at v2.6.17-rc2 381 lines 13 kB view raw
1/* 2 * linux/include/asm-arm/pgtable.h 3 * 4 * Copyright (C) 1995-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_PGTABLE_H 11#define _ASMARM_PGTABLE_H 12 13#include <asm-generic/4level-fixup.h> 14 15#include <asm/memory.h> 16#include <asm/proc-fns.h> 17#include <asm/arch/vmalloc.h> 18 19/* 20 * Just any arbitrary offset to the start of the vmalloc VM area: the 21 * current 8MB value just means that there will be a 8MB "hole" after the 22 * physical memory until the kernel virtual memory starts. That means that 23 * any out-of-bounds memory accesses will hopefully be caught. 24 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 25 * area for the same reason. ;) 26 * 27 * Note that platforms may override VMALLOC_START, but they must provide 28 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space, 29 * which may not overlap IO space. 30 */ 31#ifndef VMALLOC_START 32#define VMALLOC_OFFSET (8*1024*1024) 33#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 34#endif 35 36/* 37 * Hardware-wise, we have a two level page table structure, where the first 38 * level has 4096 entries, and the second level has 256 entries. Each entry 39 * is one 32-bit word. Most of the bits in the second level entry are used 40 * by hardware, and there aren't any "accessed" and "dirty" bits. 41 * 42 * Linux on the other hand has a three level page table structure, which can 43 * be wrapped to fit a two level page table structure easily - using the PGD 44 * and PTE only. However, Linux also expects one "PTE" table per page, and 45 * at least a "dirty" bit. 46 * 47 * Therefore, we tweak the implementation slightly - we tell Linux that we 48 * have 2048 entries in the first level, each of which is 8 bytes (iow, two 49 * hardware pointers to the second level.) The second level contains two 50 * hardware PTE tables arranged contiguously, followed by Linux versions 51 * which contain the state information Linux needs. We, therefore, end up 52 * with 512 entries in the "PTE" level. 53 * 54 * This leads to the page tables having the following layout: 55 * 56 * pgd pte 57 * | | 58 * +--------+ +0 59 * | |-----> +------------+ +0 60 * +- - - - + +4 | h/w pt 0 | 61 * | |-----> +------------+ +1024 62 * +--------+ +8 | h/w pt 1 | 63 * | | +------------+ +2048 64 * +- - - - + | Linux pt 0 | 65 * | | +------------+ +3072 66 * +--------+ | Linux pt 1 | 67 * | | +------------+ +4096 68 * 69 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and 70 * PTE_xxx for definitions of bits appearing in the "h/w pt". 71 * 72 * PMD_xxx definitions refer to bits in the first level page table. 73 * 74 * The "dirty" bit is emulated by only granting hardware write permission 75 * iff the page is marked "writable" and "dirty" in the Linux PTE. This 76 * means that a write to a clean page will cause a permission fault, and 77 * the Linux MM layer will mark the page dirty via handle_pte_fault(). 78 * For the hardware to notice the permission change, the TLB entry must 79 * be flushed, and ptep_establish() does that for us. 80 * 81 * The "accessed" or "young" bit is emulated by a similar method; we only 82 * allow accesses to the page if the "young" bit is set. Accesses to the 83 * page will cause a fault, and handle_pte_fault() will set the young bit 84 * for us as long as the page is marked present in the corresponding Linux 85 * PTE entry. Again, ptep_establish() will ensure that the TLB is up to 86 * date. 87 * 88 * However, when the "young" bit is cleared, we deny access to the page 89 * by clearing the hardware PTE. Currently Linux does not flush the TLB 90 * for us in this case, which means the TLB will retain the transation 91 * until either the TLB entry is evicted under pressure, or a context 92 * switch which changes the user space mapping occurs. 93 */ 94#define PTRS_PER_PTE 512 95#define PTRS_PER_PMD 1 96#define PTRS_PER_PGD 2048 97 98/* 99 * PMD_SHIFT determines the size of the area a second-level page table can map 100 * PGDIR_SHIFT determines what a third-level page table entry can map 101 */ 102#define PMD_SHIFT 21 103#define PGDIR_SHIFT 21 104 105#define LIBRARY_TEXT_START 0x0c000000 106 107#ifndef __ASSEMBLY__ 108extern void __pte_error(const char *file, int line, unsigned long val); 109extern void __pmd_error(const char *file, int line, unsigned long val); 110extern void __pgd_error(const char *file, int line, unsigned long val); 111 112#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) 113#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) 114#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) 115#endif /* !__ASSEMBLY__ */ 116 117#define PMD_SIZE (1UL << PMD_SHIFT) 118#define PMD_MASK (~(PMD_SIZE-1)) 119#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 120#define PGDIR_MASK (~(PGDIR_SIZE-1)) 121 122/* 123 * This is the lowest virtual address we can permit any user space 124 * mapping to be mapped at. This is particularly important for 125 * non-high vector CPUs. 126 */ 127#define FIRST_USER_ADDRESS PAGE_SIZE 128 129#define FIRST_USER_PGD_NR 1 130#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR) 131 132/* 133 * ARMv6 supersection address mask and size definitions. 134 */ 135#define SUPERSECTION_SHIFT 24 136#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT) 137#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1)) 138 139/* 140 * "Linux" PTE definitions. 141 * 142 * We keep two sets of PTEs - the hardware and the linux version. 143 * This allows greater flexibility in the way we map the Linux bits 144 * onto the hardware tables, and allows us to have YOUNG and DIRTY 145 * bits. 146 * 147 * The PTE table pointer refers to the hardware entries; the "Linux" 148 * entries are stored 1024 bytes below. 149 */ 150#define L_PTE_PRESENT (1 << 0) 151#define L_PTE_FILE (1 << 1) /* only when !PRESENT */ 152#define L_PTE_YOUNG (1 << 1) 153#define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */ 154#define L_PTE_CACHEABLE (1 << 3) /* matches PTE */ 155#define L_PTE_USER (1 << 4) 156#define L_PTE_WRITE (1 << 5) 157#define L_PTE_EXEC (1 << 6) 158#define L_PTE_DIRTY (1 << 7) 159#define L_PTE_COHERENT (1 << 9) /* I/O coherent (xsc3) */ 160#define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */ 161#define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */ 162 163#ifndef __ASSEMBLY__ 164 165/* 166 * The following macros handle the cache and bufferable bits... 167 */ 168#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE 169#define _L_PTE_READ L_PTE_USER | L_PTE_EXEC 170 171extern pgprot_t pgprot_kernel; 172 173#define PAGE_NONE __pgprot(_L_PTE_DEFAULT) 174#define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) 175#define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE) 176#define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) 177#define PAGE_KERNEL pgprot_kernel 178 179#endif /* __ASSEMBLY__ */ 180 181/* 182 * The table below defines the page protection levels that we insert into our 183 * Linux page table version. These get translated into the best that the 184 * architecture can perform. Note that on most ARM hardware: 185 * 1) We cannot do execute protection 186 * 2) If we could do execute protection, then read is implied 187 * 3) write implies read permissions 188 */ 189#define __P000 PAGE_NONE 190#define __P001 PAGE_READONLY 191#define __P010 PAGE_COPY 192#define __P011 PAGE_COPY 193#define __P100 PAGE_READONLY 194#define __P101 PAGE_READONLY 195#define __P110 PAGE_COPY 196#define __P111 PAGE_COPY 197 198#define __S000 PAGE_NONE 199#define __S001 PAGE_READONLY 200#define __S010 PAGE_SHARED 201#define __S011 PAGE_SHARED 202#define __S100 PAGE_READONLY 203#define __S101 PAGE_READONLY 204#define __S110 PAGE_SHARED 205#define __S111 PAGE_SHARED 206 207#ifndef __ASSEMBLY__ 208/* 209 * ZERO_PAGE is a global shared page that is always zero: used 210 * for zero-mapped memory areas etc.. 211 */ 212extern struct page *empty_zero_page; 213#define ZERO_PAGE(vaddr) (empty_zero_page) 214 215#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 216#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))) 217 218#define pte_none(pte) (!pte_val(pte)) 219#define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0)) 220#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 221#define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) 222#define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) 223#define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) 224#define pte_unmap(pte) do { } while (0) 225#define pte_unmap_nested(pte) do { } while (0) 226 227#define set_pte(ptep, pte) cpu_set_pte(ptep,pte) 228#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 229 230/* 231 * The following only work if pte_present() is true. 232 * Undefined behaviour if not.. 233 */ 234#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT) 235#define pte_read(pte) (pte_val(pte) & L_PTE_USER) 236#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE) 237#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC) 238#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY) 239#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG) 240 241/* 242 * The following only works if pte_present() is not true. 243 */ 244#define pte_file(pte) (pte_val(pte) & L_PTE_FILE) 245#define pte_to_pgoff(x) (pte_val(x) >> 2) 246#define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE) 247 248#define PTE_FILE_MAX_BITS 30 249 250#define PTE_BIT_FUNC(fn,op) \ 251static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } 252 253/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/ 254/*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/ 255PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE); 256PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE); 257PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC); 258PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC); 259PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY); 260PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY); 261PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG); 262PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG); 263 264/* 265 * Mark the prot value as uncacheable and unbufferable. 266 */ 267#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE)) 268#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE) 269 270#define pmd_none(pmd) (!pmd_val(pmd)) 271#define pmd_present(pmd) (pmd_val(pmd)) 272#define pmd_bad(pmd) (pmd_val(pmd) & 2) 273 274#define copy_pmd(pmdpd,pmdps) \ 275 do { \ 276 pmdpd[0] = pmdps[0]; \ 277 pmdpd[1] = pmdps[1]; \ 278 flush_pmd_entry(pmdpd); \ 279 } while (0) 280 281#define pmd_clear(pmdp) \ 282 do { \ 283 pmdp[0] = __pmd(0); \ 284 pmdp[1] = __pmd(0); \ 285 clean_pmd_entry(pmdp); \ 286 } while (0) 287 288static inline pte_t *pmd_page_kernel(pmd_t pmd) 289{ 290 unsigned long ptr; 291 292 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1); 293 ptr += PTRS_PER_PTE * sizeof(void *); 294 295 return __va(ptr); 296} 297 298#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd))) 299 300/* 301 * Permanent address of a page. We never have highmem, so this is trivial. 302 */ 303#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) 304 305/* 306 * Conversion functions: convert a page and protection to a page entry, 307 * and a page entry and page directory to the page they refer to. 308 */ 309#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 310 311/* 312 * The "pgd_xxx()" functions here are trivial for a folded two-level 313 * setup: the pgd is never bad, and a pmd always exists (as it's folded 314 * into the pgd entry) 315 */ 316#define pgd_none(pgd) (0) 317#define pgd_bad(pgd) (0) 318#define pgd_present(pgd) (1) 319#define pgd_clear(pgdp) do { } while (0) 320#define set_pgd(pgd,pgdp) do { } while (0) 321 322/* to find an entry in a page-table-directory */ 323#define pgd_index(addr) ((addr) >> PGDIR_SHIFT) 324 325#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr)) 326 327/* to find an entry in a kernel page-table-directory */ 328#define pgd_offset_k(addr) pgd_offset(&init_mm, addr) 329 330/* Find an entry in the second-level page table.. */ 331#define pmd_offset(dir, addr) ((pmd_t *)(dir)) 332 333/* Find an entry in the third-level page table.. */ 334#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 335 336static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 337{ 338 const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER; 339 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 340 return pte; 341} 342 343extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 344 345/* Encode and decode a swap entry. 346 * 347 * We support up to 32GB of swap on 4k machines 348 */ 349#define __swp_type(x) (((x).val >> 2) & 0x7f) 350#define __swp_offset(x) ((x).val >> 9) 351#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) }) 352#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 353#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 354 355/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 356/* FIXME: this is not correct */ 357#define kern_addr_valid(addr) (1) 358 359#include <asm-generic/pgtable.h> 360 361/* 362 * We provide our own arch_get_unmapped_area to cope with VIPT caches. 363 */ 364#define HAVE_ARCH_UNMAPPED_AREA 365 366/* 367 * remap a physical page `pfn' of size `size' with page protection `prot' 368 * into virtual address `from' 369 */ 370#define io_remap_pfn_range(vma,from,pfn,size,prot) \ 371 remap_pfn_range(vma, from, pfn, size, prot) 372 373#define MK_IOSPACE_PFN(space, pfn) (pfn) 374#define GET_IOSPACE(pfn) 0 375#define GET_PFN(pfn) (pfn) 376 377#define pgtable_cache_init() do { } while (0) 378 379#endif /* !__ASSEMBLY__ */ 380 381#endif /* _ASMARM_PGTABLE_H */