 case SIOCGPGRP: 901 err = put_user(sock->file->f_owner.pid, (int __user *)argp); 902 break; 903 case SIOCGIFBR: 904 case SIOCSIFBR: 905 case SIOCBRADDBR: 906 case SIOCBRDELBR: 907 err = -ENOPKG; 908 if (!br_ioctl_hook) 909 request_module("bridge"); 910 911 mutex_lock(&br_ioctl_mutex); 912 if (br_ioctl_hook) 913 err = br_ioctl_hook(cmd, argp); 914 mutex_unlock(&br_ioctl_mutex); 915 break; 916 case SIOCGIFVLAN: 917 case SIOCSIFVLAN: 918 err = -ENOPKG; 919 if (!vlan_ioctl_hook) 920 request_module("8021q"); 921 922 mutex_lock(&vlan_ioctl_mutex); 923 if (vlan_ioctl_hook) 924 err = vlan_ioctl_hook(argp); 925 mutex_unlock(&vlan_ioctl_mutex); 926 break; 927 case SIOCGIFDIVERT: 928 case SIOCSIFDIVERT: 929 /* Convert this to call through a hook */ 930 err = divert_ioctl(cmd, argp); 931 break; 932 case SIOCADDDLCI: 933 case SIOCDELDLCI: 934 err = -ENOPKG; 935 if (!dlci_ioctl_hook) 936 request_module("dlci"); 937 938 if (dlci_ioctl_hook) { 939 mutex_lock(&dlci_ioctl_mutex); 940 err = dlci_ioctl_hook(cmd, argp); 941 mutex_unlock(&dlci_ioctl_mutex); 942 } 943 break; 944 default: 945 err = sock->ops->ioctl(sock, cmd, arg); 946 947 /* 948 * If this ioctl is unknown try to hand it down 949 * to the NIC driver. 950 */ 951 if (err == -ENOIOCTLCMD) 952 err = dev_ioctl(cmd, argp); 953 break; 954 } 955 return err; 956} 957 958int sock_create_lite(int family, int type, int protocol, struct socket **res) 959{ 960 int err; 961 struct socket *sock = NULL; 962 963 err = security_socket_create(family, type, protocol, 1); 964 if (err) 965 goto out; 966 967 sock = sock_alloc(); 968 if (!sock) { 969 err = -ENOMEM; 970 goto out; 971 } 972 973 security_socket_post_create(sock, family, type, protocol, 1); 974 sock->type = type; 975out: 976 *res = sock; 977 return err; 978} 979 980/* No kernel lock held - perfect */ 981static unsigned int sock_poll(struct file *file, poll_table * wait) 982{ 983 struct socket *sock; 984 985 /* 986 * We can't return errors to poll, so it's either yes or no. 987 */ 988 sock = file->private_data; 989 return sock->ops->poll(file, sock, wait); 990} 991 992static int sock_mmap(struct file * file, struct vm_area_struct * vma) 993{ 994 struct socket *sock = file->private_data; 995 996 return sock->ops->mmap(file, sock, vma); 997} 998 999static int sock_close(struct inode *inode, struct file *filp) 1000{ 1001 /* 1002 * It was possible the inode is NULL we were 1003 * closing an unfinished socket. 1004 */ 1005 1006 if (!inode) 1007 { 1008 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1009 return 0; 1010 } 1011 sock_fasync(-1, filp, 0); 1012 sock_release(SOCKET_I(inode)); 1013 return 0; 1014} 1015 1016/* 1017 * Update the socket async list 1018 * 1019 * Fasync_list locking strategy. 1020 * 1021 * 1. fasync_list is modified only under process context socket lock 1022 * i.e. under semaphore. 1023 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1024 * or under socket lock. 1025 * 3. fasync_list can be used from softirq context, so that 1026 * modification under socket lock have to be enhanced with 1027 * write_lock_bh(&sk->sk_callback_lock). 1028 * --ANK (990710) 1029 */ 1030 1031static int sock_fasync(int fd, struct file *filp, int on) 1032{ 1033 struct fasync_struct *fa, *fna=NULL, **prev; 1034 struct socket *sock; 1035 struct sock *sk; 1036 1037 if (on) 1038 { 1039 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1040 if(fna==NULL) 1041 return -ENOMEM; 1042 } 1043 1044 sock = filp->private_data; 1045 1046 if ((sk=sock->sk) == NULL) { 1047 kfree(fna); 1048 return -EINVAL; 1049 } 1050 1051 lock_sock(sk); 1052 1053 prev=&(sock->fasync_list); 1054 1055 for (fa=*prev; fa!=NULL; prev=&fa->fa_next,fa=*prev) 1056 if (fa->fa_file==filp) 1057 break; 1058 1059 if(on) 1060 { 1061 if(fa!=NULL) 1062 { 1063 write_lock_bh(&sk->sk_callback_lock); 1064 fa->fa_fd=fd; 1065 write_unlock_bh(&sk->sk_callback_lock); 1066 1067 kfree(fna); 1068 goto out; 1069 } 1070 fna->fa_file=filp; 1071 fna->fa_fd=fd; 1072 fna->magic=FASYNC_MAGIC; 1073 fna->fa_next=sock->fasync_list; 1074 write_lock_bh(&sk->sk_callback_lock); 1075 sock->fasync_list=fna; 1076 write_unlock_bh(&sk->sk_callback_lock); 1077 } 1078 else 1079 { 1080 if (fa!=NULL) 1081 { 1082 write_lock_bh(&sk->sk_callback_lock); 1083 *prev=fa->fa_next; 1084 write_unlock_bh(&sk->sk_callback_lock); 1085 kfree(fa); 1086 } 1087 } 1088 1089out: 1090 release_sock(sock->sk); 1091 return 0; 1092} 1093 1094/* This function may be called only under socket lock or callback_lock */ 1095 1096int sock_wake_async(struct socket *sock, int how, int band) 1097{ 1098 if (!sock || !sock->fasync_list) 1099 return -1; 1100 switch (how) 1101 { 1102 case 1: 1103 1104 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1105 break; 1106 goto call_kill; 1107 case 2: 1108 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1109 break; 1110 /* fall through */ 1111 case 0: 1112 call_kill: 1113 __kill_fasync(sock->fasync_list, SIGIO, band); 1114 break; 1115 case 3: 1116 __kill_fasync(sock->fasync_list, SIGURG, band); 1117 } 1118 return 0; 1119} 1120 1121static int __sock_create(int family, int type, int protocol, struct socket **res, int kern) 1122{ 1123 int err; 1124 struct socket *sock; 1125 1126 /* 1127 * Check protocol is in range 1128 */ 1129 if (family < 0 || family >= NPROTO) 1130 return -EAFNOSUPPORT; 1131 if (type < 0 || type >= SOCK_MAX) 1132 return -EINVAL; 1133 1134 /* Compatibility. 1135 1136 This uglymoron is moved from INET layer to here to avoid 1137 deadlock in module load. 1138 */ 1139 if (family == PF_INET && type == SOCK_PACKET) { 1140 static int warned; 1141 if (!warned) { 1142 warned = 1; 1143 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", current->comm); 1144 } 1145 family = PF_PACKET; 1146 } 1147 1148 err = security_socket_create(family, type, protocol, kern); 1149 if (err) 1150 return err; 1151 1152#if defined(CONFIG_KMOD) 1153 /* Attempt to load a protocol module if the find failed. 1154 * 1155 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1156 * requested real, full-featured networking support upon configuration. 1157 * Otherwise module support will break! 1158 */ 1159 if (net_families[family]==NULL) 1160 { 1161 request_module("net-pf-%d",family); 1162 } 1163#endif 1164 1165 net_family_read_lock(); 1166 if (net_families[family] == NULL) { 1167 err = -EAFNOSUPPORT; 1168 goto out; 1169 } 1170 1171/* 1172 * Allocate the socket and allow the family to set things up. if 1173 * the protocol is 0, the family is instructed to select an appropriate 1174 * default. 1175 */ 1176 1177 if (!(sock = sock_alloc())) { 1178 printk(KERN_WARNING "socket: no more sockets\n"); 1179 err = -ENFILE; /* Not exactly a match, but its the 1180 closest posix thing */ 1181 goto out; 1182 } 1183 1184 sock->type = type; 1185 1186 /* 1187 * We will call the ->create function, that possibly is in a loadable 1188 * module, so we have to bump that loadable module refcnt first. 1189 */ 1190 err = -EAFNOSUPPORT; 1191 if (!try_module_get(net_families[family]->owner)) 1192 goto out_release; 1193 1194 if ((err = net_families[family]->create(sock, protocol)) < 0) { 1195 sock->ops = NULL; 1196 goto out_module_put; 1197 } 1198 1199 /* 1200 * Now to bump the refcnt of the [loadable] module that owns this 1201 * socket at sock_release time we decrement its refcnt. 1202 */ 1203 if (!try_module_get(sock->ops->owner)) { 1204 sock->ops = NULL; 1205 goto out_module_put; 1206 } 1207 /* 1208 * Now that we're done with the ->create function, the [loadable] 1209 * module can have its refcnt decremented 1210 */ 1211 module_put(net_families[family]->owner); 1212 *res = sock; 1213 security_socket_post_create(sock, family, type, protocol, kern); 1214 1215out: 1216 net_family_read_unlock(); 1217 return err; 1218out_module_put: 1219 module_put(net_families[family]->owner); 1220out_release: 1221 sock_release(sock); 1222 goto out; 1223} 1224 1225int sock_create(int family, int type, int protocol, struct socket **res) 1226{ 1227 return __sock_create(family, type, protocol, res, 0); 1228} 1229 1230int sock_create_kern(int family, int type, int protocol, struct socket **res) 1231{ 1232 return __sock_create(family, type, protocol, res, 1); 1233} 1234 1235asmlinkage long sys_socket(int family, int type, int protocol) 1236{ 1237 int retval; 1238 struct socket *sock; 1239 1240 retval = sock_create(family, type, protocol, &sock); 1241 if (retval < 0) 1242 goto out; 1243 1244 retval = sock_map_fd(sock); 1245 if (retval < 0) 1246 goto out_release; 1247 1248out: 1249 /* It may be already another descriptor 8) Not kernel problem. */ 1250 return retval; 1251 1252out_release: 1253 sock_release(sock); 1254 return retval; 1255} 1256 1257/* 1258 * Create a pair of connected sockets. 1259 */ 1260 1261asmlinkage long sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1262{ 1263 struct socket *sock1, *sock2; 1264 int fd1, fd2, err; 1265 1266 /* 1267 * Obtain the first socket and check if the underlying protocol 1268 * supports the socketpair call. 1269 */ 1270 1271 err = sock_create(family, type, protocol, &sock1); 1272 if (err < 0) 1273 goto out; 1274 1275 err = sock_create(family, type, protocol, &sock2); 1276 if (err < 0) 1277 goto out_release_1; 1278 1279 err = sock1->ops->socketpair(sock1, sock2); 1280 if (err < 0) 1281 goto out_release_both; 1282 1283 fd1 = fd2 = -1; 1284 1285 err = sock_map_fd(sock1); 1286 if (err < 0) 1287 goto out_release_both; 1288 fd1 = err; 1289 1290 err = sock_map_fd(sock2); 1291 if (err < 0) 1292 goto out_close_1; 1293 fd2 = err; 1294 1295 /* fd1 and fd2 may be already another descriptors. 1296 * Not kernel problem. 1297 */ 1298 1299 err = put_user(fd1, &usockvec[0]); 1300 if (!err) 1301 err = put_user(fd2, &usockvec[1]); 1302 if (!err) 1303 return 0; 1304 1305 sys_close(fd2); 1306 sys_close(fd1); 1307 return err; 1308 1309out_close_1: 1310 sock_release(sock2); 1311 sys_close(fd1); 1312 return err; 1313 1314out_release_both: 1315 sock_release(sock2); 1316out_release_1: 1317 sock_release(sock1); 1318out: 1319 return err; 1320} 1321 1322 1323/* 1324 * Bind a name to a socket. Nothing much to do here since it's 1325 * the protocol's responsibility to handle the local address. 1326 * 1327 * We move the socket address to kernel space before we call 1328 * the protocol layer (having also checked the address is ok). 1329 */ 1330 1331asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1332{ 1333 struct socket *sock; 1334 char address[MAX_SOCK_ADDR]; 1335 int err, fput_needed; 1336 1337 if((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL) 1338 { 1339 if((err=move_addr_to_kernel(umyaddr,addrlen,address))>=0) { 1340 err = security_socket_bind(sock, (struct sockaddr *)address, addrlen); 1341 if (!err) 1342 err = sock->ops->bind(sock, 1343 (struct sockaddr *)address, addrlen); 1344 } 1345 fput_light(sock->file, fput_needed); 1346 } 1347 return err; 1348} 1349 1350 1351/* 1352 * Perform a listen. Basically, we allow the protocol to do anything 1353 * necessary for a listen, and if that works, we mark the socket as 1354 * ready for listening. 1355 */ 1356 1357int sysctl_somaxconn = SOMAXCONN; 1358 1359asmlinkage long sys_listen(int fd, int backlog) 1360{ 1361 struct socket *sock; 1362 int err, fput_needed; 1363 1364 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1365 if ((unsigned) backlog > sysctl_somaxconn) 1366 backlog = sysctl_somaxconn; 1367 1368 err = security_socket_listen(sock, backlog); 1369 if (!err) 1370 err = sock->ops->listen(sock, backlog); 1371 1372 fput_light(sock->file, fput_needed); 1373 } 1374 return err; 1375} 1376 1377 1378/* 1379 * For accept, we attempt to create a new socket, set up the link 1380 * with the client, wake up the client, then return the new 1381 * connected fd. We collect the address of the connector in kernel 1382 * space and move it to user at the very end. This is unclean because 1383 * we open the socket then return an error. 1384 * 1385 * 1003.1g adds the ability to recvmsg() to query connection pending 1386 * status to recvmsg. We need to add that support in a way thats 1387 * clean when we restucture accept also. 1388 */ 1389 1390asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, int __user *upeer_addrlen) 1391{ 1392 struct socket *sock, *newsock; 1393 struct file *newfile; 1394 int err, len, newfd, fput_needed; 1395 char address[MAX_SOCK_ADDR]; 1396 1397 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1398 if (!sock) 1399 goto out; 1400 1401 err = -ENFILE; 1402 if (!(newsock = sock_alloc())) 1403 goto out_put; 1404 1405 newsock->type = sock->type; 1406 newsock->ops = sock->ops; 1407 1408 /* 1409 * We don't need try_module_get here, as the listening socket (sock) 1410 * has the protocol module (sock->ops->owner) held. 1411 */ 1412 __module_get(newsock->ops->owner); 1413 1414 newfd = sock_alloc_fd(&newfile); 1415 if (unlikely(newfd < 0)) { 1416 err = newfd; 1417 sock_release(newsock); 1418 goto out_put; 1419 } 1420 1421 err = sock_attach_fd(newsock, newfile); 1422 if (err < 0) 1423 goto out_fd; 1424 1425 err = security_socket_accept(sock, newsock); 1426 if (err) 1427 goto out_fd; 1428 1429 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1430 if (err < 0) 1431 goto out_fd; 1432 1433 if (upeer_sockaddr) { 1434 if(newsock->ops->getname(newsock, (struct sockaddr *)address, &len, 2)<0) { 1435 err = -ECONNABORTED; 1436 goto out_fd; 1437 } 1438 err = move_addr_to_user(address, len, upeer_sockaddr, upeer_addrlen); 1439 if (err < 0) 1440 goto out_fd; 1441 } 1442 1443 /* File flags are not inherited via accept() unlike another OSes. */ 1444 1445 fd_install(newfd, newfile); 1446 err = newfd; 1447 1448 security_socket_post_accept(sock, newsock); 1449 1450out_put: 1451 fput_light(sock->file, fput_needed); 1452out: 1453 return err; 1454out_fd: 1455 fput(newfile); 1456 put_unused_fd(newfd); 1457 goto out_put; 1458} 1459 1460 1461/* 1462 * Attempt to connect to a socket with the server address. The address 1463 * is in user space so we verify it is OK and move it to kernel space. 1464 * 1465 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1466 * break bindings 1467 * 1468 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1469 * other SEQPACKET protocols that take time to connect() as it doesn't 1470 * include the -EINPROGRESS status for such sockets. 1471 */ 1472 1473asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1474{ 1475 struct socket *sock; 1476 char address[MAX_SOCK_ADDR]; 1477 int err, fput_needed; 1478 1479 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1480 if (!sock) 1481 goto out; 1482 err = move_addr_to_kernel(uservaddr, addrlen, address); 1483 if (err < 0) 1484 goto out_put; 1485 1486 err = security_socket_connect(sock, (struct sockaddr *)address, addrlen); 1487 if (err) 1488 goto out_put; 1489 1490 err = sock->ops->connect(sock, (struct sockaddr *) address, addrlen, 1491 sock->file->f_flags); 1492out_put: 1493 fput_light(sock->file, fput_needed); 1494out: 1495 return err; 1496} 1497 1498/* 1499 * Get the local address ('name') of a socket object. Move the obtained 1500 * name to user space. 1501 */ 1502 1503asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1504{ 1505 struct socket *sock; 1506 char address[MAX_SOCK_ADDR]; 1507 int len, err, fput_needed; 1508 1509 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1510 if (!sock) 1511 goto out; 1512 1513 err = security_socket_getsockname(sock); 1514 if (err) 1515 goto out_put; 1516 1517 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0); 1518 if (err) 1519 goto out_put; 1520 err = move_addr_to_user(address, len, usockaddr, usockaddr_len); 1521 1522out_put: 1523 fput_light(sock->file, fput_needed); 1524out: 1525 return err; 1526} 1527 1528/* 1529 * Get the remote address ('name') of a socket object. Move the obtained 1530 * name to user space. 1531 */ 1532 1533asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, int __user *usockaddr_len) 1534{ 1535 struct socket *sock; 1536 char address[MAX_SOCK_ADDR]; 1537 int len, err, fput_needed; 1538 1539 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1540 err = security_socket_getpeername(sock); 1541 if (err) { 1542 fput_light(sock->file, fput_needed); 1543 return err; 1544 } 1545 1546 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 1); 1547 if (!err) 1548 err=move_addr_to_user(address,len, usockaddr, usockaddr_len); 1549 fput_light(sock->file, fput_needed); 1550 } 1551 return err; 1552} 1553 1554/* 1555 * Send a datagram to a given address. We move the address into kernel 1556 * space and check the user space data area is readable before invoking 1557 * the protocol. 1558 */ 1559 1560asmlinkage long sys_sendto(int fd, void __user * buff, size_t len, unsigned flags, 1561 struct sockaddr __user *addr, int addr_len) 1562{ 1563 struct socket *sock; 1564 char address[MAX_SOCK_ADDR]; 1565 int err; 1566 struct msghdr msg; 1567 struct iovec iov; 1568 int fput_needed; 1569 struct file *sock_file; 1570 1571 sock_file = fget_light(fd, &fput_needed); 1572 if (!sock_file) 1573 return -EBADF; 1574 1575 sock = sock_from_file(sock_file, &err); 1576 if (!sock) 1577 goto out_put; 1578 iov.iov_base=buff; 1579 iov.iov_len=len; 1580 msg.msg_name=NULL; 1581 msg.msg_iov=&iov; 1582 msg.msg_iovlen=1; 1583 msg.msg_control=NULL; 1584 msg.msg_controllen=0; 1585 msg.msg_namelen=0; 1586 if (addr) { 1587 err = move_addr_to_kernel(addr, addr_len, address); 1588 if (err < 0) 1589 goto out_put; 1590 msg.msg_name=address; 1591 msg.msg_namelen=addr_len; 1592 } 1593 if (sock->file->f_flags & O_NONBLOCK) 1594 flags |= MSG_DONTWAIT; 1595 msg.msg_flags = flags; 1596 err = sock_sendmsg(sock, &msg, len); 1597 1598out_put: 1599 fput_light(sock_file, fput_needed); 1600 return err; 1601} 1602 1603/* 1604 * Send a datagram down a socket. 1605 */ 1606 1607asmlinkage long sys_send(int fd, void __user * buff, size_t len, unsigned flags) 1608{ 1609 return sys_sendto(fd, buff, len, flags, NULL, 0); 1610} 1611 1612/* 1613 * Receive a frame from the socket and optionally record the address of the 1614 * sender. We verify the buffers are writable and if needed move the 1615 * sender address from kernel to user space. 1616 */ 1617 1618asmlinkage long sys_recvfrom(int fd, void __user * ubuf, size_t size, unsigned flags, 1619 struct sockaddr __user *addr, int __user *addr_len) 1620{ 1621 struct socket *sock; 1622 struct iovec iov; 1623 struct msghdr msg; 1624 char address[MAX_SOCK_ADDR]; 1625 int err,err2; 1626 struct file *sock_file; 1627 int fput_needed; 1628 1629 sock_file = fget_light(fd, &fput_needed); 1630 if (!sock_file) 1631 return -EBADF; 1632 1633 sock = sock_from_file(sock_file, &err); 1634 if (!sock) 1635 goto out; 1636 1637 msg.msg_control=NULL; 1638 msg.msg_controllen=0; 1639 msg.msg_iovlen=1; 1640 msg.msg_iov=&iov; 1641 iov.iov_len=size; 1642 iov.iov_base=ubuf; 1643 msg.msg_name=address; 1644 msg.msg_namelen=MAX_SOCK_ADDR; 1645 if (sock->file->f_flags & O_NONBLOCK) 1646 flags |= MSG_DONTWAIT; 1647 err=sock_recvmsg(sock, &msg, size, flags); 1648 1649 if(err >= 0 && addr != NULL) 1650 { 1651 err2=move_addr_to_user(address, msg.msg_namelen, addr, addr_len); 1652 if(err2<0) 1653 err=err2; 1654 } 1655out: 1656 fput_light(sock_file, fput_needed); 1657 return err; 1658} 1659 1660/* 1661 * Receive a datagram from a socket. 1662 */ 1663 1664asmlinkage long sys_recv(int fd, void __user * ubuf, size_t size, unsigned flags) 1665{ 1666 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1667} 1668 1669/* 1670 * Set a socket option. Because we don't know the option lengths we have 1671 * to pass the user mode parameter for the protocols to sort out. 1672 */ 1673 1674asmlinkage long sys_setsockopt(int fd, int level, int optname, char __user *optval, int optlen) 1675{ 1676 int err, fput_needed; 1677 struct socket *sock; 1678 1679 if (optlen < 0) 1680 return -EINVAL; 1681 1682 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) 1683 { 1684 err = security_socket_setsockopt(sock,level,optname); 1685 if (err) 1686 goto out_put; 1687 1688 if (level == SOL_SOCKET) 1689 err=sock_setsockopt(sock,level,optname,optval,optlen); 1690 else 1691 err=sock->ops->setsockopt(sock, level, optname, optval, optlen); 1692out_put: 1693 fput_light(sock->file, fput_needed); 1694 } 1695 return err; 1696} 1697 1698/* 1699 * Get a socket option. Because we don't know the option lengths we have 1700 * to pass a user mode parameter for the protocols to sort out. 1701 */ 1702 1703asmlinkage long sys_getsockopt(int fd, int level, int optname, char __user *optval, int __user *optlen) 1704{ 1705 int err, fput_needed; 1706 struct socket *sock; 1707 1708 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed)) != NULL) { 1709 err = security_socket_getsockopt(sock, level, optname); 1710 if (err) 1711 goto out_put; 1712 1713 if (level == SOL_SOCKET) 1714 err=sock_getsockopt(sock,level,optname,optval,optlen); 1715 else 1716 err=sock->ops->getsockopt(sock, level, optname, optval, optlen); 1717out_put: 1718 fput_light(sock->file, fput_needed); 1719 } 1720 return err; 1721} 1722 1723 1724/* 1725 * Shutdown a socket. 1726 */ 1727 1728asmlinkage long sys_shutdown(int fd, int how) 1729{ 1730 int err, fput_needed; 1731 struct socket *sock; 1732 1733 if ((sock = sockfd_lookup_light(fd, &err, &fput_needed))!=NULL) 1734 { 1735 err = security_socket_shutdown(sock, how); 1736 if (!err) 1737 err = sock->ops->shutdown(sock, how); 1738 fput_light(sock->file, fput_needed); 1739 } 1740 return err; 1741} 1742 1743/* A couple of helpful macros for getting the address of the 32/64 bit 1744 * fields which are the same type (int / unsigned) on our platforms. 1745 */ 1746#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1747#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1748#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1749 1750 1751/* 1752 * BSD sendmsg interface 1753 */ 1754 1755asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1756{ 1757 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1758 struct socket *sock; 1759 char address[MAX_SOCK_ADDR]; 1760 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1761 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1762 __attribute__ ((aligned (sizeof(__kernel_size_t)))); 1763 /* 20 is size of ipv6_pktinfo */ 1764 unsigned char *ctl_buf = ctl; 1765 struct msghdr msg_sys; 1766 int err, ctl_len, iov_size, total_len; 1767 int fput_needed; 1768 1769 err = -EFAULT; 1770 if (MSG_CMSG_COMPAT & flags) { 1771 if (get_compat_msghdr(&msg_sys, msg_compat)) 1772 return -EFAULT; 1773 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1774 return -EFAULT; 1775 1776 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1777 if (!sock) 1778 goto out; 1779 1780 /* do not move before msg_sys is valid */ 1781 err = -EMSGSIZE; 1782 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1783 goto out_put; 1784 1785 /* Check whether to allocate the iovec area*/ 1786 err = -ENOMEM; 1787 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1788 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1789 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1790 if (!iov) 1791 goto out_put; 1792 } 1793 1794 /* This will also move the address data into kernel space */ 1795 if (MSG_CMSG_COMPAT & flags) { 1796 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ); 1797 } else 1798 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ); 1799 if (err < 0) 1800 goto out_freeiov; 1801 total_len = err; 1802 1803 err = -ENOBUFS; 1804 1805 if (msg_sys.msg_controllen > INT_MAX) 1806 goto out_freeiov; 1807 ctl_len = msg_sys.msg_controllen; 1808 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1809 err = cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, sizeof(ctl)); 1810 if (err) 1811 goto out_freeiov; 1812 ctl_buf = msg_sys.msg_control; 1813 ctl_len = msg_sys.msg_controllen; 1814 } else if (ctl_len) { 1815 if (ctl_len > sizeof(ctl)) 1816 { 1817 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1818 if (ctl_buf == NULL) 1819 goto out_freeiov; 1820 } 1821 err = -EFAULT; 1822 /* 1823 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1824 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1825 * checking falls down on this. 1826 */ 1827 if (copy_from_user(ctl_buf, (void __user *) msg_sys.msg_control, ctl_len)) 1828 goto out_freectl; 1829 msg_sys.msg_control = ctl_buf; 1830 } 1831 msg_sys.msg_flags = flags; 1832 1833 if (sock->file->f_flags & O_NONBLOCK) 1834 msg_sys.msg_flags |= MSG_DONTWAIT; 1835 err = sock_sendmsg(sock, &msg_sys, total_len); 1836 1837out_freectl: 1838 if (ctl_buf != ctl) 1839 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1840out_freeiov: 1841 if (iov != iovstack) 1842 sock_kfree_s(sock->sk, iov, iov_size); 1843out_put: 1844 fput_light(sock->file, fput_needed); 1845out: 1846 return err; 1847} 1848 1849/* 1850 * BSD recvmsg interface 1851 */ 1852 1853asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, unsigned int flags) 1854{ 1855 struct compat_msghdr __user *msg_compat = (struct compat_msghdr __user *)msg; 1856 struct socket *sock; 1857 struct iovec iovstack[UIO_FASTIOV]; 1858 struct iovec *iov=iovstack; 1859 struct msghdr msg_sys; 1860 unsigned long cmsg_ptr; 1861 int err, iov_size, total_len, len; 1862 int fput_needed; 1863 1864 /* kernel mode address */ 1865 char addr[MAX_SOCK_ADDR]; 1866 1867 /* user mode address pointers */ 1868 struct sockaddr __user *uaddr; 1869 int __user *uaddr_len; 1870 1871 if (MSG_CMSG_COMPAT & flags) { 1872 if (get_compat_msghdr(&msg_sys, msg_compat)) 1873 return -EFAULT; 1874 } else 1875 if (copy_from_user(&msg_sys,msg,sizeof(struct msghdr))) 1876 return -EFAULT; 1877 1878 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1879 if (!sock) 1880 goto out; 1881 1882 err = -EMSGSIZE; 1883 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1884 goto out_put; 1885 1886 /* Check whether to allocate the iovec area*/ 1887 err = -ENOMEM; 1888 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1889 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1890 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1891 if (!iov) 1892 goto out_put; 1893 } 1894 1895 /* 1896 * Save the user-mode address (verify_iovec will change the 1897 * kernel msghdr to use the kernel address space) 1898 */ 1899 1900 uaddr = (void __user *) msg_sys.msg_name; 1901 uaddr_len = COMPAT_NAMELEN(msg); 1902 if (MSG_CMSG_COMPAT & flags) { 1903 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1904 } else 1905 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE); 1906 if (err < 0) 1907 goto out_freeiov; 1908 total_len=err; 1909 1910 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1911 msg_sys.msg_flags = 0; 1912 if (MSG_CMSG_COMPAT & flags) 1913 msg_sys.msg_flags = MSG_CMSG_COMPAT; 1914 1915 if (sock->file->f_flags & O_NONBLOCK) 1916 flags |= MSG_DONTWAIT; 1917 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 1918 if (err < 0) 1919 goto out_freeiov; 1920 len = err; 1921 1922 if (uaddr != NULL) { 1923 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); 1924 if (err < 0) 1925 goto out_freeiov; 1926 } 1927 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 1928 COMPAT_FLAGS(msg)); 1929 if (err) 1930 goto out_freeiov; 1931 if (MSG_CMSG_COMPAT & flags) 1932 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1933 &msg_compat->msg_controllen); 1934 else 1935 err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, 1936 &msg->msg_controllen); 1937 if (err) 1938 goto out_freeiov; 1939 err = len; 1940 1941out_freeiov: 1942 if (iov != iovstack) 1943 sock_kfree_s(sock->sk, iov, iov_size); 1944out_put: 1945 fput_light(sock->file, fput_needed); 1946out: 1947 return err; 1948} 1949 1950#ifdef __ARCH_WANT_SYS_SOCKETCALL 1951 1952/* Argument list sizes for sys_socketcall */ 1953#define AL(x) ((x) * sizeof(unsigned long)) 1954static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 1955 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 1956 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; 1957#undef AL 1958 1959/* 1960 * System call vectors. 1961 * 1962 * Argument checking cleaned up. Saved 20% in size. 1963 * This function doesn't need to set the kernel lock because 1964 * it is set by the callees. 1965 */ 1966 1967asmlinkage long sys_socketcall(int call, unsigned long __user *args) 1968{ 1969 unsigned long a[6]; 1970 unsigned long a0,a1; 1971 int err; 1972 1973 if(call<1||call>SYS_RECVMSG) 1974 return -EINVAL; 1975 1976 /* copy_from_user should be SMP safe. */ 1977 if (copy_from_user(a, args, nargs[call])) 1978 return -EFAULT; 1979 1980 err = audit_socketcall(nargs[call]/sizeof(unsigned long), a); 1981 if (err) 1982 return err; 1983 1984 a0=a[0]; 1985 a1=a[1]; 1986 1987 switch(call) 1988 { 1989 case SYS_SOCKET: 1990 err = sys_socket(a0,a1,a[2]); 1991 break; 1992 case SYS_BIND: 1993 err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]); 1994 break; 1995 case SYS_CONNECT: 1996 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 1997 break; 1998 case SYS_LISTEN: 1999 err = sys_listen(a0,a1); 2000 break; 2001 case SYS_ACCEPT: 2002 err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 2003 break; 2004 case SYS_GETSOCKNAME: 2005 err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]); 2006 break; 2007 case SYS_GETPEERNAME: 2008 err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]); 2009 break; 2010 case SYS_SOCKETPAIR: 2011 err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]); 2012 break; 2013 case SYS_SEND: 2014 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2015 break; 2016 case SYS_SENDTO: 2017 err = sys_sendto(a0,(void __user *)a1, a[2], a[3], 2018 (struct sockaddr __user *)a[4], a[5]); 2019 break; 2020 case SYS_RECV: 2021 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2022 break; 2023 case SYS_RECVFROM: 2024 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2025 (struct sockaddr __user *)a[4], (int __user *)a[5]); 2026 break; 2027 case SYS_SHUTDOWN: 2028 err = sys_shutdown(a0,a1); 2029 break; 2030 case SYS_SETSOCKOPT: 2031 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2032 break; 2033 case SYS_GETSOCKOPT: 2034 err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]); 2035 break; 2036 case SYS_SENDMSG: 2037 err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]); 2038 break; 2039 case SYS_RECVMSG: 2040 err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]); 2041 break; 2042 default: 2043 err = -EINVAL; 2044 break; 2045 } 2046 return err; 2047} 2048 2049#endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2050 2051/* 2052 * This function is called by a protocol handler that wants to 2053 * advertise its address family, and have it linked into the 2054 * SOCKET module. 2055 */ 2056 2057int sock_register(struct net_proto_family *ops) 2058{ 2059 int err; 2060 2061 if (ops->family >= NPROTO) { 2062 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2063 return -ENOBUFS; 2064 } 2065 net_family_write_lock(); 2066 err = -EEXIST; 2067 if (net_families[ops->family] == NULL) { 2068 net_families[ops->family]=ops; 2069 err = 0; 2070 } 2071 net_family_write_unlock(); 2072 printk(KERN_INFO "NET: Registered protocol family %d\n", 2073 ops->family); 2074 return err; 2075} 2076 2077/* 2078 * This function is called by a protocol handler that wants to 2079 * remove its address family, and have it unlinked from the 2080 * SOCKET module. 2081 */ 2082 2083int sock_unregister(int family) 2084{ 2085 if (family < 0 || family >= NPROTO) 2086 return -1; 2087 2088 net_family_write_lock(); 2089 net_families[family]=NULL; 2090 net_family_write_unlock(); 2091 printk(KERN_INFO "NET: Unregistered protocol family %d\n", 2092 family); 2093 return 0; 2094} 2095 2096static int __init sock_init(void) 2097{ 2098 /* 2099 * Initialize sock SLAB cache. 2100 */ 2101 2102 sk_init(); 2103 2104 /* 2105 * Initialize skbuff SLAB cache 2106 */ 2107 skb_init(); 2108 2109 /* 2110 * Initialize the protocols module. 2111 */ 2112 2113 init_inodecache(); 2114 register_filesystem(&sock_fs_type); 2115 sock_mnt = kern_mount(&sock_fs_type); 2116 2117 /* The real protocol initialization is performed in later initcalls. 2118 */ 2119 2120#ifdef CONFIG_NETFILTER 2121 netfilter_init(); 2122#endif 2123 2124 return 0; 2125} 2126 2127core_initcall(sock_init); /* early initcall */ 2128 2129#ifdef CONFIG_PROC_FS 2130void socket_seq_show(struct seq_file *seq) 2131{ 2132 int cpu; 2133 int counter = 0; 2134 2135 for_each_possible_cpu(cpu) 2136 counter += per_cpu(sockets_in_use, cpu); 2137 2138 /* It can be negative, by the way. 8) */ 2139 if (counter < 0) 2140 counter = 0; 2141 2142 seq_printf(seq, "sockets: used %d\n", counter); 2143} 2144#endif /* CONFIG_PROC_FS */ 2145 2146#ifdef CONFIG_COMPAT 2147static long compat_sock_ioctl(struct file *file, unsigned cmd, 2148 unsigned long arg) 2149{ 2150 struct socket *sock = file->private_data; 2151 int ret = -ENOIOCTLCMD; 2152 2153 if (sock->ops->compat_ioctl) 2154 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2155 2156 return ret; 2157} 2158#endif 2159 2160/* ABI emulation layers need these two */ 2161EXPORT_SYMBOL(move_addr_to_kernel); 2162EXPORT_SYMBOL(move_addr_to_user); 2163EXPORT_SYMBOL(sock_create); 2164EXPORT_SYMBOL(sock_create_kern); 2165EXPORT_SYMBOL(sock_create_lite); 2166EXPORT_SYMBOL(sock_map_fd); 2167EXPORT_SYMBOL(sock_recvmsg); 2168EXPORT_SYMBOL(sock_register); 2169EXPORT_SYMBOL(sock_release); 2170EXPORT_SYMBOL(sock_sendmsg); 2171EXPORT_SYMBOL(sock_unregister); 2172EXPORT_SYMBOL(sock_wake_async); 2173EXPORT_SYMBOL(sockfd_lookup); 2174EXPORT_SYMBOL(kernel_sendmsg); 2175EXPORT_SYMBOL(kernel_recvmsg);