at v2.6.17-rc2 848 lines 31 kB view raw
1#ifdef __KERNEL__ 2#ifndef _PPC_PGTABLE_H 3#define _PPC_PGTABLE_H 4 5#include <asm-generic/4level-fixup.h> 6 7#include <linux/config.h> 8 9#ifndef __ASSEMBLY__ 10#include <linux/sched.h> 11#include <linux/threads.h> 12#include <asm/processor.h> /* For TASK_SIZE */ 13#include <asm/mmu.h> 14#include <asm/page.h> 15#include <asm/io.h> /* For sub-arch specific PPC_PIN_SIZE */ 16struct mm_struct; 17 18extern unsigned long va_to_phys(unsigned long address); 19extern pte_t *va_to_pte(unsigned long address); 20extern unsigned long ioremap_bot, ioremap_base; 21#endif /* __ASSEMBLY__ */ 22 23/* 24 * The PowerPC MMU uses a hash table containing PTEs, together with 25 * a set of 16 segment registers (on 32-bit implementations), to define 26 * the virtual to physical address mapping. 27 * 28 * We use the hash table as an extended TLB, i.e. a cache of currently 29 * active mappings. We maintain a two-level page table tree, much 30 * like that used by the i386, for the sake of the Linux memory 31 * management code. Low-level assembler code in hashtable.S 32 * (procedure hash_page) is responsible for extracting ptes from the 33 * tree and putting them into the hash table when necessary, and 34 * updating the accessed and modified bits in the page table tree. 35 */ 36 37/* 38 * The PowerPC MPC8xx uses a TLB with hardware assisted, software tablewalk. 39 * We also use the two level tables, but we can put the real bits in them 40 * needed for the TLB and tablewalk. These definitions require Mx_CTR.PPM = 0, 41 * Mx_CTR.PPCS = 0, and MD_CTR.TWAM = 1. The level 2 descriptor has 42 * additional page protection (when Mx_CTR.PPCS = 1) that allows TLB hit 43 * based upon user/super access. The TLB does not have accessed nor write 44 * protect. We assume that if the TLB get loaded with an entry it is 45 * accessed, and overload the changed bit for write protect. We use 46 * two bits in the software pte that are supposed to be set to zero in 47 * the TLB entry (24 and 25) for these indicators. Although the level 1 48 * descriptor contains the guarded and writethrough/copyback bits, we can 49 * set these at the page level since they get copied from the Mx_TWC 50 * register when the TLB entry is loaded. We will use bit 27 for guard, since 51 * that is where it exists in the MD_TWC, and bit 26 for writethrough. 52 * These will get masked from the level 2 descriptor at TLB load time, and 53 * copied to the MD_TWC before it gets loaded. 54 * Large page sizes added. We currently support two sizes, 4K and 8M. 55 * This also allows a TLB hander optimization because we can directly 56 * load the PMD into MD_TWC. The 8M pages are only used for kernel 57 * mapping of well known areas. The PMD (PGD) entries contain control 58 * flags in addition to the address, so care must be taken that the 59 * software no longer assumes these are only pointers. 60 */ 61 62/* 63 * At present, all PowerPC 400-class processors share a similar TLB 64 * architecture. The instruction and data sides share a unified, 65 * 64-entry, fully-associative TLB which is maintained totally under 66 * software control. In addition, the instruction side has a 67 * hardware-managed, 4-entry, fully-associative TLB which serves as a 68 * first level to the shared TLB. These two TLBs are known as the UTLB 69 * and ITLB, respectively (see "mmu.h" for definitions). 70 */ 71 72/* 73 * The normal case is that PTEs are 32-bits and we have a 1-page 74 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus 75 * 76 * For any >32-bit physical address platform, we can use the following 77 * two level page table layout where the pgdir is 8KB and the MS 13 bits 78 * are an index to the second level table. The combined pgdir/pmd first 79 * level has 2048 entries and the second level has 512 64-bit PTE entries. 80 * -Matt 81 */ 82/* PMD_SHIFT determines the size of the area mapped by the PTE pages */ 83#define PMD_SHIFT (PAGE_SHIFT + PTE_SHIFT) 84#define PMD_SIZE (1UL << PMD_SHIFT) 85#define PMD_MASK (~(PMD_SIZE-1)) 86 87/* PGDIR_SHIFT determines what a top-level page table entry can map */ 88#define PGDIR_SHIFT PMD_SHIFT 89#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 90#define PGDIR_MASK (~(PGDIR_SIZE-1)) 91 92/* 93 * entries per page directory level: our page-table tree is two-level, so 94 * we don't really have any PMD directory. 95 */ 96#define PTRS_PER_PTE (1 << PTE_SHIFT) 97#define PTRS_PER_PMD 1 98#define PTRS_PER_PGD (1 << (32 - PGDIR_SHIFT)) 99 100#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 101#define FIRST_USER_ADDRESS 0 102 103#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT) 104#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS) 105 106#define pte_ERROR(e) \ 107 printk("%s:%d: bad pte "PTE_FMT".\n", __FILE__, __LINE__, pte_val(e)) 108#define pmd_ERROR(e) \ 109 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 110#define pgd_ERROR(e) \ 111 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 112 113/* 114 * Just any arbitrary offset to the start of the vmalloc VM area: the 115 * current 64MB value just means that there will be a 64MB "hole" after the 116 * physical memory until the kernel virtual memory starts. That means that 117 * any out-of-bounds memory accesses will hopefully be caught. 118 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 119 * area for the same reason. ;) 120 * 121 * We no longer map larger than phys RAM with the BATs so we don't have 122 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry 123 * about clashes between our early calls to ioremap() that start growing down 124 * from ioremap_base being run into the VM area allocations (growing upwards 125 * from VMALLOC_START). For this reason we have ioremap_bot to check when 126 * we actually run into our mappings setup in the early boot with the VM 127 * system. This really does become a problem for machines with good amounts 128 * of RAM. -- Cort 129 */ 130#define VMALLOC_OFFSET (0x1000000) /* 16M */ 131#ifdef PPC_PIN_SIZE 132#define VMALLOC_START (((_ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 133#else 134#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) 135#endif 136#define VMALLOC_END ioremap_bot 137 138/* 139 * Bits in a linux-style PTE. These match the bits in the 140 * (hardware-defined) PowerPC PTE as closely as possible. 141 */ 142 143#if defined(CONFIG_40x) 144 145/* There are several potential gotchas here. The 40x hardware TLBLO 146 field looks like this: 147 148 0 1 2 3 4 ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31 149 RPN..................... 0 0 EX WR ZSEL....... W I M G 150 151 Where possible we make the Linux PTE bits match up with this 152 153 - bits 20 and 21 must be cleared, because we use 4k pages (40x can 154 support down to 1k pages), this is done in the TLBMiss exception 155 handler. 156 - We use only zones 0 (for kernel pages) and 1 (for user pages) 157 of the 16 available. Bit 24-26 of the TLB are cleared in the TLB 158 miss handler. Bit 27 is PAGE_USER, thus selecting the correct 159 zone. 160 - PRESENT *must* be in the bottom two bits because swap cache 161 entries use the top 30 bits. Because 40x doesn't support SMP 162 anyway, M is irrelevant so we borrow it for PAGE_PRESENT. Bit 30 163 is cleared in the TLB miss handler before the TLB entry is loaded. 164 - All other bits of the PTE are loaded into TLBLO without 165 modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for 166 software PTE bits. We actually use use bits 21, 24, 25, and 167 30 respectively for the software bits: ACCESSED, DIRTY, RW, and 168 PRESENT. 169*/ 170 171/* Definitions for 40x embedded chips. */ 172#define _PAGE_GUARDED 0x001 /* G: page is guarded from prefetch */ 173#define _PAGE_FILE 0x001 /* when !present: nonlinear file mapping */ 174#define _PAGE_PRESENT 0x002 /* software: PTE contains a translation */ 175#define _PAGE_NO_CACHE 0x004 /* I: caching is inhibited */ 176#define _PAGE_WRITETHRU 0x008 /* W: caching is write-through */ 177#define _PAGE_USER 0x010 /* matches one of the zone permission bits */ 178#define _PAGE_RW 0x040 /* software: Writes permitted */ 179#define _PAGE_DIRTY 0x080 /* software: dirty page */ 180#define _PAGE_HWWRITE 0x100 /* hardware: Dirty & RW, set in exception */ 181#define _PAGE_HWEXEC 0x200 /* hardware: EX permission */ 182#define _PAGE_ACCESSED 0x400 /* software: R: page referenced */ 183 184#define _PMD_PRESENT 0x400 /* PMD points to page of PTEs */ 185#define _PMD_BAD 0x802 186#define _PMD_SIZE 0x0e0 /* size field, != 0 for large-page PMD entry */ 187#define _PMD_SIZE_4M 0x0c0 188#define _PMD_SIZE_16M 0x0e0 189#define PMD_PAGE_SIZE(pmdval) (1024 << (((pmdval) & _PMD_SIZE) >> 4)) 190 191#elif defined(CONFIG_44x) 192/* 193 * Definitions for PPC440 194 * 195 * Because of the 3 word TLB entries to support 36-bit addressing, 196 * the attribute are difficult to map in such a fashion that they 197 * are easily loaded during exception processing. I decided to 198 * organize the entry so the ERPN is the only portion in the 199 * upper word of the PTE and the attribute bits below are packed 200 * in as sensibly as they can be in the area below a 4KB page size 201 * oriented RPN. This at least makes it easy to load the RPN and 202 * ERPN fields in the TLB. -Matt 203 * 204 * Note that these bits preclude future use of a page size 205 * less than 4KB. 206 * 207 * 208 * PPC 440 core has following TLB attribute fields; 209 * 210 * TLB1: 211 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 212 * RPN................................. - - - - - - ERPN....... 213 * 214 * TLB2: 215 * 0 1 2 3 4 ... 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 216 * - - - - - - U0 U1 U2 U3 W I M G E - UX UW UR SX SW SR 217 * 218 * There are some constrains and options, to decide mapping software bits 219 * into TLB entry. 220 * 221 * - PRESENT *must* be in the bottom three bits because swap cache 222 * entries use the top 29 bits for TLB2. 223 * 224 * - FILE *must* be in the bottom three bits because swap cache 225 * entries use the top 29 bits for TLB2. 226 * 227 * - CACHE COHERENT bit (M) has no effect on PPC440 core, because it 228 * doesn't support SMP. So we can use this as software bit, like 229 * DIRTY. 230 * 231 * With the PPC 44x Linux implementation, the 0-11th LSBs of the PTE are used 232 * for memory protection related functions (see PTE structure in 233 * include/asm-ppc/mmu.h). The _PAGE_XXX definitions in this file map to the 234 * above bits. Note that the bit values are CPU specific, not architecture 235 * specific. 236 * 237 * The kernel PTE entry holds an arch-dependent swp_entry structure under 238 * certain situations. In other words, in such situations some portion of 239 * the PTE bits are used as a swp_entry. In the PPC implementation, the 240 * 3-24th LSB are shared with swp_entry, however the 0-2nd three LSB still 241 * hold protection values. That means the three protection bits are 242 * reserved for both PTE and SWAP entry at the most significant three 243 * LSBs. 244 * 245 * There are three protection bits available for SWAP entry: 246 * _PAGE_PRESENT 247 * _PAGE_FILE 248 * _PAGE_HASHPTE (if HW has) 249 * 250 * So those three bits have to be inside of 0-2nd LSB of PTE. 251 * 252 */ 253 254#define _PAGE_PRESENT 0x00000001 /* S: PTE valid */ 255#define _PAGE_RW 0x00000002 /* S: Write permission */ 256#define _PAGE_FILE 0x00000004 /* S: nonlinear file mapping */ 257#define _PAGE_ACCESSED 0x00000008 /* S: Page referenced */ 258#define _PAGE_HWWRITE 0x00000010 /* H: Dirty & RW */ 259#define _PAGE_HWEXEC 0x00000020 /* H: Execute permission */ 260#define _PAGE_USER 0x00000040 /* S: User page */ 261#define _PAGE_ENDIAN 0x00000080 /* H: E bit */ 262#define _PAGE_GUARDED 0x00000100 /* H: G bit */ 263#define _PAGE_DIRTY 0x00000200 /* S: Page dirty */ 264#define _PAGE_NO_CACHE 0x00000400 /* H: I bit */ 265#define _PAGE_WRITETHRU 0x00000800 /* H: W bit */ 266 267/* TODO: Add large page lowmem mapping support */ 268#define _PMD_PRESENT 0 269#define _PMD_PRESENT_MASK (PAGE_MASK) 270#define _PMD_BAD (~PAGE_MASK) 271 272/* ERPN in a PTE never gets cleared, ignore it */ 273#define _PTE_NONE_MASK 0xffffffff00000000ULL 274 275#elif defined(CONFIG_FSL_BOOKE) 276/* 277 MMU Assist Register 3: 278 279 32 33 34 35 36 ... 50 51 52 53 54 55 56 57 58 59 60 61 62 63 280 RPN...................... 0 0 U0 U1 U2 U3 UX SX UW SW UR SR 281 282 - PRESENT *must* be in the bottom three bits because swap cache 283 entries use the top 29 bits. 284 285 - FILE *must* be in the bottom three bits because swap cache 286 entries use the top 29 bits. 287*/ 288 289/* Definitions for FSL Book-E Cores */ 290#define _PAGE_PRESENT 0x00001 /* S: PTE contains a translation */ 291#define _PAGE_USER 0x00002 /* S: User page (maps to UR) */ 292#define _PAGE_FILE 0x00002 /* S: when !present: nonlinear file mapping */ 293#define _PAGE_ACCESSED 0x00004 /* S: Page referenced */ 294#define _PAGE_HWWRITE 0x00008 /* H: Dirty & RW, set in exception */ 295#define _PAGE_RW 0x00010 /* S: Write permission */ 296#define _PAGE_HWEXEC 0x00020 /* H: UX permission */ 297 298#define _PAGE_ENDIAN 0x00040 /* H: E bit */ 299#define _PAGE_GUARDED 0x00080 /* H: G bit */ 300#define _PAGE_COHERENT 0x00100 /* H: M bit */ 301#define _PAGE_NO_CACHE 0x00200 /* H: I bit */ 302#define _PAGE_WRITETHRU 0x00400 /* H: W bit */ 303 304#ifdef CONFIG_PTE_64BIT 305#define _PAGE_DIRTY 0x08000 /* S: Page dirty */ 306 307/* ERPN in a PTE never gets cleared, ignore it */ 308#define _PTE_NONE_MASK 0xffffffffffff0000ULL 309#else 310#define _PAGE_DIRTY 0x00800 /* S: Page dirty */ 311#endif 312 313#define _PMD_PRESENT 0 314#define _PMD_PRESENT_MASK (PAGE_MASK) 315#define _PMD_BAD (~PAGE_MASK) 316 317#elif defined(CONFIG_8xx) 318/* Definitions for 8xx embedded chips. */ 319#define _PAGE_PRESENT 0x0001 /* Page is valid */ 320#define _PAGE_FILE 0x0002 /* when !present: nonlinear file mapping */ 321#define _PAGE_NO_CACHE 0x0002 /* I: cache inhibit */ 322#define _PAGE_SHARED 0x0004 /* No ASID (context) compare */ 323 324/* These five software bits must be masked out when the entry is loaded 325 * into the TLB. 326 */ 327#define _PAGE_EXEC 0x0008 /* software: i-cache coherency required */ 328#define _PAGE_GUARDED 0x0010 /* software: guarded access */ 329#define _PAGE_DIRTY 0x0020 /* software: page changed */ 330#define _PAGE_RW 0x0040 /* software: user write access allowed */ 331#define _PAGE_ACCESSED 0x0080 /* software: page referenced */ 332 333/* Setting any bits in the nibble with the follow two controls will 334 * require a TLB exception handler change. It is assumed unused bits 335 * are always zero. 336 */ 337#define _PAGE_HWWRITE 0x0100 /* h/w write enable: never set in Linux PTE */ 338#define _PAGE_USER 0x0800 /* One of the PP bits, the other is USER&~RW */ 339 340#define _PMD_PRESENT 0x0001 341#define _PMD_BAD 0x0ff0 342#define _PMD_PAGE_MASK 0x000c 343#define _PMD_PAGE_8M 0x000c 344 345/* 346 * The 8xx TLB miss handler allegedly sets _PAGE_ACCESSED in the PTE 347 * for an address even if _PAGE_PRESENT is not set, as a performance 348 * optimization. This is a bug if you ever want to use swap unless 349 * _PAGE_ACCESSED is 2, which it isn't, or unless you have 8xx-specific 350 * definitions for __swp_entry etc. below, which would be gross. 351 * -- paulus 352 */ 353#define _PTE_NONE_MASK _PAGE_ACCESSED 354 355#else /* CONFIG_6xx */ 356/* Definitions for 60x, 740/750, etc. */ 357#define _PAGE_PRESENT 0x001 /* software: pte contains a translation */ 358#define _PAGE_HASHPTE 0x002 /* hash_page has made an HPTE for this pte */ 359#define _PAGE_FILE 0x004 /* when !present: nonlinear file mapping */ 360#define _PAGE_USER 0x004 /* usermode access allowed */ 361#define _PAGE_GUARDED 0x008 /* G: prohibit speculative access */ 362#define _PAGE_COHERENT 0x010 /* M: enforce memory coherence (SMP systems) */ 363#define _PAGE_NO_CACHE 0x020 /* I: cache inhibit */ 364#define _PAGE_WRITETHRU 0x040 /* W: cache write-through */ 365#define _PAGE_DIRTY 0x080 /* C: page changed */ 366#define _PAGE_ACCESSED 0x100 /* R: page referenced */ 367#define _PAGE_EXEC 0x200 /* software: i-cache coherency required */ 368#define _PAGE_RW 0x400 /* software: user write access allowed */ 369 370#define _PTE_NONE_MASK _PAGE_HASHPTE 371 372#define _PMD_PRESENT 0 373#define _PMD_PRESENT_MASK (PAGE_MASK) 374#define _PMD_BAD (~PAGE_MASK) 375#endif 376 377/* 378 * Some bits are only used on some cpu families... 379 */ 380#ifndef _PAGE_HASHPTE 381#define _PAGE_HASHPTE 0 382#endif 383#ifndef _PTE_NONE_MASK 384#define _PTE_NONE_MASK 0 385#endif 386#ifndef _PAGE_SHARED 387#define _PAGE_SHARED 0 388#endif 389#ifndef _PAGE_HWWRITE 390#define _PAGE_HWWRITE 0 391#endif 392#ifndef _PAGE_HWEXEC 393#define _PAGE_HWEXEC 0 394#endif 395#ifndef _PAGE_EXEC 396#define _PAGE_EXEC 0 397#endif 398#ifndef _PMD_PRESENT_MASK 399#define _PMD_PRESENT_MASK _PMD_PRESENT 400#endif 401#ifndef _PMD_SIZE 402#define _PMD_SIZE 0 403#define PMD_PAGE_SIZE(pmd) bad_call_to_PMD_PAGE_SIZE() 404#endif 405 406#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 407 408/* 409 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware 410 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need 411 * to have it in the Linux PTE, and in fact the bit could be reused for 412 * another purpose. -- paulus. 413 */ 414 415#ifdef CONFIG_44x 416#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_GUARDED) 417#else 418#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED) 419#endif 420#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE) 421#define _PAGE_KERNEL (_PAGE_BASE | _PAGE_SHARED | _PAGE_WRENABLE) 422 423#ifdef CONFIG_PPC_STD_MMU 424/* On standard PPC MMU, no user access implies kernel read/write access, 425 * so to write-protect kernel memory we must turn on user access */ 426#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED | _PAGE_USER) 427#else 428#define _PAGE_KERNEL_RO (_PAGE_BASE | _PAGE_SHARED) 429#endif 430 431#define _PAGE_IO (_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED) 432#define _PAGE_RAM (_PAGE_KERNEL | _PAGE_HWEXEC) 433 434#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) 435/* We want the debuggers to be able to set breakpoints anywhere, so 436 * don't write protect the kernel text */ 437#define _PAGE_RAM_TEXT _PAGE_RAM 438#else 439#define _PAGE_RAM_TEXT (_PAGE_KERNEL_RO | _PAGE_HWEXEC) 440#endif 441 442#define PAGE_NONE __pgprot(_PAGE_BASE) 443#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 444#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 445#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW) 446#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC) 447#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 448#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 449 450#define PAGE_KERNEL __pgprot(_PAGE_RAM) 451#define PAGE_KERNEL_NOCACHE __pgprot(_PAGE_IO) 452 453/* 454 * The PowerPC can only do execute protection on a segment (256MB) basis, 455 * not on a page basis. So we consider execute permission the same as read. 456 * Also, write permissions imply read permissions. 457 * This is the closest we can get.. 458 */ 459#define __P000 PAGE_NONE 460#define __P001 PAGE_READONLY_X 461#define __P010 PAGE_COPY 462#define __P011 PAGE_COPY_X 463#define __P100 PAGE_READONLY 464#define __P101 PAGE_READONLY_X 465#define __P110 PAGE_COPY 466#define __P111 PAGE_COPY_X 467 468#define __S000 PAGE_NONE 469#define __S001 PAGE_READONLY_X 470#define __S010 PAGE_SHARED 471#define __S011 PAGE_SHARED_X 472#define __S100 PAGE_READONLY 473#define __S101 PAGE_READONLY_X 474#define __S110 PAGE_SHARED 475#define __S111 PAGE_SHARED_X 476 477#ifndef __ASSEMBLY__ 478/* Make sure we get a link error if PMD_PAGE_SIZE is ever called on a 479 * kernel without large page PMD support */ 480extern unsigned long bad_call_to_PMD_PAGE_SIZE(void); 481 482/* 483 * Conversions between PTE values and page frame numbers. 484 */ 485 486/* in some case we want to additionaly adjust where the pfn is in the pte to 487 * allow room for more flags */ 488#if defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT) 489#define PFN_SHIFT_OFFSET (PAGE_SHIFT + 8) 490#else 491#define PFN_SHIFT_OFFSET (PAGE_SHIFT) 492#endif 493 494#define pte_pfn(x) (pte_val(x) >> PFN_SHIFT_OFFSET) 495#define pte_page(x) pfn_to_page(pte_pfn(x)) 496 497#define pfn_pte(pfn, prot) __pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) |\ 498 pgprot_val(prot)) 499#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 500 501/* 502 * ZERO_PAGE is a global shared page that is always zero: used 503 * for zero-mapped memory areas etc.. 504 */ 505extern unsigned long empty_zero_page[1024]; 506#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 507 508#endif /* __ASSEMBLY__ */ 509 510#define pte_none(pte) ((pte_val(pte) & ~_PTE_NONE_MASK) == 0) 511#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 512#define pte_clear(mm,addr,ptep) do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0) 513 514#define pmd_none(pmd) (!pmd_val(pmd)) 515#define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) 516#define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) 517#define pmd_clear(pmdp) do { pmd_val(*(pmdp)) = 0; } while (0) 518 519#ifndef __ASSEMBLY__ 520/* 521 * The "pgd_xxx()" functions here are trivial for a folded two-level 522 * setup: the pgd is never bad, and a pmd always exists (as it's folded 523 * into the pgd entry) 524 */ 525static inline int pgd_none(pgd_t pgd) { return 0; } 526static inline int pgd_bad(pgd_t pgd) { return 0; } 527static inline int pgd_present(pgd_t pgd) { return 1; } 528#define pgd_clear(xp) do { } while (0) 529 530#define pgd_page(pgd) \ 531 ((unsigned long) __va(pgd_val(pgd) & PAGE_MASK)) 532 533/* 534 * The following only work if pte_present() is true. 535 * Undefined behaviour if not.. 536 */ 537static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 538static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 539static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } 540static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 541static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 542static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 543 544static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 545static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 546 547static inline pte_t pte_rdprotect(pte_t pte) { 548 pte_val(pte) &= ~_PAGE_USER; return pte; } 549static inline pte_t pte_wrprotect(pte_t pte) { 550 pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; } 551static inline pte_t pte_exprotect(pte_t pte) { 552 pte_val(pte) &= ~_PAGE_EXEC; return pte; } 553static inline pte_t pte_mkclean(pte_t pte) { 554 pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; } 555static inline pte_t pte_mkold(pte_t pte) { 556 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 557 558static inline pte_t pte_mkread(pte_t pte) { 559 pte_val(pte) |= _PAGE_USER; return pte; } 560static inline pte_t pte_mkexec(pte_t pte) { 561 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 562static inline pte_t pte_mkwrite(pte_t pte) { 563 pte_val(pte) |= _PAGE_RW; return pte; } 564static inline pte_t pte_mkdirty(pte_t pte) { 565 pte_val(pte) |= _PAGE_DIRTY; return pte; } 566static inline pte_t pte_mkyoung(pte_t pte) { 567 pte_val(pte) |= _PAGE_ACCESSED; return pte; } 568 569static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 570{ 571 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); 572 return pte; 573} 574 575/* 576 * When flushing the tlb entry for a page, we also need to flush the hash 577 * table entry. flush_hash_pages is assembler (for speed) in hashtable.S. 578 */ 579extern int flush_hash_pages(unsigned context, unsigned long va, 580 unsigned long pmdval, int count); 581 582/* Add an HPTE to the hash table */ 583extern void add_hash_page(unsigned context, unsigned long va, 584 unsigned long pmdval); 585 586/* 587 * Atomic PTE updates. 588 * 589 * pte_update clears and sets bit atomically, and returns 590 * the old pte value. In the 64-bit PTE case we lock around the 591 * low PTE word since we expect ALL flag bits to be there 592 */ 593#ifndef CONFIG_PTE_64BIT 594static inline unsigned long pte_update(pte_t *p, unsigned long clr, 595 unsigned long set) 596{ 597 unsigned long old, tmp; 598 599 __asm__ __volatile__("\ 6001: lwarx %0,0,%3\n\ 601 andc %1,%0,%4\n\ 602 or %1,%1,%5\n" 603 PPC405_ERR77(0,%3) 604" stwcx. %1,0,%3\n\ 605 bne- 1b" 606 : "=&r" (old), "=&r" (tmp), "=m" (*p) 607 : "r" (p), "r" (clr), "r" (set), "m" (*p) 608 : "cc" ); 609 return old; 610} 611#else 612static inline unsigned long long pte_update(pte_t *p, unsigned long clr, 613 unsigned long set) 614{ 615 unsigned long long old; 616 unsigned long tmp; 617 618 __asm__ __volatile__("\ 6191: lwarx %L0,0,%4\n\ 620 lwzx %0,0,%3\n\ 621 andc %1,%L0,%5\n\ 622 or %1,%1,%6\n" 623 PPC405_ERR77(0,%3) 624" stwcx. %1,0,%4\n\ 625 bne- 1b" 626 : "=&r" (old), "=&r" (tmp), "=m" (*p) 627 : "r" (p), "r" ((unsigned long)(p) + 4), "r" (clr), "r" (set), "m" (*p) 628 : "cc" ); 629 return old; 630} 631#endif 632 633/* 634 * set_pte stores a linux PTE into the linux page table. 635 * On machines which use an MMU hash table we avoid changing the 636 * _PAGE_HASHPTE bit. 637 */ 638static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 639 pte_t *ptep, pte_t pte) 640{ 641#if _PAGE_HASHPTE != 0 642 pte_update(ptep, ~_PAGE_HASHPTE, pte_val(pte) & ~_PAGE_HASHPTE); 643#else 644 *ptep = pte; 645#endif 646} 647 648/* 649 * 2.6 calles this without flushing the TLB entry, this is wrong 650 * for our hash-based implementation, we fix that up here 651 */ 652#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 653static inline int __ptep_test_and_clear_young(unsigned int context, unsigned long addr, pte_t *ptep) 654{ 655 unsigned long old; 656 old = pte_update(ptep, _PAGE_ACCESSED, 0); 657#if _PAGE_HASHPTE != 0 658 if (old & _PAGE_HASHPTE) { 659 unsigned long ptephys = __pa(ptep) & PAGE_MASK; 660 flush_hash_pages(context, addr, ptephys, 1); 661 } 662#endif 663 return (old & _PAGE_ACCESSED) != 0; 664} 665#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 666 __ptep_test_and_clear_young((__vma)->vm_mm->context, __addr, __ptep) 667 668#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 669static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, 670 unsigned long addr, pte_t *ptep) 671{ 672 return (pte_update(ptep, (_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0; 673} 674 675#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 676static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, 677 pte_t *ptep) 678{ 679 return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0)); 680} 681 682#define __HAVE_ARCH_PTEP_SET_WRPROTECT 683static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 684 pte_t *ptep) 685{ 686 pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0); 687} 688 689#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 690static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) 691{ 692 unsigned long bits = pte_val(entry) & 693 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW); 694 pte_update(ptep, 0, bits); 695} 696 697#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ 698 do { \ 699 __ptep_set_access_flags(__ptep, __entry, __dirty); \ 700 flush_tlb_page_nohash(__vma, __address); \ 701 } while(0) 702 703/* 704 * Macro to mark a page protection value as "uncacheable". 705 */ 706#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) 707 708struct file; 709extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 710 unsigned long size, pgprot_t vma_prot); 711#define __HAVE_PHYS_MEM_ACCESS_PROT 712 713#define __HAVE_ARCH_PTE_SAME 714#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0) 715 716/* 717 * Note that on Book E processors, the pmd contains the kernel virtual 718 * (lowmem) address of the pte page. The physical address is less useful 719 * because everything runs with translation enabled (even the TLB miss 720 * handler). On everything else the pmd contains the physical address 721 * of the pte page. -- paulus 722 */ 723#ifndef CONFIG_BOOKE 724#define pmd_page_kernel(pmd) \ 725 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 726#define pmd_page(pmd) \ 727 (mem_map + (pmd_val(pmd) >> PAGE_SHIFT)) 728#else 729#define pmd_page_kernel(pmd) \ 730 ((unsigned long) (pmd_val(pmd) & PAGE_MASK)) 731#define pmd_page(pmd) \ 732 (mem_map + (__pa(pmd_val(pmd)) >> PAGE_SHIFT)) 733#endif 734 735/* to find an entry in a kernel page-table-directory */ 736#define pgd_offset_k(address) pgd_offset(&init_mm, address) 737 738/* to find an entry in a page-table-directory */ 739#define pgd_index(address) ((address) >> PGDIR_SHIFT) 740#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 741 742/* Find an entry in the second-level page table.. */ 743static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 744{ 745 return (pmd_t *) dir; 746} 747 748/* Find an entry in the third-level page table.. */ 749#define pte_index(address) \ 750 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 751#define pte_offset_kernel(dir, addr) \ 752 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) 753#define pte_offset_map(dir, addr) \ 754 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE0) + pte_index(addr)) 755#define pte_offset_map_nested(dir, addr) \ 756 ((pte_t *) kmap_atomic(pmd_page(*(dir)), KM_PTE1) + pte_index(addr)) 757 758#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0) 759#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1) 760 761extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 762 763extern void paging_init(void); 764 765/* 766 * Encode and decode a swap entry. 767 * Note that the bits we use in a PTE for representing a swap entry 768 * must not include the _PAGE_PRESENT bit, the _PAGE_FILE bit, or the 769 *_PAGE_HASHPTE bit (if used). -- paulus 770 */ 771#define __swp_type(entry) ((entry).val & 0x1f) 772#define __swp_offset(entry) ((entry).val >> 5) 773#define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) }) 774#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) 775#define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) 776 777/* Encode and decode a nonlinear file mapping entry */ 778#define PTE_FILE_MAX_BITS 29 779#define pte_to_pgoff(pte) (pte_val(pte) >> 3) 780#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) 781 782/* CONFIG_APUS */ 783/* For virtual address to physical address conversion */ 784extern void cache_clear(__u32 addr, int length); 785extern void cache_push(__u32 addr, int length); 786extern int mm_end_of_chunk (unsigned long addr, int len); 787extern unsigned long iopa(unsigned long addr); 788extern unsigned long mm_ptov(unsigned long addr) __attribute_const__; 789 790/* Values for nocacheflag and cmode */ 791/* These are not used by the APUS kernel_map, but prevents 792 compilation errors. */ 793#define KERNELMAP_FULL_CACHING 0 794#define KERNELMAP_NOCACHE_SER 1 795#define KERNELMAP_NOCACHE_NONSER 2 796#define KERNELMAP_NO_COPYBACK 3 797 798/* 799 * Map some physical address range into the kernel address space. 800 */ 801extern unsigned long kernel_map(unsigned long paddr, unsigned long size, 802 int nocacheflag, unsigned long *memavailp ); 803 804/* 805 * Set cache mode of (kernel space) address range. 806 */ 807extern void kernel_set_cachemode (unsigned long address, unsigned long size, 808 unsigned int cmode); 809 810/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 811#define kern_addr_valid(addr) (1) 812 813#ifdef CONFIG_PHYS_64BIT 814extern int remap_pfn_range(struct vm_area_struct *vma, unsigned long from, 815 unsigned long paddr, unsigned long size, pgprot_t prot); 816 817static inline int io_remap_pfn_range(struct vm_area_struct *vma, 818 unsigned long vaddr, 819 unsigned long pfn, 820 unsigned long size, 821 pgprot_t prot) 822{ 823 phys_addr_t paddr64 = fixup_bigphys_addr(pfn << PAGE_SHIFT, size); 824 return remap_pfn_range(vma, vaddr, paddr64 >> PAGE_SHIFT, size, prot); 825} 826#else 827#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 828 remap_pfn_range(vma, vaddr, pfn, size, prot) 829#endif 830 831#define MK_IOSPACE_PFN(space, pfn) (pfn) 832#define GET_IOSPACE(pfn) 0 833#define GET_PFN(pfn) (pfn) 834 835/* 836 * No page table caches to initialise 837 */ 838#define pgtable_cache_init() do { } while (0) 839 840extern int get_pteptr(struct mm_struct *mm, unsigned long addr, pte_t **ptep, 841 pmd_t **pmdp); 842 843#include <asm-generic/pgtable.h> 844 845#endif /* !__ASSEMBLY__ */ 846 847#endif /* _PPC_PGTABLE_H */ 848#endif /* __KERNEL__ */