at v2.6.17-rc2 2816 lines 68 kB view raw
1/* 2 * Generic PPP layer for Linux. 3 * 4 * Copyright 1999-2002 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * The generic PPP layer handles the PPP network interfaces, the 12 * /dev/ppp device, packet and VJ compression, and multilink. 13 * It talks to PPP `channels' via the interface defined in 14 * include/linux/ppp_channel.h. Channels provide the basic means for 15 * sending and receiving PPP frames on some kind of communications 16 * channel. 17 * 18 * Part of the code in this driver was inspired by the old async-only 19 * PPP driver, written by Michael Callahan and Al Longyear, and 20 * subsequently hacked by Paul Mackerras. 21 * 22 * ==FILEVERSION 20041108== 23 */ 24 25#include <linux/config.h> 26#include <linux/module.h> 27#include <linux/kernel.h> 28#include <linux/kmod.h> 29#include <linux/init.h> 30#include <linux/list.h> 31#include <linux/devfs_fs_kernel.h> 32#include <linux/netdevice.h> 33#include <linux/poll.h> 34#include <linux/ppp_defs.h> 35#include <linux/filter.h> 36#include <linux/if_ppp.h> 37#include <linux/ppp_channel.h> 38#include <linux/ppp-comp.h> 39#include <linux/skbuff.h> 40#include <linux/rtnetlink.h> 41#include <linux/if_arp.h> 42#include <linux/ip.h> 43#include <linux/tcp.h> 44#include <linux/spinlock.h> 45#include <linux/smp_lock.h> 46#include <linux/rwsem.h> 47#include <linux/stddef.h> 48#include <linux/device.h> 49#include <linux/mutex.h> 50#include <net/slhc_vj.h> 51#include <asm/atomic.h> 52 53#define PPP_VERSION "2.4.2" 54 55/* 56 * Network protocols we support. 57 */ 58#define NP_IP 0 /* Internet Protocol V4 */ 59#define NP_IPV6 1 /* Internet Protocol V6 */ 60#define NP_IPX 2 /* IPX protocol */ 61#define NP_AT 3 /* Appletalk protocol */ 62#define NP_MPLS_UC 4 /* MPLS unicast */ 63#define NP_MPLS_MC 5 /* MPLS multicast */ 64#define NUM_NP 6 /* Number of NPs. */ 65 66#define MPHDRLEN 6 /* multilink protocol header length */ 67#define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ 68#define MIN_FRAG_SIZE 64 69 70/* 71 * An instance of /dev/ppp can be associated with either a ppp 72 * interface unit or a ppp channel. In both cases, file->private_data 73 * points to one of these. 74 */ 75struct ppp_file { 76 enum { 77 INTERFACE=1, CHANNEL 78 } kind; 79 struct sk_buff_head xq; /* pppd transmit queue */ 80 struct sk_buff_head rq; /* receive queue for pppd */ 81 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ 82 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */ 83 int hdrlen; /* space to leave for headers */ 84 int index; /* interface unit / channel number */ 85 int dead; /* unit/channel has been shut down */ 86}; 87 88#define PF_TO_X(pf, X) ((X *)((char *)(pf) - offsetof(X, file))) 89 90#define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) 91#define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) 92 93#define ROUNDUP(n, x) (((n) + (x) - 1) / (x)) 94 95/* 96 * Data structure describing one ppp unit. 97 * A ppp unit corresponds to a ppp network interface device 98 * and represents a multilink bundle. 99 * It can have 0 or more ppp channels connected to it. 100 */ 101struct ppp { 102 struct ppp_file file; /* stuff for read/write/poll 0 */ 103 struct file *owner; /* file that owns this unit 48 */ 104 struct list_head channels; /* list of attached channels 4c */ 105 int n_channels; /* how many channels are attached 54 */ 106 spinlock_t rlock; /* lock for receive side 58 */ 107 spinlock_t wlock; /* lock for transmit side 5c */ 108 int mru; /* max receive unit 60 */ 109 unsigned int flags; /* control bits 64 */ 110 unsigned int xstate; /* transmit state bits 68 */ 111 unsigned int rstate; /* receive state bits 6c */ 112 int debug; /* debug flags 70 */ 113 struct slcompress *vj; /* state for VJ header compression */ 114 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ 115 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ 116 struct compressor *xcomp; /* transmit packet compressor 8c */ 117 void *xc_state; /* its internal state 90 */ 118 struct compressor *rcomp; /* receive decompressor 94 */ 119 void *rc_state; /* its internal state 98 */ 120 unsigned long last_xmit; /* jiffies when last pkt sent 9c */ 121 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ 122 struct net_device *dev; /* network interface device a4 */ 123#ifdef CONFIG_PPP_MULTILINK 124 int nxchan; /* next channel to send something on */ 125 u32 nxseq; /* next sequence number to send */ 126 int mrru; /* MP: max reconst. receive unit */ 127 u32 nextseq; /* MP: seq no of next packet */ 128 u32 minseq; /* MP: min of most recent seqnos */ 129 struct sk_buff_head mrq; /* MP: receive reconstruction queue */ 130#endif /* CONFIG_PPP_MULTILINK */ 131 struct net_device_stats stats; /* statistics */ 132#ifdef CONFIG_PPP_FILTER 133 struct sock_filter *pass_filter; /* filter for packets to pass */ 134 struct sock_filter *active_filter;/* filter for pkts to reset idle */ 135 unsigned pass_len, active_len; 136#endif /* CONFIG_PPP_FILTER */ 137}; 138 139/* 140 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, 141 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP, 142 * SC_MUST_COMP 143 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. 144 * Bits in xstate: SC_COMP_RUN 145 */ 146#define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ 147 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ 148 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP) 149 150/* 151 * Private data structure for each channel. 152 * This includes the data structure used for multilink. 153 */ 154struct channel { 155 struct ppp_file file; /* stuff for read/write/poll */ 156 struct list_head list; /* link in all/new_channels list */ 157 struct ppp_channel *chan; /* public channel data structure */ 158 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ 159 spinlock_t downl; /* protects `chan', file.xq dequeue */ 160 struct ppp *ppp; /* ppp unit we're connected to */ 161 struct list_head clist; /* link in list of channels per unit */ 162 rwlock_t upl; /* protects `ppp' */ 163#ifdef CONFIG_PPP_MULTILINK 164 u8 avail; /* flag used in multilink stuff */ 165 u8 had_frag; /* >= 1 fragments have been sent */ 166 u32 lastseq; /* MP: last sequence # received */ 167#endif /* CONFIG_PPP_MULTILINK */ 168}; 169 170/* 171 * SMP locking issues: 172 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels 173 * list and the ppp.n_channels field, you need to take both locks 174 * before you modify them. 175 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> 176 * channel.downl. 177 */ 178 179/* 180 * A cardmap represents a mapping from unsigned integers to pointers, 181 * and provides a fast "find lowest unused number" operation. 182 * It uses a broad (32-way) tree with a bitmap at each level. 183 * It is designed to be space-efficient for small numbers of entries 184 * and time-efficient for large numbers of entries. 185 */ 186#define CARDMAP_ORDER 5 187#define CARDMAP_WIDTH (1U << CARDMAP_ORDER) 188#define CARDMAP_MASK (CARDMAP_WIDTH - 1) 189 190struct cardmap { 191 int shift; 192 unsigned long inuse; 193 struct cardmap *parent; 194 void *ptr[CARDMAP_WIDTH]; 195}; 196static void *cardmap_get(struct cardmap *map, unsigned int nr); 197static void cardmap_set(struct cardmap **map, unsigned int nr, void *ptr); 198static unsigned int cardmap_find_first_free(struct cardmap *map); 199static void cardmap_destroy(struct cardmap **map); 200 201/* 202 * all_ppp_mutex protects the all_ppp_units mapping. 203 * It also ensures that finding a ppp unit in the all_ppp_units map 204 * and updating its file.refcnt field is atomic. 205 */ 206static DEFINE_MUTEX(all_ppp_mutex); 207static struct cardmap *all_ppp_units; 208static atomic_t ppp_unit_count = ATOMIC_INIT(0); 209 210/* 211 * all_channels_lock protects all_channels and last_channel_index, 212 * and the atomicity of find a channel and updating its file.refcnt 213 * field. 214 */ 215static DEFINE_SPINLOCK(all_channels_lock); 216static LIST_HEAD(all_channels); 217static LIST_HEAD(new_channels); 218static int last_channel_index; 219static atomic_t channel_count = ATOMIC_INIT(0); 220 221/* Get the PPP protocol number from a skb */ 222#define PPP_PROTO(skb) (((skb)->data[0] << 8) + (skb)->data[1]) 223 224/* We limit the length of ppp->file.rq to this (arbitrary) value */ 225#define PPP_MAX_RQLEN 32 226 227/* 228 * Maximum number of multilink fragments queued up. 229 * This has to be large enough to cope with the maximum latency of 230 * the slowest channel relative to the others. Strictly it should 231 * depend on the number of channels and their characteristics. 232 */ 233#define PPP_MP_MAX_QLEN 128 234 235/* Multilink header bits. */ 236#define B 0x80 /* this fragment begins a packet */ 237#define E 0x40 /* this fragment ends a packet */ 238 239/* Compare multilink sequence numbers (assumed to be 32 bits wide) */ 240#define seq_before(a, b) ((s32)((a) - (b)) < 0) 241#define seq_after(a, b) ((s32)((a) - (b)) > 0) 242 243/* Prototypes. */ 244static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 245 unsigned int cmd, unsigned long arg); 246static void ppp_xmit_process(struct ppp *ppp); 247static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); 248static void ppp_push(struct ppp *ppp); 249static void ppp_channel_push(struct channel *pch); 250static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, 251 struct channel *pch); 252static void ppp_receive_error(struct ppp *ppp); 253static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); 254static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, 255 struct sk_buff *skb); 256#ifdef CONFIG_PPP_MULTILINK 257static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, 258 struct channel *pch); 259static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); 260static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); 261static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); 262#endif /* CONFIG_PPP_MULTILINK */ 263static int ppp_set_compress(struct ppp *ppp, unsigned long arg); 264static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); 265static void ppp_ccp_closed(struct ppp *ppp); 266static struct compressor *find_compressor(int type); 267static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); 268static struct ppp *ppp_create_interface(int unit, int *retp); 269static void init_ppp_file(struct ppp_file *pf, int kind); 270static void ppp_shutdown_interface(struct ppp *ppp); 271static void ppp_destroy_interface(struct ppp *ppp); 272static struct ppp *ppp_find_unit(int unit); 273static struct channel *ppp_find_channel(int unit); 274static int ppp_connect_channel(struct channel *pch, int unit); 275static int ppp_disconnect_channel(struct channel *pch); 276static void ppp_destroy_channel(struct channel *pch); 277 278static struct class *ppp_class; 279 280/* Translates a PPP protocol number to a NP index (NP == network protocol) */ 281static inline int proto_to_npindex(int proto) 282{ 283 switch (proto) { 284 case PPP_IP: 285 return NP_IP; 286 case PPP_IPV6: 287 return NP_IPV6; 288 case PPP_IPX: 289 return NP_IPX; 290 case PPP_AT: 291 return NP_AT; 292 case PPP_MPLS_UC: 293 return NP_MPLS_UC; 294 case PPP_MPLS_MC: 295 return NP_MPLS_MC; 296 } 297 return -EINVAL; 298} 299 300/* Translates an NP index into a PPP protocol number */ 301static const int npindex_to_proto[NUM_NP] = { 302 PPP_IP, 303 PPP_IPV6, 304 PPP_IPX, 305 PPP_AT, 306 PPP_MPLS_UC, 307 PPP_MPLS_MC, 308}; 309 310/* Translates an ethertype into an NP index */ 311static inline int ethertype_to_npindex(int ethertype) 312{ 313 switch (ethertype) { 314 case ETH_P_IP: 315 return NP_IP; 316 case ETH_P_IPV6: 317 return NP_IPV6; 318 case ETH_P_IPX: 319 return NP_IPX; 320 case ETH_P_PPPTALK: 321 case ETH_P_ATALK: 322 return NP_AT; 323 case ETH_P_MPLS_UC: 324 return NP_MPLS_UC; 325 case ETH_P_MPLS_MC: 326 return NP_MPLS_MC; 327 } 328 return -1; 329} 330 331/* Translates an NP index into an ethertype */ 332static const int npindex_to_ethertype[NUM_NP] = { 333 ETH_P_IP, 334 ETH_P_IPV6, 335 ETH_P_IPX, 336 ETH_P_PPPTALK, 337 ETH_P_MPLS_UC, 338 ETH_P_MPLS_MC, 339}; 340 341/* 342 * Locking shorthand. 343 */ 344#define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) 345#define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) 346#define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) 347#define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) 348#define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ 349 ppp_recv_lock(ppp); } while (0) 350#define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ 351 ppp_xmit_unlock(ppp); } while (0) 352 353/* 354 * /dev/ppp device routines. 355 * The /dev/ppp device is used by pppd to control the ppp unit. 356 * It supports the read, write, ioctl and poll functions. 357 * Open instances of /dev/ppp can be in one of three states: 358 * unattached, attached to a ppp unit, or attached to a ppp channel. 359 */ 360static int ppp_open(struct inode *inode, struct file *file) 361{ 362 /* 363 * This could (should?) be enforced by the permissions on /dev/ppp. 364 */ 365 if (!capable(CAP_NET_ADMIN)) 366 return -EPERM; 367 return 0; 368} 369 370static int ppp_release(struct inode *inode, struct file *file) 371{ 372 struct ppp_file *pf = file->private_data; 373 struct ppp *ppp; 374 375 if (pf != 0) { 376 file->private_data = NULL; 377 if (pf->kind == INTERFACE) { 378 ppp = PF_TO_PPP(pf); 379 if (file == ppp->owner) 380 ppp_shutdown_interface(ppp); 381 } 382 if (atomic_dec_and_test(&pf->refcnt)) { 383 switch (pf->kind) { 384 case INTERFACE: 385 ppp_destroy_interface(PF_TO_PPP(pf)); 386 break; 387 case CHANNEL: 388 ppp_destroy_channel(PF_TO_CHANNEL(pf)); 389 break; 390 } 391 } 392 } 393 return 0; 394} 395 396static ssize_t ppp_read(struct file *file, char __user *buf, 397 size_t count, loff_t *ppos) 398{ 399 struct ppp_file *pf = file->private_data; 400 DECLARE_WAITQUEUE(wait, current); 401 ssize_t ret; 402 struct sk_buff *skb = NULL; 403 404 ret = count; 405 406 if (pf == 0) 407 return -ENXIO; 408 add_wait_queue(&pf->rwait, &wait); 409 for (;;) { 410 set_current_state(TASK_INTERRUPTIBLE); 411 skb = skb_dequeue(&pf->rq); 412 if (skb) 413 break; 414 ret = 0; 415 if (pf->dead) 416 break; 417 if (pf->kind == INTERFACE) { 418 /* 419 * Return 0 (EOF) on an interface that has no 420 * channels connected, unless it is looping 421 * network traffic (demand mode). 422 */ 423 struct ppp *ppp = PF_TO_PPP(pf); 424 if (ppp->n_channels == 0 425 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 426 break; 427 } 428 ret = -EAGAIN; 429 if (file->f_flags & O_NONBLOCK) 430 break; 431 ret = -ERESTARTSYS; 432 if (signal_pending(current)) 433 break; 434 schedule(); 435 } 436 set_current_state(TASK_RUNNING); 437 remove_wait_queue(&pf->rwait, &wait); 438 439 if (skb == 0) 440 goto out; 441 442 ret = -EOVERFLOW; 443 if (skb->len > count) 444 goto outf; 445 ret = -EFAULT; 446 if (copy_to_user(buf, skb->data, skb->len)) 447 goto outf; 448 ret = skb->len; 449 450 outf: 451 kfree_skb(skb); 452 out: 453 return ret; 454} 455 456static ssize_t ppp_write(struct file *file, const char __user *buf, 457 size_t count, loff_t *ppos) 458{ 459 struct ppp_file *pf = file->private_data; 460 struct sk_buff *skb; 461 ssize_t ret; 462 463 if (pf == 0) 464 return -ENXIO; 465 ret = -ENOMEM; 466 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); 467 if (skb == 0) 468 goto out; 469 skb_reserve(skb, pf->hdrlen); 470 ret = -EFAULT; 471 if (copy_from_user(skb_put(skb, count), buf, count)) { 472 kfree_skb(skb); 473 goto out; 474 } 475 476 skb_queue_tail(&pf->xq, skb); 477 478 switch (pf->kind) { 479 case INTERFACE: 480 ppp_xmit_process(PF_TO_PPP(pf)); 481 break; 482 case CHANNEL: 483 ppp_channel_push(PF_TO_CHANNEL(pf)); 484 break; 485 } 486 487 ret = count; 488 489 out: 490 return ret; 491} 492 493/* No kernel lock - fine */ 494static unsigned int ppp_poll(struct file *file, poll_table *wait) 495{ 496 struct ppp_file *pf = file->private_data; 497 unsigned int mask; 498 499 if (pf == 0) 500 return 0; 501 poll_wait(file, &pf->rwait, wait); 502 mask = POLLOUT | POLLWRNORM; 503 if (skb_peek(&pf->rq) != 0) 504 mask |= POLLIN | POLLRDNORM; 505 if (pf->dead) 506 mask |= POLLHUP; 507 else if (pf->kind == INTERFACE) { 508 /* see comment in ppp_read */ 509 struct ppp *ppp = PF_TO_PPP(pf); 510 if (ppp->n_channels == 0 511 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 512 mask |= POLLIN | POLLRDNORM; 513 } 514 515 return mask; 516} 517 518#ifdef CONFIG_PPP_FILTER 519static int get_filter(void __user *arg, struct sock_filter **p) 520{ 521 struct sock_fprog uprog; 522 struct sock_filter *code = NULL; 523 int len, err; 524 525 if (copy_from_user(&uprog, arg, sizeof(uprog))) 526 return -EFAULT; 527 528 if (!uprog.len) { 529 *p = NULL; 530 return 0; 531 } 532 533 len = uprog.len * sizeof(struct sock_filter); 534 code = kmalloc(len, GFP_KERNEL); 535 if (code == NULL) 536 return -ENOMEM; 537 538 if (copy_from_user(code, uprog.filter, len)) { 539 kfree(code); 540 return -EFAULT; 541 } 542 543 err = sk_chk_filter(code, uprog.len); 544 if (err) { 545 kfree(code); 546 return err; 547 } 548 549 *p = code; 550 return uprog.len; 551} 552#endif /* CONFIG_PPP_FILTER */ 553 554static int ppp_ioctl(struct inode *inode, struct file *file, 555 unsigned int cmd, unsigned long arg) 556{ 557 struct ppp_file *pf = file->private_data; 558 struct ppp *ppp; 559 int err = -EFAULT, val, val2, i; 560 struct ppp_idle idle; 561 struct npioctl npi; 562 int unit, cflags; 563 struct slcompress *vj; 564 void __user *argp = (void __user *)arg; 565 int __user *p = argp; 566 567 if (pf == 0) 568 return ppp_unattached_ioctl(pf, file, cmd, arg); 569 570 if (cmd == PPPIOCDETACH) { 571 /* 572 * We have to be careful here... if the file descriptor 573 * has been dup'd, we could have another process in the 574 * middle of a poll using the same file *, so we had 575 * better not free the interface data structures - 576 * instead we fail the ioctl. Even in this case, we 577 * shut down the interface if we are the owner of it. 578 * Actually, we should get rid of PPPIOCDETACH, userland 579 * (i.e. pppd) could achieve the same effect by closing 580 * this fd and reopening /dev/ppp. 581 */ 582 err = -EINVAL; 583 if (pf->kind == INTERFACE) { 584 ppp = PF_TO_PPP(pf); 585 if (file == ppp->owner) 586 ppp_shutdown_interface(ppp); 587 } 588 if (atomic_read(&file->f_count) <= 2) { 589 ppp_release(inode, file); 590 err = 0; 591 } else 592 printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n", 593 atomic_read(&file->f_count)); 594 return err; 595 } 596 597 if (pf->kind == CHANNEL) { 598 struct channel *pch = PF_TO_CHANNEL(pf); 599 struct ppp_channel *chan; 600 601 switch (cmd) { 602 case PPPIOCCONNECT: 603 if (get_user(unit, p)) 604 break; 605 err = ppp_connect_channel(pch, unit); 606 break; 607 608 case PPPIOCDISCONN: 609 err = ppp_disconnect_channel(pch); 610 break; 611 612 default: 613 down_read(&pch->chan_sem); 614 chan = pch->chan; 615 err = -ENOTTY; 616 if (chan && chan->ops->ioctl) 617 err = chan->ops->ioctl(chan, cmd, arg); 618 up_read(&pch->chan_sem); 619 } 620 return err; 621 } 622 623 if (pf->kind != INTERFACE) { 624 /* can't happen */ 625 printk(KERN_ERR "PPP: not interface or channel??\n"); 626 return -EINVAL; 627 } 628 629 ppp = PF_TO_PPP(pf); 630 switch (cmd) { 631 case PPPIOCSMRU: 632 if (get_user(val, p)) 633 break; 634 ppp->mru = val; 635 err = 0; 636 break; 637 638 case PPPIOCSFLAGS: 639 if (get_user(val, p)) 640 break; 641 ppp_lock(ppp); 642 cflags = ppp->flags & ~val; 643 ppp->flags = val & SC_FLAG_BITS; 644 ppp_unlock(ppp); 645 if (cflags & SC_CCP_OPEN) 646 ppp_ccp_closed(ppp); 647 err = 0; 648 break; 649 650 case PPPIOCGFLAGS: 651 val = ppp->flags | ppp->xstate | ppp->rstate; 652 if (put_user(val, p)) 653 break; 654 err = 0; 655 break; 656 657 case PPPIOCSCOMPRESS: 658 err = ppp_set_compress(ppp, arg); 659 break; 660 661 case PPPIOCGUNIT: 662 if (put_user(ppp->file.index, p)) 663 break; 664 err = 0; 665 break; 666 667 case PPPIOCSDEBUG: 668 if (get_user(val, p)) 669 break; 670 ppp->debug = val; 671 err = 0; 672 break; 673 674 case PPPIOCGDEBUG: 675 if (put_user(ppp->debug, p)) 676 break; 677 err = 0; 678 break; 679 680 case PPPIOCGIDLE: 681 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; 682 idle.recv_idle = (jiffies - ppp->last_recv) / HZ; 683 if (copy_to_user(argp, &idle, sizeof(idle))) 684 break; 685 err = 0; 686 break; 687 688 case PPPIOCSMAXCID: 689 if (get_user(val, p)) 690 break; 691 val2 = 15; 692 if ((val >> 16) != 0) { 693 val2 = val >> 16; 694 val &= 0xffff; 695 } 696 vj = slhc_init(val2+1, val+1); 697 if (vj == 0) { 698 printk(KERN_ERR "PPP: no memory (VJ compressor)\n"); 699 err = -ENOMEM; 700 break; 701 } 702 ppp_lock(ppp); 703 if (ppp->vj != 0) 704 slhc_free(ppp->vj); 705 ppp->vj = vj; 706 ppp_unlock(ppp); 707 err = 0; 708 break; 709 710 case PPPIOCGNPMODE: 711 case PPPIOCSNPMODE: 712 if (copy_from_user(&npi, argp, sizeof(npi))) 713 break; 714 err = proto_to_npindex(npi.protocol); 715 if (err < 0) 716 break; 717 i = err; 718 if (cmd == PPPIOCGNPMODE) { 719 err = -EFAULT; 720 npi.mode = ppp->npmode[i]; 721 if (copy_to_user(argp, &npi, sizeof(npi))) 722 break; 723 } else { 724 ppp->npmode[i] = npi.mode; 725 /* we may be able to transmit more packets now (??) */ 726 netif_wake_queue(ppp->dev); 727 } 728 err = 0; 729 break; 730 731#ifdef CONFIG_PPP_FILTER 732 case PPPIOCSPASS: 733 { 734 struct sock_filter *code; 735 err = get_filter(argp, &code); 736 if (err >= 0) { 737 ppp_lock(ppp); 738 kfree(ppp->pass_filter); 739 ppp->pass_filter = code; 740 ppp->pass_len = err; 741 ppp_unlock(ppp); 742 err = 0; 743 } 744 break; 745 } 746 case PPPIOCSACTIVE: 747 { 748 struct sock_filter *code; 749 err = get_filter(argp, &code); 750 if (err >= 0) { 751 ppp_lock(ppp); 752 kfree(ppp->active_filter); 753 ppp->active_filter = code; 754 ppp->active_len = err; 755 ppp_unlock(ppp); 756 err = 0; 757 } 758 break; 759 } 760#endif /* CONFIG_PPP_FILTER */ 761 762#ifdef CONFIG_PPP_MULTILINK 763 case PPPIOCSMRRU: 764 if (get_user(val, p)) 765 break; 766 ppp_recv_lock(ppp); 767 ppp->mrru = val; 768 ppp_recv_unlock(ppp); 769 err = 0; 770 break; 771#endif /* CONFIG_PPP_MULTILINK */ 772 773 default: 774 err = -ENOTTY; 775 } 776 777 return err; 778} 779 780static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 781 unsigned int cmd, unsigned long arg) 782{ 783 int unit, err = -EFAULT; 784 struct ppp *ppp; 785 struct channel *chan; 786 int __user *p = (int __user *)arg; 787 788 switch (cmd) { 789 case PPPIOCNEWUNIT: 790 /* Create a new ppp unit */ 791 if (get_user(unit, p)) 792 break; 793 ppp = ppp_create_interface(unit, &err); 794 if (ppp == 0) 795 break; 796 file->private_data = &ppp->file; 797 ppp->owner = file; 798 err = -EFAULT; 799 if (put_user(ppp->file.index, p)) 800 break; 801 err = 0; 802 break; 803 804 case PPPIOCATTACH: 805 /* Attach to an existing ppp unit */ 806 if (get_user(unit, p)) 807 break; 808 mutex_lock(&all_ppp_mutex); 809 err = -ENXIO; 810 ppp = ppp_find_unit(unit); 811 if (ppp != 0) { 812 atomic_inc(&ppp->file.refcnt); 813 file->private_data = &ppp->file; 814 err = 0; 815 } 816 mutex_unlock(&all_ppp_mutex); 817 break; 818 819 case PPPIOCATTCHAN: 820 if (get_user(unit, p)) 821 break; 822 spin_lock_bh(&all_channels_lock); 823 err = -ENXIO; 824 chan = ppp_find_channel(unit); 825 if (chan != 0) { 826 atomic_inc(&chan->file.refcnt); 827 file->private_data = &chan->file; 828 err = 0; 829 } 830 spin_unlock_bh(&all_channels_lock); 831 break; 832 833 default: 834 err = -ENOTTY; 835 } 836 return err; 837} 838 839static struct file_operations ppp_device_fops = { 840 .owner = THIS_MODULE, 841 .read = ppp_read, 842 .write = ppp_write, 843 .poll = ppp_poll, 844 .ioctl = ppp_ioctl, 845 .open = ppp_open, 846 .release = ppp_release 847}; 848 849#define PPP_MAJOR 108 850 851/* Called at boot time if ppp is compiled into the kernel, 852 or at module load time (from init_module) if compiled as a module. */ 853static int __init ppp_init(void) 854{ 855 int err; 856 857 printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n"); 858 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); 859 if (!err) { 860 ppp_class = class_create(THIS_MODULE, "ppp"); 861 if (IS_ERR(ppp_class)) { 862 err = PTR_ERR(ppp_class); 863 goto out_chrdev; 864 } 865 class_device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp"); 866 err = devfs_mk_cdev(MKDEV(PPP_MAJOR, 0), 867 S_IFCHR|S_IRUSR|S_IWUSR, "ppp"); 868 if (err) 869 goto out_class; 870 } 871 872out: 873 if (err) 874 printk(KERN_ERR "failed to register PPP device (%d)\n", err); 875 return err; 876 877out_class: 878 class_device_destroy(ppp_class, MKDEV(PPP_MAJOR,0)); 879 class_destroy(ppp_class); 880out_chrdev: 881 unregister_chrdev(PPP_MAJOR, "ppp"); 882 goto out; 883} 884 885/* 886 * Network interface unit routines. 887 */ 888static int 889ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) 890{ 891 struct ppp *ppp = (struct ppp *) dev->priv; 892 int npi, proto; 893 unsigned char *pp; 894 895 npi = ethertype_to_npindex(ntohs(skb->protocol)); 896 if (npi < 0) 897 goto outf; 898 899 /* Drop, accept or reject the packet */ 900 switch (ppp->npmode[npi]) { 901 case NPMODE_PASS: 902 break; 903 case NPMODE_QUEUE: 904 /* it would be nice to have a way to tell the network 905 system to queue this one up for later. */ 906 goto outf; 907 case NPMODE_DROP: 908 case NPMODE_ERROR: 909 goto outf; 910 } 911 912 /* Put the 2-byte PPP protocol number on the front, 913 making sure there is room for the address and control fields. */ 914 if (skb_headroom(skb) < PPP_HDRLEN) { 915 struct sk_buff *ns; 916 917 ns = alloc_skb(skb->len + dev->hard_header_len, GFP_ATOMIC); 918 if (ns == 0) 919 goto outf; 920 skb_reserve(ns, dev->hard_header_len); 921 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 922 kfree_skb(skb); 923 skb = ns; 924 } 925 pp = skb_push(skb, 2); 926 proto = npindex_to_proto[npi]; 927 pp[0] = proto >> 8; 928 pp[1] = proto; 929 930 netif_stop_queue(dev); 931 skb_queue_tail(&ppp->file.xq, skb); 932 ppp_xmit_process(ppp); 933 return 0; 934 935 outf: 936 kfree_skb(skb); 937 ++ppp->stats.tx_dropped; 938 return 0; 939} 940 941static struct net_device_stats * 942ppp_net_stats(struct net_device *dev) 943{ 944 struct ppp *ppp = (struct ppp *) dev->priv; 945 946 return &ppp->stats; 947} 948 949static int 950ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 951{ 952 struct ppp *ppp = dev->priv; 953 int err = -EFAULT; 954 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; 955 struct ppp_stats stats; 956 struct ppp_comp_stats cstats; 957 char *vers; 958 959 switch (cmd) { 960 case SIOCGPPPSTATS: 961 ppp_get_stats(ppp, &stats); 962 if (copy_to_user(addr, &stats, sizeof(stats))) 963 break; 964 err = 0; 965 break; 966 967 case SIOCGPPPCSTATS: 968 memset(&cstats, 0, sizeof(cstats)); 969 if (ppp->xc_state != 0) 970 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); 971 if (ppp->rc_state != 0) 972 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); 973 if (copy_to_user(addr, &cstats, sizeof(cstats))) 974 break; 975 err = 0; 976 break; 977 978 case SIOCGPPPVER: 979 vers = PPP_VERSION; 980 if (copy_to_user(addr, vers, strlen(vers) + 1)) 981 break; 982 err = 0; 983 break; 984 985 default: 986 err = -EINVAL; 987 } 988 989 return err; 990} 991 992static void ppp_setup(struct net_device *dev) 993{ 994 dev->hard_header_len = PPP_HDRLEN; 995 dev->mtu = PPP_MTU; 996 dev->addr_len = 0; 997 dev->tx_queue_len = 3; 998 dev->type = ARPHRD_PPP; 999 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 1000} 1001 1002/* 1003 * Transmit-side routines. 1004 */ 1005 1006/* 1007 * Called to do any work queued up on the transmit side 1008 * that can now be done. 1009 */ 1010static void 1011ppp_xmit_process(struct ppp *ppp) 1012{ 1013 struct sk_buff *skb; 1014 1015 ppp_xmit_lock(ppp); 1016 if (ppp->dev != 0) { 1017 ppp_push(ppp); 1018 while (ppp->xmit_pending == 0 1019 && (skb = skb_dequeue(&ppp->file.xq)) != 0) 1020 ppp_send_frame(ppp, skb); 1021 /* If there's no work left to do, tell the core net 1022 code that we can accept some more. */ 1023 if (ppp->xmit_pending == 0 && skb_peek(&ppp->file.xq) == 0) 1024 netif_wake_queue(ppp->dev); 1025 } 1026 ppp_xmit_unlock(ppp); 1027} 1028 1029static inline struct sk_buff * 1030pad_compress_skb(struct ppp *ppp, struct sk_buff *skb) 1031{ 1032 struct sk_buff *new_skb; 1033 int len; 1034 int new_skb_size = ppp->dev->mtu + 1035 ppp->xcomp->comp_extra + ppp->dev->hard_header_len; 1036 int compressor_skb_size = ppp->dev->mtu + 1037 ppp->xcomp->comp_extra + PPP_HDRLEN; 1038 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC); 1039 if (!new_skb) { 1040 if (net_ratelimit()) 1041 printk(KERN_ERR "PPP: no memory (comp pkt)\n"); 1042 return NULL; 1043 } 1044 if (ppp->dev->hard_header_len > PPP_HDRLEN) 1045 skb_reserve(new_skb, 1046 ppp->dev->hard_header_len - PPP_HDRLEN); 1047 1048 /* compressor still expects A/C bytes in hdr */ 1049 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, 1050 new_skb->data, skb->len + 2, 1051 compressor_skb_size); 1052 if (len > 0 && (ppp->flags & SC_CCP_UP)) { 1053 kfree_skb(skb); 1054 skb = new_skb; 1055 skb_put(skb, len); 1056 skb_pull(skb, 2); /* pull off A/C bytes */ 1057 } else if (len == 0) { 1058 /* didn't compress, or CCP not up yet */ 1059 kfree_skb(new_skb); 1060 new_skb = skb; 1061 } else { 1062 /* 1063 * (len < 0) 1064 * MPPE requires that we do not send unencrypted 1065 * frames. The compressor will return -1 if we 1066 * should drop the frame. We cannot simply test 1067 * the compress_proto because MPPE and MPPC share 1068 * the same number. 1069 */ 1070 if (net_ratelimit()) 1071 printk(KERN_ERR "ppp: compressor dropped pkt\n"); 1072 kfree_skb(skb); 1073 kfree_skb(new_skb); 1074 new_skb = NULL; 1075 } 1076 return new_skb; 1077} 1078 1079/* 1080 * Compress and send a frame. 1081 * The caller should have locked the xmit path, 1082 * and xmit_pending should be 0. 1083 */ 1084static void 1085ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) 1086{ 1087 int proto = PPP_PROTO(skb); 1088 struct sk_buff *new_skb; 1089 int len; 1090 unsigned char *cp; 1091 1092 if (proto < 0x8000) { 1093#ifdef CONFIG_PPP_FILTER 1094 /* check if we should pass this packet */ 1095 /* the filter instructions are constructed assuming 1096 a four-byte PPP header on each packet */ 1097 *skb_push(skb, 2) = 1; 1098 if (ppp->pass_filter 1099 && sk_run_filter(skb, ppp->pass_filter, 1100 ppp->pass_len) == 0) { 1101 if (ppp->debug & 1) 1102 printk(KERN_DEBUG "PPP: outbound frame not passed\n"); 1103 kfree_skb(skb); 1104 return; 1105 } 1106 /* if this packet passes the active filter, record the time */ 1107 if (!(ppp->active_filter 1108 && sk_run_filter(skb, ppp->active_filter, 1109 ppp->active_len) == 0)) 1110 ppp->last_xmit = jiffies; 1111 skb_pull(skb, 2); 1112#else 1113 /* for data packets, record the time */ 1114 ppp->last_xmit = jiffies; 1115#endif /* CONFIG_PPP_FILTER */ 1116 } 1117 1118 ++ppp->stats.tx_packets; 1119 ppp->stats.tx_bytes += skb->len - 2; 1120 1121 switch (proto) { 1122 case PPP_IP: 1123 if (ppp->vj == 0 || (ppp->flags & SC_COMP_TCP) == 0) 1124 break; 1125 /* try to do VJ TCP header compression */ 1126 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, 1127 GFP_ATOMIC); 1128 if (new_skb == 0) { 1129 printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n"); 1130 goto drop; 1131 } 1132 skb_reserve(new_skb, ppp->dev->hard_header_len - 2); 1133 cp = skb->data + 2; 1134 len = slhc_compress(ppp->vj, cp, skb->len - 2, 1135 new_skb->data + 2, &cp, 1136 !(ppp->flags & SC_NO_TCP_CCID)); 1137 if (cp == skb->data + 2) { 1138 /* didn't compress */ 1139 kfree_skb(new_skb); 1140 } else { 1141 if (cp[0] & SL_TYPE_COMPRESSED_TCP) { 1142 proto = PPP_VJC_COMP; 1143 cp[0] &= ~SL_TYPE_COMPRESSED_TCP; 1144 } else { 1145 proto = PPP_VJC_UNCOMP; 1146 cp[0] = skb->data[2]; 1147 } 1148 kfree_skb(skb); 1149 skb = new_skb; 1150 cp = skb_put(skb, len + 2); 1151 cp[0] = 0; 1152 cp[1] = proto; 1153 } 1154 break; 1155 1156 case PPP_CCP: 1157 /* peek at outbound CCP frames */ 1158 ppp_ccp_peek(ppp, skb, 0); 1159 break; 1160 } 1161 1162 /* try to do packet compression */ 1163 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state != 0 1164 && proto != PPP_LCP && proto != PPP_CCP) { 1165 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) { 1166 if (net_ratelimit()) 1167 printk(KERN_ERR "ppp: compression required but down - pkt dropped.\n"); 1168 goto drop; 1169 } 1170 skb = pad_compress_skb(ppp, skb); 1171 if (!skb) 1172 goto drop; 1173 } 1174 1175 /* 1176 * If we are waiting for traffic (demand dialling), 1177 * queue it up for pppd to receive. 1178 */ 1179 if (ppp->flags & SC_LOOP_TRAFFIC) { 1180 if (ppp->file.rq.qlen > PPP_MAX_RQLEN) 1181 goto drop; 1182 skb_queue_tail(&ppp->file.rq, skb); 1183 wake_up_interruptible(&ppp->file.rwait); 1184 return; 1185 } 1186 1187 ppp->xmit_pending = skb; 1188 ppp_push(ppp); 1189 return; 1190 1191 drop: 1192 if (skb) 1193 kfree_skb(skb); 1194 ++ppp->stats.tx_errors; 1195} 1196 1197/* 1198 * Try to send the frame in xmit_pending. 1199 * The caller should have the xmit path locked. 1200 */ 1201static void 1202ppp_push(struct ppp *ppp) 1203{ 1204 struct list_head *list; 1205 struct channel *pch; 1206 struct sk_buff *skb = ppp->xmit_pending; 1207 1208 if (skb == 0) 1209 return; 1210 1211 list = &ppp->channels; 1212 if (list_empty(list)) { 1213 /* nowhere to send the packet, just drop it */ 1214 ppp->xmit_pending = NULL; 1215 kfree_skb(skb); 1216 return; 1217 } 1218 1219 if ((ppp->flags & SC_MULTILINK) == 0) { 1220 /* not doing multilink: send it down the first channel */ 1221 list = list->next; 1222 pch = list_entry(list, struct channel, clist); 1223 1224 spin_lock_bh(&pch->downl); 1225 if (pch->chan) { 1226 if (pch->chan->ops->start_xmit(pch->chan, skb)) 1227 ppp->xmit_pending = NULL; 1228 } else { 1229 /* channel got unregistered */ 1230 kfree_skb(skb); 1231 ppp->xmit_pending = NULL; 1232 } 1233 spin_unlock_bh(&pch->downl); 1234 return; 1235 } 1236 1237#ifdef CONFIG_PPP_MULTILINK 1238 /* Multilink: fragment the packet over as many links 1239 as can take the packet at the moment. */ 1240 if (!ppp_mp_explode(ppp, skb)) 1241 return; 1242#endif /* CONFIG_PPP_MULTILINK */ 1243 1244 ppp->xmit_pending = NULL; 1245 kfree_skb(skb); 1246} 1247 1248#ifdef CONFIG_PPP_MULTILINK 1249/* 1250 * Divide a packet to be transmitted into fragments and 1251 * send them out the individual links. 1252 */ 1253static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) 1254{ 1255 int len, fragsize; 1256 int i, bits, hdrlen, mtu; 1257 int flen; 1258 int navail, nfree; 1259 int nbigger; 1260 unsigned char *p, *q; 1261 struct list_head *list; 1262 struct channel *pch; 1263 struct sk_buff *frag; 1264 struct ppp_channel *chan; 1265 1266 nfree = 0; /* # channels which have no packet already queued */ 1267 navail = 0; /* total # of usable channels (not deregistered) */ 1268 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1269 i = 0; 1270 list_for_each_entry(pch, &ppp->channels, clist) { 1271 navail += pch->avail = (pch->chan != NULL); 1272 if (pch->avail) { 1273 if (skb_queue_empty(&pch->file.xq) || 1274 !pch->had_frag) { 1275 pch->avail = 2; 1276 ++nfree; 1277 } 1278 if (!pch->had_frag && i < ppp->nxchan) 1279 ppp->nxchan = i; 1280 } 1281 ++i; 1282 } 1283 1284 /* 1285 * Don't start sending this packet unless at least half of 1286 * the channels are free. This gives much better TCP 1287 * performance if we have a lot of channels. 1288 */ 1289 if (nfree == 0 || nfree < navail / 2) 1290 return 0; /* can't take now, leave it in xmit_pending */ 1291 1292 /* Do protocol field compression (XXX this should be optional) */ 1293 p = skb->data; 1294 len = skb->len; 1295 if (*p == 0) { 1296 ++p; 1297 --len; 1298 } 1299 1300 /* 1301 * Decide on fragment size. 1302 * We create a fragment for each free channel regardless of 1303 * how small they are (i.e. even 0 length) in order to minimize 1304 * the time that it will take to detect when a channel drops 1305 * a fragment. 1306 */ 1307 fragsize = len; 1308 if (nfree > 1) 1309 fragsize = ROUNDUP(fragsize, nfree); 1310 /* nbigger channels get fragsize bytes, the rest get fragsize-1, 1311 except if nbigger==0, then they all get fragsize. */ 1312 nbigger = len % nfree; 1313 1314 /* skip to the channel after the one we last used 1315 and start at that one */ 1316 list = &ppp->channels; 1317 for (i = 0; i < ppp->nxchan; ++i) { 1318 list = list->next; 1319 if (list == &ppp->channels) { 1320 i = 0; 1321 break; 1322 } 1323 } 1324 1325 /* create a fragment for each channel */ 1326 bits = B; 1327 while (nfree > 0 || len > 0) { 1328 list = list->next; 1329 if (list == &ppp->channels) { 1330 i = 0; 1331 continue; 1332 } 1333 pch = list_entry(list, struct channel, clist); 1334 ++i; 1335 if (!pch->avail) 1336 continue; 1337 1338 /* 1339 * Skip this channel if it has a fragment pending already and 1340 * we haven't given a fragment to all of the free channels. 1341 */ 1342 if (pch->avail == 1) { 1343 if (nfree > 0) 1344 continue; 1345 } else { 1346 --nfree; 1347 pch->avail = 1; 1348 } 1349 1350 /* check the channel's mtu and whether it is still attached. */ 1351 spin_lock_bh(&pch->downl); 1352 if (pch->chan == NULL) { 1353 /* can't use this channel, it's being deregistered */ 1354 spin_unlock_bh(&pch->downl); 1355 pch->avail = 0; 1356 if (--navail == 0) 1357 break; 1358 continue; 1359 } 1360 1361 /* 1362 * Create a fragment for this channel of 1363 * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes. 1364 * If mtu+2-hdrlen < 4, that is a ridiculously small 1365 * MTU, so we use mtu = 2 + hdrlen. 1366 */ 1367 if (fragsize > len) 1368 fragsize = len; 1369 flen = fragsize; 1370 mtu = pch->chan->mtu + 2 - hdrlen; 1371 if (mtu < 4) 1372 mtu = 4; 1373 if (flen > mtu) 1374 flen = mtu; 1375 if (flen == len && nfree == 0) 1376 bits |= E; 1377 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); 1378 if (frag == 0) 1379 goto noskb; 1380 q = skb_put(frag, flen + hdrlen); 1381 1382 /* make the MP header */ 1383 q[0] = PPP_MP >> 8; 1384 q[1] = PPP_MP; 1385 if (ppp->flags & SC_MP_XSHORTSEQ) { 1386 q[2] = bits + ((ppp->nxseq >> 8) & 0xf); 1387 q[3] = ppp->nxseq; 1388 } else { 1389 q[2] = bits; 1390 q[3] = ppp->nxseq >> 16; 1391 q[4] = ppp->nxseq >> 8; 1392 q[5] = ppp->nxseq; 1393 } 1394 1395 /* 1396 * Copy the data in. 1397 * Unfortunately there is a bug in older versions of 1398 * the Linux PPP multilink reconstruction code where it 1399 * drops 0-length fragments. Therefore we make sure the 1400 * fragment has at least one byte of data. Any bytes 1401 * we add in this situation will end up as padding on the 1402 * end of the reconstructed packet. 1403 */ 1404 if (flen == 0) 1405 *skb_put(frag, 1) = 0; 1406 else 1407 memcpy(q + hdrlen, p, flen); 1408 1409 /* try to send it down the channel */ 1410 chan = pch->chan; 1411 if (!skb_queue_empty(&pch->file.xq) || 1412 !chan->ops->start_xmit(chan, frag)) 1413 skb_queue_tail(&pch->file.xq, frag); 1414 pch->had_frag = 1; 1415 p += flen; 1416 len -= flen; 1417 ++ppp->nxseq; 1418 bits = 0; 1419 spin_unlock_bh(&pch->downl); 1420 1421 if (--nbigger == 0 && fragsize > 0) 1422 --fragsize; 1423 } 1424 ppp->nxchan = i; 1425 1426 return 1; 1427 1428 noskb: 1429 spin_unlock_bh(&pch->downl); 1430 if (ppp->debug & 1) 1431 printk(KERN_ERR "PPP: no memory (fragment)\n"); 1432 ++ppp->stats.tx_errors; 1433 ++ppp->nxseq; 1434 return 1; /* abandon the frame */ 1435} 1436#endif /* CONFIG_PPP_MULTILINK */ 1437 1438/* 1439 * Try to send data out on a channel. 1440 */ 1441static void 1442ppp_channel_push(struct channel *pch) 1443{ 1444 struct sk_buff *skb; 1445 struct ppp *ppp; 1446 1447 spin_lock_bh(&pch->downl); 1448 if (pch->chan != 0) { 1449 while (!skb_queue_empty(&pch->file.xq)) { 1450 skb = skb_dequeue(&pch->file.xq); 1451 if (!pch->chan->ops->start_xmit(pch->chan, skb)) { 1452 /* put the packet back and try again later */ 1453 skb_queue_head(&pch->file.xq, skb); 1454 break; 1455 } 1456 } 1457 } else { 1458 /* channel got deregistered */ 1459 skb_queue_purge(&pch->file.xq); 1460 } 1461 spin_unlock_bh(&pch->downl); 1462 /* see if there is anything from the attached unit to be sent */ 1463 if (skb_queue_empty(&pch->file.xq)) { 1464 read_lock_bh(&pch->upl); 1465 ppp = pch->ppp; 1466 if (ppp != 0) 1467 ppp_xmit_process(ppp); 1468 read_unlock_bh(&pch->upl); 1469 } 1470} 1471 1472/* 1473 * Receive-side routines. 1474 */ 1475 1476/* misuse a few fields of the skb for MP reconstruction */ 1477#define sequence priority 1478#define BEbits cb[0] 1479 1480static inline void 1481ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1482{ 1483 ppp_recv_lock(ppp); 1484 /* ppp->dev == 0 means interface is closing down */ 1485 if (ppp->dev != 0) 1486 ppp_receive_frame(ppp, skb, pch); 1487 else 1488 kfree_skb(skb); 1489 ppp_recv_unlock(ppp); 1490} 1491 1492void 1493ppp_input(struct ppp_channel *chan, struct sk_buff *skb) 1494{ 1495 struct channel *pch = chan->ppp; 1496 int proto; 1497 1498 if (pch == 0 || skb->len == 0) { 1499 kfree_skb(skb); 1500 return; 1501 } 1502 1503 proto = PPP_PROTO(skb); 1504 read_lock_bh(&pch->upl); 1505 if (pch->ppp == 0 || proto >= 0xc000 || proto == PPP_CCPFRAG) { 1506 /* put it on the channel queue */ 1507 skb_queue_tail(&pch->file.rq, skb); 1508 /* drop old frames if queue too long */ 1509 while (pch->file.rq.qlen > PPP_MAX_RQLEN 1510 && (skb = skb_dequeue(&pch->file.rq)) != 0) 1511 kfree_skb(skb); 1512 wake_up_interruptible(&pch->file.rwait); 1513 } else { 1514 ppp_do_recv(pch->ppp, skb, pch); 1515 } 1516 read_unlock_bh(&pch->upl); 1517} 1518 1519/* Put a 0-length skb in the receive queue as an error indication */ 1520void 1521ppp_input_error(struct ppp_channel *chan, int code) 1522{ 1523 struct channel *pch = chan->ppp; 1524 struct sk_buff *skb; 1525 1526 if (pch == 0) 1527 return; 1528 1529 read_lock_bh(&pch->upl); 1530 if (pch->ppp != 0) { 1531 skb = alloc_skb(0, GFP_ATOMIC); 1532 if (skb != 0) { 1533 skb->len = 0; /* probably unnecessary */ 1534 skb->cb[0] = code; 1535 ppp_do_recv(pch->ppp, skb, pch); 1536 } 1537 } 1538 read_unlock_bh(&pch->upl); 1539} 1540 1541/* 1542 * We come in here to process a received frame. 1543 * The receive side of the ppp unit is locked. 1544 */ 1545static void 1546ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1547{ 1548 if (skb->len >= 2) { 1549#ifdef CONFIG_PPP_MULTILINK 1550 /* XXX do channel-level decompression here */ 1551 if (PPP_PROTO(skb) == PPP_MP) 1552 ppp_receive_mp_frame(ppp, skb, pch); 1553 else 1554#endif /* CONFIG_PPP_MULTILINK */ 1555 ppp_receive_nonmp_frame(ppp, skb); 1556 return; 1557 } 1558 1559 if (skb->len > 0) 1560 /* note: a 0-length skb is used as an error indication */ 1561 ++ppp->stats.rx_length_errors; 1562 1563 kfree_skb(skb); 1564 ppp_receive_error(ppp); 1565} 1566 1567static void 1568ppp_receive_error(struct ppp *ppp) 1569{ 1570 ++ppp->stats.rx_errors; 1571 if (ppp->vj != 0) 1572 slhc_toss(ppp->vj); 1573} 1574 1575static void 1576ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) 1577{ 1578 struct sk_buff *ns; 1579 int proto, len, npi; 1580 1581 /* 1582 * Decompress the frame, if compressed. 1583 * Note that some decompressors need to see uncompressed frames 1584 * that come in as well as compressed frames. 1585 */ 1586 if (ppp->rc_state != 0 && (ppp->rstate & SC_DECOMP_RUN) 1587 && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) 1588 skb = ppp_decompress_frame(ppp, skb); 1589 1590 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR) 1591 goto err; 1592 1593 proto = PPP_PROTO(skb); 1594 switch (proto) { 1595 case PPP_VJC_COMP: 1596 /* decompress VJ compressed packets */ 1597 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1598 goto err; 1599 1600 if (skb_tailroom(skb) < 124) { 1601 /* copy to a new sk_buff with more tailroom */ 1602 ns = dev_alloc_skb(skb->len + 128); 1603 if (ns == 0) { 1604 printk(KERN_ERR"PPP: no memory (VJ decomp)\n"); 1605 goto err; 1606 } 1607 skb_reserve(ns, 2); 1608 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 1609 kfree_skb(skb); 1610 skb = ns; 1611 } 1612 else if (!pskb_may_pull(skb, skb->len)) 1613 goto err; 1614 else 1615 skb->ip_summed = CHECKSUM_NONE; 1616 1617 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); 1618 if (len <= 0) { 1619 printk(KERN_DEBUG "PPP: VJ decompression error\n"); 1620 goto err; 1621 } 1622 len += 2; 1623 if (len > skb->len) 1624 skb_put(skb, len - skb->len); 1625 else if (len < skb->len) 1626 skb_trim(skb, len); 1627 proto = PPP_IP; 1628 break; 1629 1630 case PPP_VJC_UNCOMP: 1631 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1632 goto err; 1633 1634 /* Until we fix the decompressor need to make sure 1635 * data portion is linear. 1636 */ 1637 if (!pskb_may_pull(skb, skb->len)) 1638 goto err; 1639 1640 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { 1641 printk(KERN_ERR "PPP: VJ uncompressed error\n"); 1642 goto err; 1643 } 1644 proto = PPP_IP; 1645 break; 1646 1647 case PPP_CCP: 1648 ppp_ccp_peek(ppp, skb, 1); 1649 break; 1650 } 1651 1652 ++ppp->stats.rx_packets; 1653 ppp->stats.rx_bytes += skb->len - 2; 1654 1655 npi = proto_to_npindex(proto); 1656 if (npi < 0) { 1657 /* control or unknown frame - pass it to pppd */ 1658 skb_queue_tail(&ppp->file.rq, skb); 1659 /* limit queue length by dropping old frames */ 1660 while (ppp->file.rq.qlen > PPP_MAX_RQLEN 1661 && (skb = skb_dequeue(&ppp->file.rq)) != 0) 1662 kfree_skb(skb); 1663 /* wake up any process polling or blocking on read */ 1664 wake_up_interruptible(&ppp->file.rwait); 1665 1666 } else { 1667 /* network protocol frame - give it to the kernel */ 1668 1669#ifdef CONFIG_PPP_FILTER 1670 /* check if the packet passes the pass and active filters */ 1671 /* the filter instructions are constructed assuming 1672 a four-byte PPP header on each packet */ 1673 *skb_push(skb, 2) = 0; 1674 if (ppp->pass_filter 1675 && sk_run_filter(skb, ppp->pass_filter, 1676 ppp->pass_len) == 0) { 1677 if (ppp->debug & 1) 1678 printk(KERN_DEBUG "PPP: inbound frame not passed\n"); 1679 kfree_skb(skb); 1680 return; 1681 } 1682 if (!(ppp->active_filter 1683 && sk_run_filter(skb, ppp->active_filter, 1684 ppp->active_len) == 0)) 1685 ppp->last_recv = jiffies; 1686 skb_pull(skb, 2); 1687#else 1688 ppp->last_recv = jiffies; 1689#endif /* CONFIG_PPP_FILTER */ 1690 1691 if ((ppp->dev->flags & IFF_UP) == 0 1692 || ppp->npmode[npi] != NPMODE_PASS) { 1693 kfree_skb(skb); 1694 } else { 1695 /* chop off protocol */ 1696 skb_pull_rcsum(skb, 2); 1697 skb->dev = ppp->dev; 1698 skb->protocol = htons(npindex_to_ethertype[npi]); 1699 skb->mac.raw = skb->data; 1700 netif_rx(skb); 1701 ppp->dev->last_rx = jiffies; 1702 } 1703 } 1704 return; 1705 1706 err: 1707 kfree_skb(skb); 1708 ppp_receive_error(ppp); 1709} 1710 1711static struct sk_buff * 1712ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) 1713{ 1714 int proto = PPP_PROTO(skb); 1715 struct sk_buff *ns; 1716 int len; 1717 1718 /* Until we fix all the decompressor's need to make sure 1719 * data portion is linear. 1720 */ 1721 if (!pskb_may_pull(skb, skb->len)) 1722 goto err; 1723 1724 if (proto == PPP_COMP) { 1725 ns = dev_alloc_skb(ppp->mru + PPP_HDRLEN); 1726 if (ns == 0) { 1727 printk(KERN_ERR "ppp_decompress_frame: no memory\n"); 1728 goto err; 1729 } 1730 /* the decompressor still expects the A/C bytes in the hdr */ 1731 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, 1732 skb->len + 2, ns->data, ppp->mru + PPP_HDRLEN); 1733 if (len < 0) { 1734 /* Pass the compressed frame to pppd as an 1735 error indication. */ 1736 if (len == DECOMP_FATALERROR) 1737 ppp->rstate |= SC_DC_FERROR; 1738 kfree_skb(ns); 1739 goto err; 1740 } 1741 1742 kfree_skb(skb); 1743 skb = ns; 1744 skb_put(skb, len); 1745 skb_pull(skb, 2); /* pull off the A/C bytes */ 1746 1747 } else { 1748 /* Uncompressed frame - pass to decompressor so it 1749 can update its dictionary if necessary. */ 1750 if (ppp->rcomp->incomp) 1751 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, 1752 skb->len + 2); 1753 } 1754 1755 return skb; 1756 1757 err: 1758 ppp->rstate |= SC_DC_ERROR; 1759 ppp_receive_error(ppp); 1760 return skb; 1761} 1762 1763#ifdef CONFIG_PPP_MULTILINK 1764/* 1765 * Receive a multilink frame. 1766 * We put it on the reconstruction queue and then pull off 1767 * as many completed frames as we can. 1768 */ 1769static void 1770ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1771{ 1772 u32 mask, seq; 1773 struct channel *ch; 1774 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1775 1776 if (!pskb_may_pull(skb, mphdrlen) || ppp->mrru == 0) 1777 goto err; /* no good, throw it away */ 1778 1779 /* Decode sequence number and begin/end bits */ 1780 if (ppp->flags & SC_MP_SHORTSEQ) { 1781 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; 1782 mask = 0xfff; 1783 } else { 1784 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; 1785 mask = 0xffffff; 1786 } 1787 skb->BEbits = skb->data[2]; 1788 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ 1789 1790 /* 1791 * Do protocol ID decompression on the first fragment of each packet. 1792 */ 1793 if ((skb->BEbits & B) && (skb->data[0] & 1)) 1794 *skb_push(skb, 1) = 0; 1795 1796 /* 1797 * Expand sequence number to 32 bits, making it as close 1798 * as possible to ppp->minseq. 1799 */ 1800 seq |= ppp->minseq & ~mask; 1801 if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) 1802 seq += mask + 1; 1803 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) 1804 seq -= mask + 1; /* should never happen */ 1805 skb->sequence = seq; 1806 pch->lastseq = seq; 1807 1808 /* 1809 * If this packet comes before the next one we were expecting, 1810 * drop it. 1811 */ 1812 if (seq_before(seq, ppp->nextseq)) { 1813 kfree_skb(skb); 1814 ++ppp->stats.rx_dropped; 1815 ppp_receive_error(ppp); 1816 return; 1817 } 1818 1819 /* 1820 * Reevaluate minseq, the minimum over all channels of the 1821 * last sequence number received on each channel. Because of 1822 * the increasing sequence number rule, we know that any fragment 1823 * before `minseq' which hasn't arrived is never going to arrive. 1824 * The list of channels can't change because we have the receive 1825 * side of the ppp unit locked. 1826 */ 1827 list_for_each_entry(ch, &ppp->channels, clist) { 1828 if (seq_before(ch->lastseq, seq)) 1829 seq = ch->lastseq; 1830 } 1831 if (seq_before(ppp->minseq, seq)) 1832 ppp->minseq = seq; 1833 1834 /* Put the fragment on the reconstruction queue */ 1835 ppp_mp_insert(ppp, skb); 1836 1837 /* If the queue is getting long, don't wait any longer for packets 1838 before the start of the queue. */ 1839 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN 1840 && seq_before(ppp->minseq, ppp->mrq.next->sequence)) 1841 ppp->minseq = ppp->mrq.next->sequence; 1842 1843 /* Pull completed packets off the queue and receive them. */ 1844 while ((skb = ppp_mp_reconstruct(ppp)) != 0) 1845 ppp_receive_nonmp_frame(ppp, skb); 1846 1847 return; 1848 1849 err: 1850 kfree_skb(skb); 1851 ppp_receive_error(ppp); 1852} 1853 1854/* 1855 * Insert a fragment on the MP reconstruction queue. 1856 * The queue is ordered by increasing sequence number. 1857 */ 1858static void 1859ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) 1860{ 1861 struct sk_buff *p; 1862 struct sk_buff_head *list = &ppp->mrq; 1863 u32 seq = skb->sequence; 1864 1865 /* N.B. we don't need to lock the list lock because we have the 1866 ppp unit receive-side lock. */ 1867 for (p = list->next; p != (struct sk_buff *)list; p = p->next) 1868 if (seq_before(seq, p->sequence)) 1869 break; 1870 __skb_insert(skb, p->prev, p, list); 1871} 1872 1873/* 1874 * Reconstruct a packet from the MP fragment queue. 1875 * We go through increasing sequence numbers until we find a 1876 * complete packet, or we get to the sequence number for a fragment 1877 * which hasn't arrived but might still do so. 1878 */ 1879struct sk_buff * 1880ppp_mp_reconstruct(struct ppp *ppp) 1881{ 1882 u32 seq = ppp->nextseq; 1883 u32 minseq = ppp->minseq; 1884 struct sk_buff_head *list = &ppp->mrq; 1885 struct sk_buff *p, *next; 1886 struct sk_buff *head, *tail; 1887 struct sk_buff *skb = NULL; 1888 int lost = 0, len = 0; 1889 1890 if (ppp->mrru == 0) /* do nothing until mrru is set */ 1891 return NULL; 1892 head = list->next; 1893 tail = NULL; 1894 for (p = head; p != (struct sk_buff *) list; p = next) { 1895 next = p->next; 1896 if (seq_before(p->sequence, seq)) { 1897 /* this can't happen, anyway ignore the skb */ 1898 printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n", 1899 p->sequence, seq); 1900 head = next; 1901 continue; 1902 } 1903 if (p->sequence != seq) { 1904 /* Fragment `seq' is missing. If it is after 1905 minseq, it might arrive later, so stop here. */ 1906 if (seq_after(seq, minseq)) 1907 break; 1908 /* Fragment `seq' is lost, keep going. */ 1909 lost = 1; 1910 seq = seq_before(minseq, p->sequence)? 1911 minseq + 1: p->sequence; 1912 next = p; 1913 continue; 1914 } 1915 1916 /* 1917 * At this point we know that all the fragments from 1918 * ppp->nextseq to seq are either present or lost. 1919 * Also, there are no complete packets in the queue 1920 * that have no missing fragments and end before this 1921 * fragment. 1922 */ 1923 1924 /* B bit set indicates this fragment starts a packet */ 1925 if (p->BEbits & B) { 1926 head = p; 1927 lost = 0; 1928 len = 0; 1929 } 1930 1931 len += p->len; 1932 1933 /* Got a complete packet yet? */ 1934 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) { 1935 if (len > ppp->mrru + 2) { 1936 ++ppp->stats.rx_length_errors; 1937 printk(KERN_DEBUG "PPP: reconstructed packet" 1938 " is too long (%d)\n", len); 1939 } else if (p == head) { 1940 /* fragment is complete packet - reuse skb */ 1941 tail = p; 1942 skb = skb_get(p); 1943 break; 1944 } else if ((skb = dev_alloc_skb(len)) == NULL) { 1945 ++ppp->stats.rx_missed_errors; 1946 printk(KERN_DEBUG "PPP: no memory for " 1947 "reconstructed packet"); 1948 } else { 1949 tail = p; 1950 break; 1951 } 1952 ppp->nextseq = seq + 1; 1953 } 1954 1955 /* 1956 * If this is the ending fragment of a packet, 1957 * and we haven't found a complete valid packet yet, 1958 * we can discard up to and including this fragment. 1959 */ 1960 if (p->BEbits & E) 1961 head = next; 1962 1963 ++seq; 1964 } 1965 1966 /* If we have a complete packet, copy it all into one skb. */ 1967 if (tail != NULL) { 1968 /* If we have discarded any fragments, 1969 signal a receive error. */ 1970 if (head->sequence != ppp->nextseq) { 1971 if (ppp->debug & 1) 1972 printk(KERN_DEBUG " missed pkts %u..%u\n", 1973 ppp->nextseq, head->sequence-1); 1974 ++ppp->stats.rx_dropped; 1975 ppp_receive_error(ppp); 1976 } 1977 1978 if (head != tail) 1979 /* copy to a single skb */ 1980 for (p = head; p != tail->next; p = p->next) 1981 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len); 1982 ppp->nextseq = tail->sequence + 1; 1983 head = tail->next; 1984 } 1985 1986 /* Discard all the skbuffs that we have copied the data out of 1987 or that we can't use. */ 1988 while ((p = list->next) != head) { 1989 __skb_unlink(p, list); 1990 kfree_skb(p); 1991 } 1992 1993 return skb; 1994} 1995#endif /* CONFIG_PPP_MULTILINK */ 1996 1997/* 1998 * Channel interface. 1999 */ 2000 2001/* 2002 * Create a new, unattached ppp channel. 2003 */ 2004int 2005ppp_register_channel(struct ppp_channel *chan) 2006{ 2007 struct channel *pch; 2008 2009 pch = kmalloc(sizeof(struct channel), GFP_KERNEL); 2010 if (pch == 0) 2011 return -ENOMEM; 2012 memset(pch, 0, sizeof(struct channel)); 2013 pch->ppp = NULL; 2014 pch->chan = chan; 2015 chan->ppp = pch; 2016 init_ppp_file(&pch->file, CHANNEL); 2017 pch->file.hdrlen = chan->hdrlen; 2018#ifdef CONFIG_PPP_MULTILINK 2019 pch->lastseq = -1; 2020#endif /* CONFIG_PPP_MULTILINK */ 2021 init_rwsem(&pch->chan_sem); 2022 spin_lock_init(&pch->downl); 2023 rwlock_init(&pch->upl); 2024 spin_lock_bh(&all_channels_lock); 2025 pch->file.index = ++last_channel_index; 2026 list_add(&pch->list, &new_channels); 2027 atomic_inc(&channel_count); 2028 spin_unlock_bh(&all_channels_lock); 2029 return 0; 2030} 2031 2032/* 2033 * Return the index of a channel. 2034 */ 2035int ppp_channel_index(struct ppp_channel *chan) 2036{ 2037 struct channel *pch = chan->ppp; 2038 2039 if (pch != 0) 2040 return pch->file.index; 2041 return -1; 2042} 2043 2044/* 2045 * Return the PPP unit number to which a channel is connected. 2046 */ 2047int ppp_unit_number(struct ppp_channel *chan) 2048{ 2049 struct channel *pch = chan->ppp; 2050 int unit = -1; 2051 2052 if (pch != 0) { 2053 read_lock_bh(&pch->upl); 2054 if (pch->ppp != 0) 2055 unit = pch->ppp->file.index; 2056 read_unlock_bh(&pch->upl); 2057 } 2058 return unit; 2059} 2060 2061/* 2062 * Disconnect a channel from the generic layer. 2063 * This must be called in process context. 2064 */ 2065void 2066ppp_unregister_channel(struct ppp_channel *chan) 2067{ 2068 struct channel *pch = chan->ppp; 2069 2070 if (pch == 0) 2071 return; /* should never happen */ 2072 chan->ppp = NULL; 2073 2074 /* 2075 * This ensures that we have returned from any calls into the 2076 * the channel's start_xmit or ioctl routine before we proceed. 2077 */ 2078 down_write(&pch->chan_sem); 2079 spin_lock_bh(&pch->downl); 2080 pch->chan = NULL; 2081 spin_unlock_bh(&pch->downl); 2082 up_write(&pch->chan_sem); 2083 ppp_disconnect_channel(pch); 2084 spin_lock_bh(&all_channels_lock); 2085 list_del(&pch->list); 2086 spin_unlock_bh(&all_channels_lock); 2087 pch->file.dead = 1; 2088 wake_up_interruptible(&pch->file.rwait); 2089 if (atomic_dec_and_test(&pch->file.refcnt)) 2090 ppp_destroy_channel(pch); 2091} 2092 2093/* 2094 * Callback from a channel when it can accept more to transmit. 2095 * This should be called at BH/softirq level, not interrupt level. 2096 */ 2097void 2098ppp_output_wakeup(struct ppp_channel *chan) 2099{ 2100 struct channel *pch = chan->ppp; 2101 2102 if (pch == 0) 2103 return; 2104 ppp_channel_push(pch); 2105} 2106 2107/* 2108 * Compression control. 2109 */ 2110 2111/* Process the PPPIOCSCOMPRESS ioctl. */ 2112static int 2113ppp_set_compress(struct ppp *ppp, unsigned long arg) 2114{ 2115 int err; 2116 struct compressor *cp, *ocomp; 2117 struct ppp_option_data data; 2118 void *state, *ostate; 2119 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; 2120 2121 err = -EFAULT; 2122 if (copy_from_user(&data, (void __user *) arg, sizeof(data)) 2123 || (data.length <= CCP_MAX_OPTION_LENGTH 2124 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length))) 2125 goto out; 2126 err = -EINVAL; 2127 if (data.length > CCP_MAX_OPTION_LENGTH 2128 || ccp_option[1] < 2 || ccp_option[1] > data.length) 2129 goto out; 2130 2131 cp = find_compressor(ccp_option[0]); 2132#ifdef CONFIG_KMOD 2133 if (cp == 0) { 2134 request_module("ppp-compress-%d", ccp_option[0]); 2135 cp = find_compressor(ccp_option[0]); 2136 } 2137#endif /* CONFIG_KMOD */ 2138 if (cp == 0) 2139 goto out; 2140 2141 err = -ENOBUFS; 2142 if (data.transmit) { 2143 state = cp->comp_alloc(ccp_option, data.length); 2144 if (state != 0) { 2145 ppp_xmit_lock(ppp); 2146 ppp->xstate &= ~SC_COMP_RUN; 2147 ocomp = ppp->xcomp; 2148 ostate = ppp->xc_state; 2149 ppp->xcomp = cp; 2150 ppp->xc_state = state; 2151 ppp_xmit_unlock(ppp); 2152 if (ostate != 0) { 2153 ocomp->comp_free(ostate); 2154 module_put(ocomp->owner); 2155 } 2156 err = 0; 2157 } else 2158 module_put(cp->owner); 2159 2160 } else { 2161 state = cp->decomp_alloc(ccp_option, data.length); 2162 if (state != 0) { 2163 ppp_recv_lock(ppp); 2164 ppp->rstate &= ~SC_DECOMP_RUN; 2165 ocomp = ppp->rcomp; 2166 ostate = ppp->rc_state; 2167 ppp->rcomp = cp; 2168 ppp->rc_state = state; 2169 ppp_recv_unlock(ppp); 2170 if (ostate != 0) { 2171 ocomp->decomp_free(ostate); 2172 module_put(ocomp->owner); 2173 } 2174 err = 0; 2175 } else 2176 module_put(cp->owner); 2177 } 2178 2179 out: 2180 return err; 2181} 2182 2183/* 2184 * Look at a CCP packet and update our state accordingly. 2185 * We assume the caller has the xmit or recv path locked. 2186 */ 2187static void 2188ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) 2189{ 2190 unsigned char *dp; 2191 int len; 2192 2193 if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) 2194 return; /* no header */ 2195 dp = skb->data + 2; 2196 2197 switch (CCP_CODE(dp)) { 2198 case CCP_CONFREQ: 2199 2200 /* A ConfReq starts negotiation of compression 2201 * in one direction of transmission, 2202 * and hence brings it down...but which way? 2203 * 2204 * Remember: 2205 * A ConfReq indicates what the sender would like to receive 2206 */ 2207 if(inbound) 2208 /* He is proposing what I should send */ 2209 ppp->xstate &= ~SC_COMP_RUN; 2210 else 2211 /* I am proposing to what he should send */ 2212 ppp->rstate &= ~SC_DECOMP_RUN; 2213 2214 break; 2215 2216 case CCP_TERMREQ: 2217 case CCP_TERMACK: 2218 /* 2219 * CCP is going down, both directions of transmission 2220 */ 2221 ppp->rstate &= ~SC_DECOMP_RUN; 2222 ppp->xstate &= ~SC_COMP_RUN; 2223 break; 2224 2225 case CCP_CONFACK: 2226 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) 2227 break; 2228 len = CCP_LENGTH(dp); 2229 if (!pskb_may_pull(skb, len + 2)) 2230 return; /* too short */ 2231 dp += CCP_HDRLEN; 2232 len -= CCP_HDRLEN; 2233 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) 2234 break; 2235 if (inbound) { 2236 /* we will start receiving compressed packets */ 2237 if (ppp->rc_state == 0) 2238 break; 2239 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, 2240 ppp->file.index, 0, ppp->mru, ppp->debug)) { 2241 ppp->rstate |= SC_DECOMP_RUN; 2242 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); 2243 } 2244 } else { 2245 /* we will soon start sending compressed packets */ 2246 if (ppp->xc_state == 0) 2247 break; 2248 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, 2249 ppp->file.index, 0, ppp->debug)) 2250 ppp->xstate |= SC_COMP_RUN; 2251 } 2252 break; 2253 2254 case CCP_RESETACK: 2255 /* reset the [de]compressor */ 2256 if ((ppp->flags & SC_CCP_UP) == 0) 2257 break; 2258 if (inbound) { 2259 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { 2260 ppp->rcomp->decomp_reset(ppp->rc_state); 2261 ppp->rstate &= ~SC_DC_ERROR; 2262 } 2263 } else { 2264 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) 2265 ppp->xcomp->comp_reset(ppp->xc_state); 2266 } 2267 break; 2268 } 2269} 2270 2271/* Free up compression resources. */ 2272static void 2273ppp_ccp_closed(struct ppp *ppp) 2274{ 2275 void *xstate, *rstate; 2276 struct compressor *xcomp, *rcomp; 2277 2278 ppp_lock(ppp); 2279 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); 2280 ppp->xstate = 0; 2281 xcomp = ppp->xcomp; 2282 xstate = ppp->xc_state; 2283 ppp->xc_state = NULL; 2284 ppp->rstate = 0; 2285 rcomp = ppp->rcomp; 2286 rstate = ppp->rc_state; 2287 ppp->rc_state = NULL; 2288 ppp_unlock(ppp); 2289 2290 if (xstate) { 2291 xcomp->comp_free(xstate); 2292 module_put(xcomp->owner); 2293 } 2294 if (rstate) { 2295 rcomp->decomp_free(rstate); 2296 module_put(rcomp->owner); 2297 } 2298} 2299 2300/* List of compressors. */ 2301static LIST_HEAD(compressor_list); 2302static DEFINE_SPINLOCK(compressor_list_lock); 2303 2304struct compressor_entry { 2305 struct list_head list; 2306 struct compressor *comp; 2307}; 2308 2309static struct compressor_entry * 2310find_comp_entry(int proto) 2311{ 2312 struct compressor_entry *ce; 2313 2314 list_for_each_entry(ce, &compressor_list, list) { 2315 if (ce->comp->compress_proto == proto) 2316 return ce; 2317 } 2318 return NULL; 2319} 2320 2321/* Register a compressor */ 2322int 2323ppp_register_compressor(struct compressor *cp) 2324{ 2325 struct compressor_entry *ce; 2326 int ret; 2327 spin_lock(&compressor_list_lock); 2328 ret = -EEXIST; 2329 if (find_comp_entry(cp->compress_proto) != 0) 2330 goto out; 2331 ret = -ENOMEM; 2332 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); 2333 if (ce == 0) 2334 goto out; 2335 ret = 0; 2336 ce->comp = cp; 2337 list_add(&ce->list, &compressor_list); 2338 out: 2339 spin_unlock(&compressor_list_lock); 2340 return ret; 2341} 2342 2343/* Unregister a compressor */ 2344void 2345ppp_unregister_compressor(struct compressor *cp) 2346{ 2347 struct compressor_entry *ce; 2348 2349 spin_lock(&compressor_list_lock); 2350 ce = find_comp_entry(cp->compress_proto); 2351 if (ce != 0 && ce->comp == cp) { 2352 list_del(&ce->list); 2353 kfree(ce); 2354 } 2355 spin_unlock(&compressor_list_lock); 2356} 2357 2358/* Find a compressor. */ 2359static struct compressor * 2360find_compressor(int type) 2361{ 2362 struct compressor_entry *ce; 2363 struct compressor *cp = NULL; 2364 2365 spin_lock(&compressor_list_lock); 2366 ce = find_comp_entry(type); 2367 if (ce != 0) { 2368 cp = ce->comp; 2369 if (!try_module_get(cp->owner)) 2370 cp = NULL; 2371 } 2372 spin_unlock(&compressor_list_lock); 2373 return cp; 2374} 2375 2376/* 2377 * Miscelleneous stuff. 2378 */ 2379 2380static void 2381ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) 2382{ 2383 struct slcompress *vj = ppp->vj; 2384 2385 memset(st, 0, sizeof(*st)); 2386 st->p.ppp_ipackets = ppp->stats.rx_packets; 2387 st->p.ppp_ierrors = ppp->stats.rx_errors; 2388 st->p.ppp_ibytes = ppp->stats.rx_bytes; 2389 st->p.ppp_opackets = ppp->stats.tx_packets; 2390 st->p.ppp_oerrors = ppp->stats.tx_errors; 2391 st->p.ppp_obytes = ppp->stats.tx_bytes; 2392 if (vj == 0) 2393 return; 2394 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; 2395 st->vj.vjs_compressed = vj->sls_o_compressed; 2396 st->vj.vjs_searches = vj->sls_o_searches; 2397 st->vj.vjs_misses = vj->sls_o_misses; 2398 st->vj.vjs_errorin = vj->sls_i_error; 2399 st->vj.vjs_tossed = vj->sls_i_tossed; 2400 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; 2401 st->vj.vjs_compressedin = vj->sls_i_compressed; 2402} 2403 2404/* 2405 * Stuff for handling the lists of ppp units and channels 2406 * and for initialization. 2407 */ 2408 2409/* 2410 * Create a new ppp interface unit. Fails if it can't allocate memory 2411 * or if there is already a unit with the requested number. 2412 * unit == -1 means allocate a new number. 2413 */ 2414static struct ppp * 2415ppp_create_interface(int unit, int *retp) 2416{ 2417 struct ppp *ppp; 2418 struct net_device *dev = NULL; 2419 int ret = -ENOMEM; 2420 int i; 2421 2422 ppp = kmalloc(sizeof(struct ppp), GFP_KERNEL); 2423 if (!ppp) 2424 goto out; 2425 dev = alloc_netdev(0, "", ppp_setup); 2426 if (!dev) 2427 goto out1; 2428 memset(ppp, 0, sizeof(struct ppp)); 2429 2430 ppp->mru = PPP_MRU; 2431 init_ppp_file(&ppp->file, INTERFACE); 2432 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ 2433 for (i = 0; i < NUM_NP; ++i) 2434 ppp->npmode[i] = NPMODE_PASS; 2435 INIT_LIST_HEAD(&ppp->channels); 2436 spin_lock_init(&ppp->rlock); 2437 spin_lock_init(&ppp->wlock); 2438#ifdef CONFIG_PPP_MULTILINK 2439 ppp->minseq = -1; 2440 skb_queue_head_init(&ppp->mrq); 2441#endif /* CONFIG_PPP_MULTILINK */ 2442 ppp->dev = dev; 2443 dev->priv = ppp; 2444 2445 dev->hard_start_xmit = ppp_start_xmit; 2446 dev->get_stats = ppp_net_stats; 2447 dev->do_ioctl = ppp_net_ioctl; 2448 2449 ret = -EEXIST; 2450 mutex_lock(&all_ppp_mutex); 2451 if (unit < 0) 2452 unit = cardmap_find_first_free(all_ppp_units); 2453 else if (cardmap_get(all_ppp_units, unit) != NULL) 2454 goto out2; /* unit already exists */ 2455 2456 /* Initialize the new ppp unit */ 2457 ppp->file.index = unit; 2458 sprintf(dev->name, "ppp%d", unit); 2459 2460 ret = register_netdev(dev); 2461 if (ret != 0) { 2462 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n", 2463 dev->name, ret); 2464 goto out2; 2465 } 2466 2467 atomic_inc(&ppp_unit_count); 2468 cardmap_set(&all_ppp_units, unit, ppp); 2469 mutex_unlock(&all_ppp_mutex); 2470 *retp = 0; 2471 return ppp; 2472 2473out2: 2474 mutex_unlock(&all_ppp_mutex); 2475 free_netdev(dev); 2476out1: 2477 kfree(ppp); 2478out: 2479 *retp = ret; 2480 return NULL; 2481} 2482 2483/* 2484 * Initialize a ppp_file structure. 2485 */ 2486static void 2487init_ppp_file(struct ppp_file *pf, int kind) 2488{ 2489 pf->kind = kind; 2490 skb_queue_head_init(&pf->xq); 2491 skb_queue_head_init(&pf->rq); 2492 atomic_set(&pf->refcnt, 1); 2493 init_waitqueue_head(&pf->rwait); 2494} 2495 2496/* 2497 * Take down a ppp interface unit - called when the owning file 2498 * (the one that created the unit) is closed or detached. 2499 */ 2500static void ppp_shutdown_interface(struct ppp *ppp) 2501{ 2502 struct net_device *dev; 2503 2504 mutex_lock(&all_ppp_mutex); 2505 ppp_lock(ppp); 2506 dev = ppp->dev; 2507 ppp->dev = NULL; 2508 ppp_unlock(ppp); 2509 /* This will call dev_close() for us. */ 2510 if (dev) { 2511 unregister_netdev(dev); 2512 free_netdev(dev); 2513 } 2514 cardmap_set(&all_ppp_units, ppp->file.index, NULL); 2515 ppp->file.dead = 1; 2516 ppp->owner = NULL; 2517 wake_up_interruptible(&ppp->file.rwait); 2518 mutex_unlock(&all_ppp_mutex); 2519} 2520 2521/* 2522 * Free the memory used by a ppp unit. This is only called once 2523 * there are no channels connected to the unit and no file structs 2524 * that reference the unit. 2525 */ 2526static void ppp_destroy_interface(struct ppp *ppp) 2527{ 2528 atomic_dec(&ppp_unit_count); 2529 2530 if (!ppp->file.dead || ppp->n_channels) { 2531 /* "can't happen" */ 2532 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d " 2533 "n_channels=%d !\n", ppp, ppp->file.dead, 2534 ppp->n_channels); 2535 return; 2536 } 2537 2538 ppp_ccp_closed(ppp); 2539 if (ppp->vj) { 2540 slhc_free(ppp->vj); 2541 ppp->vj = NULL; 2542 } 2543 skb_queue_purge(&ppp->file.xq); 2544 skb_queue_purge(&ppp->file.rq); 2545#ifdef CONFIG_PPP_MULTILINK 2546 skb_queue_purge(&ppp->mrq); 2547#endif /* CONFIG_PPP_MULTILINK */ 2548#ifdef CONFIG_PPP_FILTER 2549 kfree(ppp->pass_filter); 2550 ppp->pass_filter = NULL; 2551 kfree(ppp->active_filter); 2552 ppp->active_filter = NULL; 2553#endif /* CONFIG_PPP_FILTER */ 2554 2555 kfree(ppp); 2556} 2557 2558/* 2559 * Locate an existing ppp unit. 2560 * The caller should have locked the all_ppp_mutex. 2561 */ 2562static struct ppp * 2563ppp_find_unit(int unit) 2564{ 2565 return cardmap_get(all_ppp_units, unit); 2566} 2567 2568/* 2569 * Locate an existing ppp channel. 2570 * The caller should have locked the all_channels_lock. 2571 * First we look in the new_channels list, then in the 2572 * all_channels list. If found in the new_channels list, 2573 * we move it to the all_channels list. This is for speed 2574 * when we have a lot of channels in use. 2575 */ 2576static struct channel * 2577ppp_find_channel(int unit) 2578{ 2579 struct channel *pch; 2580 2581 list_for_each_entry(pch, &new_channels, list) { 2582 if (pch->file.index == unit) { 2583 list_del(&pch->list); 2584 list_add(&pch->list, &all_channels); 2585 return pch; 2586 } 2587 } 2588 list_for_each_entry(pch, &all_channels, list) { 2589 if (pch->file.index == unit) 2590 return pch; 2591 } 2592 return NULL; 2593} 2594 2595/* 2596 * Connect a PPP channel to a PPP interface unit. 2597 */ 2598static int 2599ppp_connect_channel(struct channel *pch, int unit) 2600{ 2601 struct ppp *ppp; 2602 int ret = -ENXIO; 2603 int hdrlen; 2604 2605 mutex_lock(&all_ppp_mutex); 2606 ppp = ppp_find_unit(unit); 2607 if (ppp == 0) 2608 goto out; 2609 write_lock_bh(&pch->upl); 2610 ret = -EINVAL; 2611 if (pch->ppp != 0) 2612 goto outl; 2613 2614 ppp_lock(ppp); 2615 if (pch->file.hdrlen > ppp->file.hdrlen) 2616 ppp->file.hdrlen = pch->file.hdrlen; 2617 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ 2618 if (ppp->dev && hdrlen > ppp->dev->hard_header_len) 2619 ppp->dev->hard_header_len = hdrlen; 2620 list_add_tail(&pch->clist, &ppp->channels); 2621 ++ppp->n_channels; 2622 pch->ppp = ppp; 2623 atomic_inc(&ppp->file.refcnt); 2624 ppp_unlock(ppp); 2625 ret = 0; 2626 2627 outl: 2628 write_unlock_bh(&pch->upl); 2629 out: 2630 mutex_unlock(&all_ppp_mutex); 2631 return ret; 2632} 2633 2634/* 2635 * Disconnect a channel from its ppp unit. 2636 */ 2637static int 2638ppp_disconnect_channel(struct channel *pch) 2639{ 2640 struct ppp *ppp; 2641 int err = -EINVAL; 2642 2643 write_lock_bh(&pch->upl); 2644 ppp = pch->ppp; 2645 pch->ppp = NULL; 2646 write_unlock_bh(&pch->upl); 2647 if (ppp != 0) { 2648 /* remove it from the ppp unit's list */ 2649 ppp_lock(ppp); 2650 list_del(&pch->clist); 2651 if (--ppp->n_channels == 0) 2652 wake_up_interruptible(&ppp->file.rwait); 2653 ppp_unlock(ppp); 2654 if (atomic_dec_and_test(&ppp->file.refcnt)) 2655 ppp_destroy_interface(ppp); 2656 err = 0; 2657 } 2658 return err; 2659} 2660 2661/* 2662 * Free up the resources used by a ppp channel. 2663 */ 2664static void ppp_destroy_channel(struct channel *pch) 2665{ 2666 atomic_dec(&channel_count); 2667 2668 if (!pch->file.dead) { 2669 /* "can't happen" */ 2670 printk(KERN_ERR "ppp: destroying undead channel %p !\n", 2671 pch); 2672 return; 2673 } 2674 skb_queue_purge(&pch->file.xq); 2675 skb_queue_purge(&pch->file.rq); 2676 kfree(pch); 2677} 2678 2679static void __exit ppp_cleanup(void) 2680{ 2681 /* should never happen */ 2682 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) 2683 printk(KERN_ERR "PPP: removing module but units remain!\n"); 2684 cardmap_destroy(&all_ppp_units); 2685 if (unregister_chrdev(PPP_MAJOR, "ppp") != 0) 2686 printk(KERN_ERR "PPP: failed to unregister PPP device\n"); 2687 devfs_remove("ppp"); 2688 class_device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0)); 2689 class_destroy(ppp_class); 2690} 2691 2692/* 2693 * Cardmap implementation. 2694 */ 2695static void *cardmap_get(struct cardmap *map, unsigned int nr) 2696{ 2697 struct cardmap *p; 2698 int i; 2699 2700 for (p = map; p != NULL; ) { 2701 if ((i = nr >> p->shift) >= CARDMAP_WIDTH) 2702 return NULL; 2703 if (p->shift == 0) 2704 return p->ptr[i]; 2705 nr &= ~(CARDMAP_MASK << p->shift); 2706 p = p->ptr[i]; 2707 } 2708 return NULL; 2709} 2710 2711static void cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr) 2712{ 2713 struct cardmap *p; 2714 int i; 2715 2716 p = *pmap; 2717 if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) { 2718 do { 2719 /* need a new top level */ 2720 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL); 2721 memset(np, 0, sizeof(*np)); 2722 np->ptr[0] = p; 2723 if (p != NULL) { 2724 np->shift = p->shift + CARDMAP_ORDER; 2725 p->parent = np; 2726 } else 2727 np->shift = 0; 2728 p = np; 2729 } while ((nr >> p->shift) >= CARDMAP_WIDTH); 2730 *pmap = p; 2731 } 2732 while (p->shift > 0) { 2733 i = (nr >> p->shift) & CARDMAP_MASK; 2734 if (p->ptr[i] == NULL) { 2735 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL); 2736 memset(np, 0, sizeof(*np)); 2737 np->shift = p->shift - CARDMAP_ORDER; 2738 np->parent = p; 2739 p->ptr[i] = np; 2740 } 2741 if (ptr == NULL) 2742 clear_bit(i, &p->inuse); 2743 p = p->ptr[i]; 2744 } 2745 i = nr & CARDMAP_MASK; 2746 p->ptr[i] = ptr; 2747 if (ptr != NULL) 2748 set_bit(i, &p->inuse); 2749 else 2750 clear_bit(i, &p->inuse); 2751} 2752 2753static unsigned int cardmap_find_first_free(struct cardmap *map) 2754{ 2755 struct cardmap *p; 2756 unsigned int nr = 0; 2757 int i; 2758 2759 if ((p = map) == NULL) 2760 return 0; 2761 for (;;) { 2762 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH); 2763 if (i >= CARDMAP_WIDTH) { 2764 if (p->parent == NULL) 2765 return CARDMAP_WIDTH << p->shift; 2766 p = p->parent; 2767 i = (nr >> p->shift) & CARDMAP_MASK; 2768 set_bit(i, &p->inuse); 2769 continue; 2770 } 2771 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift); 2772 if (p->shift == 0 || p->ptr[i] == NULL) 2773 return nr; 2774 p = p->ptr[i]; 2775 } 2776} 2777 2778static void cardmap_destroy(struct cardmap **pmap) 2779{ 2780 struct cardmap *p, *np; 2781 int i; 2782 2783 for (p = *pmap; p != NULL; p = np) { 2784 if (p->shift != 0) { 2785 for (i = 0; i < CARDMAP_WIDTH; ++i) 2786 if (p->ptr[i] != NULL) 2787 break; 2788 if (i < CARDMAP_WIDTH) { 2789 np = p->ptr[i]; 2790 p->ptr[i] = NULL; 2791 continue; 2792 } 2793 } 2794 np = p->parent; 2795 kfree(p); 2796 } 2797 *pmap = NULL; 2798} 2799 2800/* Module/initialization stuff */ 2801 2802module_init(ppp_init); 2803module_exit(ppp_cleanup); 2804 2805EXPORT_SYMBOL(ppp_register_channel); 2806EXPORT_SYMBOL(ppp_unregister_channel); 2807EXPORT_SYMBOL(ppp_channel_index); 2808EXPORT_SYMBOL(ppp_unit_number); 2809EXPORT_SYMBOL(ppp_input); 2810EXPORT_SYMBOL(ppp_input_error); 2811EXPORT_SYMBOL(ppp_output_wakeup); 2812EXPORT_SYMBOL(ppp_register_compressor); 2813EXPORT_SYMBOL(ppp_unregister_compressor); 2814MODULE_LICENSE("GPL"); 2815MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR); 2816MODULE_ALIAS("/dev/ppp");