at v2.6.17-rc2 2473 lines 65 kB view raw
1/* 2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. 3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) 4 * 5 * This version of the driver is specific to the FADS implementation, 6 * since the board contains control registers external to the processor 7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual 8 * describes connections using the internal parallel port I/O, which 9 * is basically all of Port D. 10 * 11 * Right now, I am very wasteful with the buffers. I allocate memory 12 * pages and then divide them into 2K frame buffers. This way I know I 13 * have buffers large enough to hold one frame within one buffer descriptor. 14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which 15 * will be much more memory efficient and will easily handle lots of 16 * small packets. 17 * 18 * Much better multiple PHY support by Magnus Damm. 19 * Copyright (c) 2000 Ericsson Radio Systems AB. 20 * 21 * Support for FEC controller of ColdFire processors. 22 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) 23 * 24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) 25 * Copyright (c) 2004-2005 Macq Electronique SA. 26 */ 27 28#include <linux/config.h> 29#include <linux/module.h> 30#include <linux/kernel.h> 31#include <linux/string.h> 32#include <linux/ptrace.h> 33#include <linux/errno.h> 34#include <linux/ioport.h> 35#include <linux/slab.h> 36#include <linux/interrupt.h> 37#include <linux/pci.h> 38#include <linux/init.h> 39#include <linux/delay.h> 40#include <linux/netdevice.h> 41#include <linux/etherdevice.h> 42#include <linux/skbuff.h> 43#include <linux/spinlock.h> 44#include <linux/workqueue.h> 45#include <linux/bitops.h> 46 47#include <asm/irq.h> 48#include <asm/uaccess.h> 49#include <asm/io.h> 50#include <asm/pgtable.h> 51 52#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \ 53 defined(CONFIG_M5272) || defined(CONFIG_M528x) || \ 54 defined(CONFIG_M520x) 55#include <asm/coldfire.h> 56#include <asm/mcfsim.h> 57#include "fec.h" 58#else 59#include <asm/8xx_immap.h> 60#include <asm/mpc8xx.h> 61#include "commproc.h" 62#endif 63 64#if defined(CONFIG_FEC2) 65#define FEC_MAX_PORTS 2 66#else 67#define FEC_MAX_PORTS 1 68#endif 69 70/* 71 * Define the fixed address of the FEC hardware. 72 */ 73static unsigned int fec_hw[] = { 74#if defined(CONFIG_M5272) 75 (MCF_MBAR + 0x840), 76#elif defined(CONFIG_M527x) 77 (MCF_MBAR + 0x1000), 78 (MCF_MBAR + 0x1800), 79#elif defined(CONFIG_M523x) || defined(CONFIG_M528x) 80 (MCF_MBAR + 0x1000), 81#elif defined(CONFIG_M520x) 82 (MCF_MBAR+0x30000), 83#else 84 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec), 85#endif 86}; 87 88static unsigned char fec_mac_default[] = { 89 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 90}; 91 92/* 93 * Some hardware gets it MAC address out of local flash memory. 94 * if this is non-zero then assume it is the address to get MAC from. 95 */ 96#if defined(CONFIG_NETtel) 97#define FEC_FLASHMAC 0xf0006006 98#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) 99#define FEC_FLASHMAC 0xf0006000 100#elif defined (CONFIG_MTD_KeyTechnology) 101#define FEC_FLASHMAC 0xffe04000 102#elif defined(CONFIG_CANCam) 103#define FEC_FLASHMAC 0xf0020000 104#elif defined (CONFIG_M5272C3) 105#define FEC_FLASHMAC (0xffe04000 + 4) 106#elif defined(CONFIG_MOD5272) 107#define FEC_FLASHMAC 0xffc0406b 108#else 109#define FEC_FLASHMAC 0 110#endif 111 112/* Forward declarations of some structures to support different PHYs 113*/ 114 115typedef struct { 116 uint mii_data; 117 void (*funct)(uint mii_reg, struct net_device *dev); 118} phy_cmd_t; 119 120typedef struct { 121 uint id; 122 char *name; 123 124 const phy_cmd_t *config; 125 const phy_cmd_t *startup; 126 const phy_cmd_t *ack_int; 127 const phy_cmd_t *shutdown; 128} phy_info_t; 129 130/* The number of Tx and Rx buffers. These are allocated from the page 131 * pool. The code may assume these are power of two, so it it best 132 * to keep them that size. 133 * We don't need to allocate pages for the transmitter. We just use 134 * the skbuffer directly. 135 */ 136#define FEC_ENET_RX_PAGES 8 137#define FEC_ENET_RX_FRSIZE 2048 138#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) 139#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) 140#define FEC_ENET_TX_FRSIZE 2048 141#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) 142#define TX_RING_SIZE 16 /* Must be power of two */ 143#define TX_RING_MOD_MASK 15 /* for this to work */ 144 145#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE) 146#error "FEC: descriptor ring size contants too large" 147#endif 148 149/* Interrupt events/masks. 150*/ 151#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ 152#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ 153#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ 154#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ 155#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ 156#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ 157#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ 158#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ 159#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ 160#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ 161 162/* The FEC stores dest/src/type, data, and checksum for receive packets. 163 */ 164#define PKT_MAXBUF_SIZE 1518 165#define PKT_MINBUF_SIZE 64 166#define PKT_MAXBLR_SIZE 1520 167 168 169/* 170 * The 5270/5271/5280/5282 RX control register also contains maximum frame 171 * size bits. Other FEC hardware does not, so we need to take that into 172 * account when setting it. 173 */ 174#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ 175 defined(CONFIG_M520x) 176#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) 177#else 178#define OPT_FRAME_SIZE 0 179#endif 180 181/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and 182 * tx_bd_base always point to the base of the buffer descriptors. The 183 * cur_rx and cur_tx point to the currently available buffer. 184 * The dirty_tx tracks the current buffer that is being sent by the 185 * controller. The cur_tx and dirty_tx are equal under both completely 186 * empty and completely full conditions. The empty/ready indicator in 187 * the buffer descriptor determines the actual condition. 188 */ 189struct fec_enet_private { 190 /* Hardware registers of the FEC device */ 191 volatile fec_t *hwp; 192 193 /* The saved address of a sent-in-place packet/buffer, for skfree(). */ 194 unsigned char *tx_bounce[TX_RING_SIZE]; 195 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 196 ushort skb_cur; 197 ushort skb_dirty; 198 199 /* CPM dual port RAM relative addresses. 200 */ 201 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ 202 cbd_t *tx_bd_base; 203 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ 204 cbd_t *dirty_tx; /* The ring entries to be free()ed. */ 205 struct net_device_stats stats; 206 uint tx_full; 207 spinlock_t lock; 208 209 uint phy_id; 210 uint phy_id_done; 211 uint phy_status; 212 uint phy_speed; 213 phy_info_t const *phy; 214 struct work_struct phy_task; 215 216 uint sequence_done; 217 uint mii_phy_task_queued; 218 219 uint phy_addr; 220 221 int index; 222 int opened; 223 int link; 224 int old_link; 225 int full_duplex; 226}; 227 228static int fec_enet_open(struct net_device *dev); 229static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); 230static void fec_enet_mii(struct net_device *dev); 231static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs); 232static void fec_enet_tx(struct net_device *dev); 233static void fec_enet_rx(struct net_device *dev); 234static int fec_enet_close(struct net_device *dev); 235static struct net_device_stats *fec_enet_get_stats(struct net_device *dev); 236static void set_multicast_list(struct net_device *dev); 237static void fec_restart(struct net_device *dev, int duplex); 238static void fec_stop(struct net_device *dev); 239static void fec_set_mac_address(struct net_device *dev); 240 241 242/* MII processing. We keep this as simple as possible. Requests are 243 * placed on the list (if there is room). When the request is finished 244 * by the MII, an optional function may be called. 245 */ 246typedef struct mii_list { 247 uint mii_regval; 248 void (*mii_func)(uint val, struct net_device *dev); 249 struct mii_list *mii_next; 250} mii_list_t; 251 252#define NMII 20 253static mii_list_t mii_cmds[NMII]; 254static mii_list_t *mii_free; 255static mii_list_t *mii_head; 256static mii_list_t *mii_tail; 257 258static int mii_queue(struct net_device *dev, int request, 259 void (*func)(uint, struct net_device *)); 260 261/* Make MII read/write commands for the FEC. 262*/ 263#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) 264#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ 265 (VAL & 0xffff)) 266#define mk_mii_end 0 267 268/* Transmitter timeout. 269*/ 270#define TX_TIMEOUT (2*HZ) 271 272/* Register definitions for the PHY. 273*/ 274 275#define MII_REG_CR 0 /* Control Register */ 276#define MII_REG_SR 1 /* Status Register */ 277#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ 278#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ 279#define MII_REG_ANAR 4 /* A-N Advertisement Register */ 280#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ 281#define MII_REG_ANER 6 /* A-N Expansion Register */ 282#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ 283#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ 284 285/* values for phy_status */ 286 287#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ 288#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ 289#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ 290#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ 291#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ 292#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ 293#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ 294 295#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ 296#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ 297#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ 298#define PHY_STAT_SPMASK 0xf000 /* mask for speed */ 299#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ 300#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ 301#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ 302#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ 303 304 305static int 306fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) 307{ 308 struct fec_enet_private *fep; 309 volatile fec_t *fecp; 310 volatile cbd_t *bdp; 311 312 fep = netdev_priv(dev); 313 fecp = (volatile fec_t*)dev->base_addr; 314 315 if (!fep->link) { 316 /* Link is down or autonegotiation is in progress. */ 317 return 1; 318 } 319 320 /* Fill in a Tx ring entry */ 321 bdp = fep->cur_tx; 322 323#ifndef final_version 324 if (bdp->cbd_sc & BD_ENET_TX_READY) { 325 /* Ooops. All transmit buffers are full. Bail out. 326 * This should not happen, since dev->tbusy should be set. 327 */ 328 printk("%s: tx queue full!.\n", dev->name); 329 return 1; 330 } 331#endif 332 333 /* Clear all of the status flags. 334 */ 335 bdp->cbd_sc &= ~BD_ENET_TX_STATS; 336 337 /* Set buffer length and buffer pointer. 338 */ 339 bdp->cbd_bufaddr = __pa(skb->data); 340 bdp->cbd_datlen = skb->len; 341 342 /* 343 * On some FEC implementations data must be aligned on 344 * 4-byte boundaries. Use bounce buffers to copy data 345 * and get it aligned. Ugh. 346 */ 347 if (bdp->cbd_bufaddr & 0x3) { 348 unsigned int index; 349 index = bdp - fep->tx_bd_base; 350 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen); 351 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]); 352 } 353 354 /* Save skb pointer. 355 */ 356 fep->tx_skbuff[fep->skb_cur] = skb; 357 358 fep->stats.tx_bytes += skb->len; 359 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; 360 361 /* Push the data cache so the CPM does not get stale memory 362 * data. 363 */ 364 flush_dcache_range((unsigned long)skb->data, 365 (unsigned long)skb->data + skb->len); 366 367 spin_lock_irq(&fep->lock); 368 369 /* Send it on its way. Tell FEC its ready, interrupt when done, 370 * its the last BD of the frame, and to put the CRC on the end. 371 */ 372 373 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR 374 | BD_ENET_TX_LAST | BD_ENET_TX_TC); 375 376 dev->trans_start = jiffies; 377 378 /* Trigger transmission start */ 379 fecp->fec_x_des_active = 0x01000000; 380 381 /* If this was the last BD in the ring, start at the beginning again. 382 */ 383 if (bdp->cbd_sc & BD_ENET_TX_WRAP) { 384 bdp = fep->tx_bd_base; 385 } else { 386 bdp++; 387 } 388 389 if (bdp == fep->dirty_tx) { 390 fep->tx_full = 1; 391 netif_stop_queue(dev); 392 } 393 394 fep->cur_tx = (cbd_t *)bdp; 395 396 spin_unlock_irq(&fep->lock); 397 398 return 0; 399} 400 401static void 402fec_timeout(struct net_device *dev) 403{ 404 struct fec_enet_private *fep = netdev_priv(dev); 405 406 printk("%s: transmit timed out.\n", dev->name); 407 fep->stats.tx_errors++; 408#ifndef final_version 409 { 410 int i; 411 cbd_t *bdp; 412 413 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n", 414 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", 415 (unsigned long)fep->dirty_tx, 416 (unsigned long)fep->cur_rx); 417 418 bdp = fep->tx_bd_base; 419 printk(" tx: %u buffers\n", TX_RING_SIZE); 420 for (i = 0 ; i < TX_RING_SIZE; i++) { 421 printk(" %08x: %04x %04x %08x\n", 422 (uint) bdp, 423 bdp->cbd_sc, 424 bdp->cbd_datlen, 425 (int) bdp->cbd_bufaddr); 426 bdp++; 427 } 428 429 bdp = fep->rx_bd_base; 430 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE); 431 for (i = 0 ; i < RX_RING_SIZE; i++) { 432 printk(" %08x: %04x %04x %08x\n", 433 (uint) bdp, 434 bdp->cbd_sc, 435 bdp->cbd_datlen, 436 (int) bdp->cbd_bufaddr); 437 bdp++; 438 } 439 } 440#endif 441 fec_restart(dev, fep->full_duplex); 442 netif_wake_queue(dev); 443} 444 445/* The interrupt handler. 446 * This is called from the MPC core interrupt. 447 */ 448static irqreturn_t 449fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) 450{ 451 struct net_device *dev = dev_id; 452 volatile fec_t *fecp; 453 uint int_events; 454 int handled = 0; 455 456 fecp = (volatile fec_t*)dev->base_addr; 457 458 /* Get the interrupt events that caused us to be here. 459 */ 460 while ((int_events = fecp->fec_ievent) != 0) { 461 fecp->fec_ievent = int_events; 462 463 /* Handle receive event in its own function. 464 */ 465 if (int_events & FEC_ENET_RXF) { 466 handled = 1; 467 fec_enet_rx(dev); 468 } 469 470 /* Transmit OK, or non-fatal error. Update the buffer 471 descriptors. FEC handles all errors, we just discover 472 them as part of the transmit process. 473 */ 474 if (int_events & FEC_ENET_TXF) { 475 handled = 1; 476 fec_enet_tx(dev); 477 } 478 479 if (int_events & FEC_ENET_MII) { 480 handled = 1; 481 fec_enet_mii(dev); 482 } 483 484 } 485 return IRQ_RETVAL(handled); 486} 487 488 489static void 490fec_enet_tx(struct net_device *dev) 491{ 492 struct fec_enet_private *fep; 493 volatile cbd_t *bdp; 494 struct sk_buff *skb; 495 496 fep = netdev_priv(dev); 497 spin_lock(&fep->lock); 498 bdp = fep->dirty_tx; 499 500 while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) { 501 if (bdp == fep->cur_tx && fep->tx_full == 0) break; 502 503 skb = fep->tx_skbuff[fep->skb_dirty]; 504 /* Check for errors. */ 505 if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | 506 BD_ENET_TX_RL | BD_ENET_TX_UN | 507 BD_ENET_TX_CSL)) { 508 fep->stats.tx_errors++; 509 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ 510 fep->stats.tx_heartbeat_errors++; 511 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ 512 fep->stats.tx_window_errors++; 513 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ 514 fep->stats.tx_aborted_errors++; 515 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ 516 fep->stats.tx_fifo_errors++; 517 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ 518 fep->stats.tx_carrier_errors++; 519 } else { 520 fep->stats.tx_packets++; 521 } 522 523#ifndef final_version 524 if (bdp->cbd_sc & BD_ENET_TX_READY) 525 printk("HEY! Enet xmit interrupt and TX_READY.\n"); 526#endif 527 /* Deferred means some collisions occurred during transmit, 528 * but we eventually sent the packet OK. 529 */ 530 if (bdp->cbd_sc & BD_ENET_TX_DEF) 531 fep->stats.collisions++; 532 533 /* Free the sk buffer associated with this last transmit. 534 */ 535 dev_kfree_skb_any(skb); 536 fep->tx_skbuff[fep->skb_dirty] = NULL; 537 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; 538 539 /* Update pointer to next buffer descriptor to be transmitted. 540 */ 541 if (bdp->cbd_sc & BD_ENET_TX_WRAP) 542 bdp = fep->tx_bd_base; 543 else 544 bdp++; 545 546 /* Since we have freed up a buffer, the ring is no longer 547 * full. 548 */ 549 if (fep->tx_full) { 550 fep->tx_full = 0; 551 if (netif_queue_stopped(dev)) 552 netif_wake_queue(dev); 553 } 554 } 555 fep->dirty_tx = (cbd_t *)bdp; 556 spin_unlock(&fep->lock); 557} 558 559 560/* During a receive, the cur_rx points to the current incoming buffer. 561 * When we update through the ring, if the next incoming buffer has 562 * not been given to the system, we just set the empty indicator, 563 * effectively tossing the packet. 564 */ 565static void 566fec_enet_rx(struct net_device *dev) 567{ 568 struct fec_enet_private *fep; 569 volatile fec_t *fecp; 570 volatile cbd_t *bdp; 571 struct sk_buff *skb; 572 ushort pkt_len; 573 __u8 *data; 574 575 fep = netdev_priv(dev); 576 fecp = (volatile fec_t*)dev->base_addr; 577 578 /* First, grab all of the stats for the incoming packet. 579 * These get messed up if we get called due to a busy condition. 580 */ 581 bdp = fep->cur_rx; 582 583while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) { 584 585#ifndef final_version 586 /* Since we have allocated space to hold a complete frame, 587 * the last indicator should be set. 588 */ 589 if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0) 590 printk("FEC ENET: rcv is not +last\n"); 591#endif 592 593 if (!fep->opened) 594 goto rx_processing_done; 595 596 /* Check for errors. */ 597 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | 598 BD_ENET_RX_CR | BD_ENET_RX_OV)) { 599 fep->stats.rx_errors++; 600 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { 601 /* Frame too long or too short. */ 602 fep->stats.rx_length_errors++; 603 } 604 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ 605 fep->stats.rx_frame_errors++; 606 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ 607 fep->stats.rx_crc_errors++; 608 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ 609 fep->stats.rx_crc_errors++; 610 } 611 612 /* Report late collisions as a frame error. 613 * On this error, the BD is closed, but we don't know what we 614 * have in the buffer. So, just drop this frame on the floor. 615 */ 616 if (bdp->cbd_sc & BD_ENET_RX_CL) { 617 fep->stats.rx_errors++; 618 fep->stats.rx_frame_errors++; 619 goto rx_processing_done; 620 } 621 622 /* Process the incoming frame. 623 */ 624 fep->stats.rx_packets++; 625 pkt_len = bdp->cbd_datlen; 626 fep->stats.rx_bytes += pkt_len; 627 data = (__u8*)__va(bdp->cbd_bufaddr); 628 629 /* This does 16 byte alignment, exactly what we need. 630 * The packet length includes FCS, but we don't want to 631 * include that when passing upstream as it messes up 632 * bridging applications. 633 */ 634 skb = dev_alloc_skb(pkt_len-4); 635 636 if (skb == NULL) { 637 printk("%s: Memory squeeze, dropping packet.\n", dev->name); 638 fep->stats.rx_dropped++; 639 } else { 640 skb->dev = dev; 641 skb_put(skb,pkt_len-4); /* Make room */ 642 eth_copy_and_sum(skb, 643 (unsigned char *)__va(bdp->cbd_bufaddr), 644 pkt_len-4, 0); 645 skb->protocol=eth_type_trans(skb,dev); 646 netif_rx(skb); 647 } 648 rx_processing_done: 649 650 /* Clear the status flags for this buffer. 651 */ 652 bdp->cbd_sc &= ~BD_ENET_RX_STATS; 653 654 /* Mark the buffer empty. 655 */ 656 bdp->cbd_sc |= BD_ENET_RX_EMPTY; 657 658 /* Update BD pointer to next entry. 659 */ 660 if (bdp->cbd_sc & BD_ENET_RX_WRAP) 661 bdp = fep->rx_bd_base; 662 else 663 bdp++; 664 665#if 1 666 /* Doing this here will keep the FEC running while we process 667 * incoming frames. On a heavily loaded network, we should be 668 * able to keep up at the expense of system resources. 669 */ 670 fecp->fec_r_des_active = 0x01000000; 671#endif 672 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */ 673 fep->cur_rx = (cbd_t *)bdp; 674 675#if 0 676 /* Doing this here will allow us to process all frames in the 677 * ring before the FEC is allowed to put more there. On a heavily 678 * loaded network, some frames may be lost. Unfortunately, this 679 * increases the interrupt overhead since we can potentially work 680 * our way back to the interrupt return only to come right back 681 * here. 682 */ 683 fecp->fec_r_des_active = 0x01000000; 684#endif 685} 686 687 688static void 689fec_enet_mii(struct net_device *dev) 690{ 691 struct fec_enet_private *fep; 692 volatile fec_t *ep; 693 mii_list_t *mip; 694 uint mii_reg; 695 696 fep = netdev_priv(dev); 697 ep = fep->hwp; 698 mii_reg = ep->fec_mii_data; 699 700 if ((mip = mii_head) == NULL) { 701 printk("MII and no head!\n"); 702 return; 703 } 704 705 if (mip->mii_func != NULL) 706 (*(mip->mii_func))(mii_reg, dev); 707 708 mii_head = mip->mii_next; 709 mip->mii_next = mii_free; 710 mii_free = mip; 711 712 if ((mip = mii_head) != NULL) 713 ep->fec_mii_data = mip->mii_regval; 714} 715 716static int 717mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) 718{ 719 struct fec_enet_private *fep; 720 unsigned long flags; 721 mii_list_t *mip; 722 int retval; 723 724 /* Add PHY address to register command. 725 */ 726 fep = netdev_priv(dev); 727 regval |= fep->phy_addr << 23; 728 729 retval = 0; 730 731 save_flags(flags); 732 cli(); 733 734 if ((mip = mii_free) != NULL) { 735 mii_free = mip->mii_next; 736 mip->mii_regval = regval; 737 mip->mii_func = func; 738 mip->mii_next = NULL; 739 if (mii_head) { 740 mii_tail->mii_next = mip; 741 mii_tail = mip; 742 } 743 else { 744 mii_head = mii_tail = mip; 745 fep->hwp->fec_mii_data = regval; 746 } 747 } 748 else { 749 retval = 1; 750 } 751 752 restore_flags(flags); 753 754 return(retval); 755} 756 757static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) 758{ 759 int k; 760 761 if(!c) 762 return; 763 764 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) { 765 mii_queue(dev, (c+k)->mii_data, (c+k)->funct); 766 } 767} 768 769static void mii_parse_sr(uint mii_reg, struct net_device *dev) 770{ 771 struct fec_enet_private *fep = netdev_priv(dev); 772 volatile uint *s = &(fep->phy_status); 773 uint status; 774 775 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); 776 777 if (mii_reg & 0x0004) 778 status |= PHY_STAT_LINK; 779 if (mii_reg & 0x0010) 780 status |= PHY_STAT_FAULT; 781 if (mii_reg & 0x0020) 782 status |= PHY_STAT_ANC; 783 784 *s = status; 785} 786 787static void mii_parse_cr(uint mii_reg, struct net_device *dev) 788{ 789 struct fec_enet_private *fep = netdev_priv(dev); 790 volatile uint *s = &(fep->phy_status); 791 uint status; 792 793 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP); 794 795 if (mii_reg & 0x1000) 796 status |= PHY_CONF_ANE; 797 if (mii_reg & 0x4000) 798 status |= PHY_CONF_LOOP; 799 *s = status; 800} 801 802static void mii_parse_anar(uint mii_reg, struct net_device *dev) 803{ 804 struct fec_enet_private *fep = netdev_priv(dev); 805 volatile uint *s = &(fep->phy_status); 806 uint status; 807 808 status = *s & ~(PHY_CONF_SPMASK); 809 810 if (mii_reg & 0x0020) 811 status |= PHY_CONF_10HDX; 812 if (mii_reg & 0x0040) 813 status |= PHY_CONF_10FDX; 814 if (mii_reg & 0x0080) 815 status |= PHY_CONF_100HDX; 816 if (mii_reg & 0x00100) 817 status |= PHY_CONF_100FDX; 818 *s = status; 819} 820 821/* ------------------------------------------------------------------------- */ 822/* The Level one LXT970 is used by many boards */ 823 824#define MII_LXT970_MIRROR 16 /* Mirror register */ 825#define MII_LXT970_IER 17 /* Interrupt Enable Register */ 826#define MII_LXT970_ISR 18 /* Interrupt Status Register */ 827#define MII_LXT970_CONFIG 19 /* Configuration Register */ 828#define MII_LXT970_CSR 20 /* Chip Status Register */ 829 830static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) 831{ 832 struct fec_enet_private *fep = netdev_priv(dev); 833 volatile uint *s = &(fep->phy_status); 834 uint status; 835 836 status = *s & ~(PHY_STAT_SPMASK); 837 if (mii_reg & 0x0800) { 838 if (mii_reg & 0x1000) 839 status |= PHY_STAT_100FDX; 840 else 841 status |= PHY_STAT_100HDX; 842 } else { 843 if (mii_reg & 0x1000) 844 status |= PHY_STAT_10FDX; 845 else 846 status |= PHY_STAT_10HDX; 847 } 848 *s = status; 849} 850 851static phy_cmd_t const phy_cmd_lxt970_config[] = { 852 { mk_mii_read(MII_REG_CR), mii_parse_cr }, 853 { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, 854 { mk_mii_end, } 855 }; 856static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */ 857 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, 858 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ 859 { mk_mii_end, } 860 }; 861static phy_cmd_t const phy_cmd_lxt970_ack_int[] = { 862 /* read SR and ISR to acknowledge */ 863 { mk_mii_read(MII_REG_SR), mii_parse_sr }, 864 { mk_mii_read(MII_LXT970_ISR), NULL }, 865 866 /* find out the current status */ 867 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, 868 { mk_mii_end, } 869 }; 870static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */ 871 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, 872 { mk_mii_end, } 873 }; 874static phy_info_t const phy_info_lxt970 = { 875 .id = 0x07810000, 876 .name = "LXT970", 877 .config = phy_cmd_lxt970_config, 878 .startup = phy_cmd_lxt970_startup, 879 .ack_int = phy_cmd_lxt970_ack_int, 880 .shutdown = phy_cmd_lxt970_shutdown 881}; 882 883/* ------------------------------------------------------------------------- */ 884/* The Level one LXT971 is used on some of my custom boards */ 885 886/* register definitions for the 971 */ 887 888#define MII_LXT971_PCR 16 /* Port Control Register */ 889#define MII_LXT971_SR2 17 /* Status Register 2 */ 890#define MII_LXT971_IER 18 /* Interrupt Enable Register */ 891#define MII_LXT971_ISR 19 /* Interrupt Status Register */ 892#define MII_LXT971_LCR 20 /* LED Control Register */ 893#define MII_LXT971_TCR 30 /* Transmit Control Register */ 894 895/* 896 * I had some nice ideas of running the MDIO faster... 897 * The 971 should support 8MHz and I tried it, but things acted really 898 * weird, so 2.5 MHz ought to be enough for anyone... 899 */ 900 901static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) 902{ 903 struct fec_enet_private *fep = netdev_priv(dev); 904 volatile uint *s = &(fep->phy_status); 905 uint status; 906 907 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); 908 909 if (mii_reg & 0x0400) { 910 fep->link = 1; 911 status |= PHY_STAT_LINK; 912 } else { 913 fep->link = 0; 914 } 915 if (mii_reg & 0x0080) 916 status |= PHY_STAT_ANC; 917 if (mii_reg & 0x4000) { 918 if (mii_reg & 0x0200) 919 status |= PHY_STAT_100FDX; 920 else 921 status |= PHY_STAT_100HDX; 922 } else { 923 if (mii_reg & 0x0200) 924 status |= PHY_STAT_10FDX; 925 else 926 status |= PHY_STAT_10HDX; 927 } 928 if (mii_reg & 0x0008) 929 status |= PHY_STAT_FAULT; 930 931 *s = status; 932} 933 934static phy_cmd_t const phy_cmd_lxt971_config[] = { 935 /* limit to 10MBit because my prototype board 936 * doesn't work with 100. */ 937 { mk_mii_read(MII_REG_CR), mii_parse_cr }, 938 { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, 939 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, 940 { mk_mii_end, } 941 }; 942static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */ 943 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, 944 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ 945 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */ 946 /* Somehow does the 971 tell me that the link is down 947 * the first read after power-up. 948 * read here to get a valid value in ack_int */ 949 { mk_mii_read(MII_REG_SR), mii_parse_sr }, 950 { mk_mii_end, } 951 }; 952static phy_cmd_t const phy_cmd_lxt971_ack_int[] = { 953 /* acknowledge the int before reading status ! */ 954 { mk_mii_read(MII_LXT971_ISR), NULL }, 955 /* find out the current status */ 956 { mk_mii_read(MII_REG_SR), mii_parse_sr }, 957 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, 958 { mk_mii_end, } 959 }; 960static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */ 961 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, 962 { mk_mii_end, } 963 }; 964static phy_info_t const phy_info_lxt971 = { 965 .id = 0x0001378e, 966 .name = "LXT971", 967 .config = phy_cmd_lxt971_config, 968 .startup = phy_cmd_lxt971_startup, 969 .ack_int = phy_cmd_lxt971_ack_int, 970 .shutdown = phy_cmd_lxt971_shutdown 971}; 972 973/* ------------------------------------------------------------------------- */ 974/* The Quality Semiconductor QS6612 is used on the RPX CLLF */ 975 976/* register definitions */ 977 978#define MII_QS6612_MCR 17 /* Mode Control Register */ 979#define MII_QS6612_FTR 27 /* Factory Test Register */ 980#define MII_QS6612_MCO 28 /* Misc. Control Register */ 981#define MII_QS6612_ISR 29 /* Interrupt Source Register */ 982#define MII_QS6612_IMR 30 /* Interrupt Mask Register */ 983#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ 984 985static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) 986{ 987 struct fec_enet_private *fep = netdev_priv(dev); 988 volatile uint *s = &(fep->phy_status); 989 uint status; 990 991 status = *s & ~(PHY_STAT_SPMASK); 992 993 switch((mii_reg >> 2) & 7) { 994 case 1: status |= PHY_STAT_10HDX; break; 995 case 2: status |= PHY_STAT_100HDX; break; 996 case 5: status |= PHY_STAT_10FDX; break; 997 case 6: status |= PHY_STAT_100FDX; break; 998} 999 1000 *s = status; 1001} 1002 1003static phy_cmd_t const phy_cmd_qs6612_config[] = { 1004 /* The PHY powers up isolated on the RPX, 1005 * so send a command to allow operation. 1006 */ 1007 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, 1008 1009 /* parse cr and anar to get some info */ 1010 { mk_mii_read(MII_REG_CR), mii_parse_cr }, 1011 { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, 1012 { mk_mii_end, } 1013 }; 1014static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */ 1015 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, 1016 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ 1017 { mk_mii_end, } 1018 }; 1019static phy_cmd_t const phy_cmd_qs6612_ack_int[] = { 1020 /* we need to read ISR, SR and ANER to acknowledge */ 1021 { mk_mii_read(MII_QS6612_ISR), NULL }, 1022 { mk_mii_read(MII_REG_SR), mii_parse_sr }, 1023 { mk_mii_read(MII_REG_ANER), NULL }, 1024 1025 /* read pcr to get info */ 1026 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, 1027 { mk_mii_end, } 1028 }; 1029static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */ 1030 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, 1031 { mk_mii_end, } 1032 }; 1033static phy_info_t const phy_info_qs6612 = { 1034 .id = 0x00181440, 1035 .name = "QS6612", 1036 .config = phy_cmd_qs6612_config, 1037 .startup = phy_cmd_qs6612_startup, 1038 .ack_int = phy_cmd_qs6612_ack_int, 1039 .shutdown = phy_cmd_qs6612_shutdown 1040}; 1041 1042/* ------------------------------------------------------------------------- */ 1043/* AMD AM79C874 phy */ 1044 1045/* register definitions for the 874 */ 1046 1047#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */ 1048#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */ 1049#define MII_AM79C874_DR 18 /* Diagnostic Register */ 1050#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */ 1051#define MII_AM79C874_MCR 21 /* ModeControl Register */ 1052#define MII_AM79C874_DC 23 /* Disconnect Counter */ 1053#define MII_AM79C874_REC 24 /* Recieve Error Counter */ 1054 1055static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev) 1056{ 1057 struct fec_enet_private *fep = netdev_priv(dev); 1058 volatile uint *s = &(fep->phy_status); 1059 uint status; 1060 1061 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC); 1062 1063 if (mii_reg & 0x0080) 1064 status |= PHY_STAT_ANC; 1065 if (mii_reg & 0x0400) 1066 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX); 1067 else 1068 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX); 1069 1070 *s = status; 1071} 1072 1073static phy_cmd_t const phy_cmd_am79c874_config[] = { 1074 { mk_mii_read(MII_REG_CR), mii_parse_cr }, 1075 { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, 1076 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, 1077 { mk_mii_end, } 1078 }; 1079static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */ 1080 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, 1081 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ 1082 { mk_mii_read(MII_REG_SR), mii_parse_sr }, 1083 { mk_mii_end, } 1084 }; 1085static phy_cmd_t const phy_cmd_am79c874_ack_int[] = { 1086 /* find out the current status */ 1087 { mk_mii_read(MII_REG_SR), mii_parse_sr }, 1088 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, 1089 /* we only need to read ISR to acknowledge */ 1090 { mk_mii_read(MII_AM79C874_ICSR), NULL }, 1091 { mk_mii_end, } 1092 }; 1093static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */ 1094 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, 1095 { mk_mii_end, } 1096 }; 1097static phy_info_t const phy_info_am79c874 = { 1098 .id = 0x00022561, 1099 .name = "AM79C874", 1100 .config = phy_cmd_am79c874_config, 1101 .startup = phy_cmd_am79c874_startup, 1102 .ack_int = phy_cmd_am79c874_ack_int, 1103 .shutdown = phy_cmd_am79c874_shutdown 1104}; 1105 1106 1107/* ------------------------------------------------------------------------- */ 1108/* Kendin KS8721BL phy */ 1109 1110/* register definitions for the 8721 */ 1111 1112#define MII_KS8721BL_RXERCR 21 1113#define MII_KS8721BL_ICSR 22 1114#define MII_KS8721BL_PHYCR 31 1115 1116static phy_cmd_t const phy_cmd_ks8721bl_config[] = { 1117 { mk_mii_read(MII_REG_CR), mii_parse_cr }, 1118 { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, 1119 { mk_mii_end, } 1120 }; 1121static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */ 1122 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL }, 1123 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ 1124 { mk_mii_read(MII_REG_SR), mii_parse_sr }, 1125 { mk_mii_end, } 1126 }; 1127static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = { 1128 /* find out the current status */ 1129 { mk_mii_read(MII_REG_SR), mii_parse_sr }, 1130 /* we only need to read ISR to acknowledge */ 1131 { mk_mii_read(MII_KS8721BL_ICSR), NULL }, 1132 { mk_mii_end, } 1133 }; 1134static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */ 1135 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL }, 1136 { mk_mii_end, } 1137 }; 1138static phy_info_t const phy_info_ks8721bl = { 1139 .id = 0x00022161, 1140 .name = "KS8721BL", 1141 .config = phy_cmd_ks8721bl_config, 1142 .startup = phy_cmd_ks8721bl_startup, 1143 .ack_int = phy_cmd_ks8721bl_ack_int, 1144 .shutdown = phy_cmd_ks8721bl_shutdown 1145}; 1146 1147/* ------------------------------------------------------------------------- */ 1148/* register definitions for the DP83848 */ 1149 1150#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */ 1151 1152static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev) 1153{ 1154 struct fec_enet_private *fep = dev->priv; 1155 volatile uint *s = &(fep->phy_status); 1156 1157 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); 1158 1159 /* Link up */ 1160 if (mii_reg & 0x0001) { 1161 fep->link = 1; 1162 *s |= PHY_STAT_LINK; 1163 } else 1164 fep->link = 0; 1165 /* Status of link */ 1166 if (mii_reg & 0x0010) /* Autonegotioation complete */ 1167 *s |= PHY_STAT_ANC; 1168 if (mii_reg & 0x0002) { /* 10MBps? */ 1169 if (mii_reg & 0x0004) /* Full Duplex? */ 1170 *s |= PHY_STAT_10FDX; 1171 else 1172 *s |= PHY_STAT_10HDX; 1173 } else { /* 100 Mbps? */ 1174 if (mii_reg & 0x0004) /* Full Duplex? */ 1175 *s |= PHY_STAT_100FDX; 1176 else 1177 *s |= PHY_STAT_100HDX; 1178 } 1179 if (mii_reg & 0x0008) 1180 *s |= PHY_STAT_FAULT; 1181} 1182 1183static phy_info_t phy_info_dp83848= { 1184 0x020005c9, 1185 "DP83848", 1186 1187 (const phy_cmd_t []) { /* config */ 1188 { mk_mii_read(MII_REG_CR), mii_parse_cr }, 1189 { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, 1190 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 }, 1191 { mk_mii_end, } 1192 }, 1193 (const phy_cmd_t []) { /* startup - enable interrupts */ 1194 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ 1195 { mk_mii_read(MII_REG_SR), mii_parse_sr }, 1196 { mk_mii_end, } 1197 }, 1198 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */ 1199 { mk_mii_end, } 1200 }, 1201 (const phy_cmd_t []) { /* shutdown */ 1202 { mk_mii_end, } 1203 }, 1204}; 1205 1206/* ------------------------------------------------------------------------- */ 1207 1208static phy_info_t const * const phy_info[] = { 1209 &phy_info_lxt970, 1210 &phy_info_lxt971, 1211 &phy_info_qs6612, 1212 &phy_info_am79c874, 1213 &phy_info_ks8721bl, 1214 &phy_info_dp83848, 1215 NULL 1216}; 1217 1218/* ------------------------------------------------------------------------- */ 1219 1220#ifdef CONFIG_RPXCLASSIC 1221static void 1222mii_link_interrupt(void *dev_id); 1223#else 1224static irqreturn_t 1225mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs); 1226#endif 1227 1228#if defined(CONFIG_M5272) 1229 1230/* 1231 * Code specific to Coldfire 5272 setup. 1232 */ 1233static void __inline__ fec_request_intrs(struct net_device *dev) 1234{ 1235 volatile unsigned long *icrp; 1236 static const struct idesc { 1237 char *name; 1238 unsigned short irq; 1239 irqreturn_t (*handler)(int, void *, struct pt_regs *); 1240 } *idp, id[] = { 1241 { "fec(RX)", 86, fec_enet_interrupt }, 1242 { "fec(TX)", 87, fec_enet_interrupt }, 1243 { "fec(OTHER)", 88, fec_enet_interrupt }, 1244 { "fec(MII)", 66, mii_link_interrupt }, 1245 { NULL }, 1246 }; 1247 1248 /* Setup interrupt handlers. */ 1249 for (idp = id; idp->name; idp++) { 1250 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0) 1251 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq); 1252 } 1253 1254 /* Unmask interrupt at ColdFire 5272 SIM */ 1255 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3); 1256 *icrp = 0x00000ddd; 1257 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); 1258 *icrp = (*icrp & 0x70777777) | 0x0d000000; 1259} 1260 1261static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) 1262{ 1263 volatile fec_t *fecp; 1264 1265 fecp = fep->hwp; 1266 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; 1267 fecp->fec_x_cntrl = 0x00; 1268 1269 /* 1270 * Set MII speed to 2.5 MHz 1271 * See 5272 manual section 11.5.8: MSCR 1272 */ 1273 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2; 1274 fecp->fec_mii_speed = fep->phy_speed; 1275 1276 fec_restart(dev, 0); 1277} 1278 1279static void __inline__ fec_get_mac(struct net_device *dev) 1280{ 1281 struct fec_enet_private *fep = netdev_priv(dev); 1282 volatile fec_t *fecp; 1283 unsigned char *iap, tmpaddr[ETH_ALEN]; 1284 1285 fecp = fep->hwp; 1286 1287 if (FEC_FLASHMAC) { 1288 /* 1289 * Get MAC address from FLASH. 1290 * If it is all 1's or 0's, use the default. 1291 */ 1292 iap = (unsigned char *)FEC_FLASHMAC; 1293 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && 1294 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) 1295 iap = fec_mac_default; 1296 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && 1297 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) 1298 iap = fec_mac_default; 1299 } else { 1300 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; 1301 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); 1302 iap = &tmpaddr[0]; 1303 } 1304 1305 memcpy(dev->dev_addr, iap, ETH_ALEN); 1306 1307 /* Adjust MAC if using default MAC address */ 1308 if (iap == fec_mac_default) 1309 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; 1310} 1311 1312static void __inline__ fec_enable_phy_intr(void) 1313{ 1314} 1315 1316static void __inline__ fec_disable_phy_intr(void) 1317{ 1318 volatile unsigned long *icrp; 1319 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); 1320 *icrp = (*icrp & 0x70777777) | 0x08000000; 1321} 1322 1323static void __inline__ fec_phy_ack_intr(void) 1324{ 1325 volatile unsigned long *icrp; 1326 /* Acknowledge the interrupt */ 1327 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); 1328 *icrp = (*icrp & 0x77777777) | 0x08000000; 1329} 1330 1331static void __inline__ fec_localhw_setup(void) 1332{ 1333} 1334 1335/* 1336 * Do not need to make region uncached on 5272. 1337 */ 1338static void __inline__ fec_uncache(unsigned long addr) 1339{ 1340} 1341 1342/* ------------------------------------------------------------------------- */ 1343 1344#elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) 1345 1346/* 1347 * Code specific to Coldfire 5230/5231/5232/5234/5235, 1348 * the 5270/5271/5274/5275 and 5280/5282 setups. 1349 */ 1350static void __inline__ fec_request_intrs(struct net_device *dev) 1351{ 1352 struct fec_enet_private *fep; 1353 int b; 1354 static const struct idesc { 1355 char *name; 1356 unsigned short irq; 1357 } *idp, id[] = { 1358 { "fec(TXF)", 23 }, 1359 { "fec(TXB)", 24 }, 1360 { "fec(TXFIFO)", 25 }, 1361 { "fec(TXCR)", 26 }, 1362 { "fec(RXF)", 27 }, 1363 { "fec(RXB)", 28 }, 1364 { "fec(MII)", 29 }, 1365 { "fec(LC)", 30 }, 1366 { "fec(HBERR)", 31 }, 1367 { "fec(GRA)", 32 }, 1368 { "fec(EBERR)", 33 }, 1369 { "fec(BABT)", 34 }, 1370 { "fec(BABR)", 35 }, 1371 { NULL }, 1372 }; 1373 1374 fep = netdev_priv(dev); 1375 b = (fep->index) ? 128 : 64; 1376 1377 /* Setup interrupt handlers. */ 1378 for (idp = id; idp->name; idp++) { 1379 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0) 1380 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq); 1381 } 1382 1383 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */ 1384 { 1385 volatile unsigned char *icrp; 1386 volatile unsigned long *imrp; 1387 int i; 1388 1389 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0; 1390 icrp = (volatile unsigned char *) (MCF_IPSBAR + b + 1391 MCFINTC_ICR0); 1392 for (i = 23; (i < 36); i++) 1393 icrp[i] = 0x23; 1394 1395 imrp = (volatile unsigned long *) (MCF_IPSBAR + b + 1396 MCFINTC_IMRH); 1397 *imrp &= ~0x0000000f; 1398 imrp = (volatile unsigned long *) (MCF_IPSBAR + b + 1399 MCFINTC_IMRL); 1400 *imrp &= ~0xff800001; 1401 } 1402 1403#if defined(CONFIG_M528x) 1404 /* Set up gpio outputs for MII lines */ 1405 { 1406 volatile u16 *gpio_paspar; 1407 volatile u8 *gpio_pehlpar; 1408 1409 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056); 1410 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058); 1411 *gpio_paspar |= 0x0f00; 1412 *gpio_pehlpar = 0xc0; 1413 } 1414#endif 1415} 1416 1417static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) 1418{ 1419 volatile fec_t *fecp; 1420 1421 fecp = fep->hwp; 1422 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; 1423 fecp->fec_x_cntrl = 0x00; 1424 1425 /* 1426 * Set MII speed to 2.5 MHz 1427 * See 5282 manual section 17.5.4.7: MSCR 1428 */ 1429 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; 1430 fecp->fec_mii_speed = fep->phy_speed; 1431 1432 fec_restart(dev, 0); 1433} 1434 1435static void __inline__ fec_get_mac(struct net_device *dev) 1436{ 1437 struct fec_enet_private *fep = netdev_priv(dev); 1438 volatile fec_t *fecp; 1439 unsigned char *iap, tmpaddr[ETH_ALEN]; 1440 1441 fecp = fep->hwp; 1442 1443 if (FEC_FLASHMAC) { 1444 /* 1445 * Get MAC address from FLASH. 1446 * If it is all 1's or 0's, use the default. 1447 */ 1448 iap = FEC_FLASHMAC; 1449 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && 1450 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) 1451 iap = fec_mac_default; 1452 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && 1453 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) 1454 iap = fec_mac_default; 1455 } else { 1456 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; 1457 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); 1458 iap = &tmpaddr[0]; 1459 } 1460 1461 memcpy(dev->dev_addr, iap, ETH_ALEN); 1462 1463 /* Adjust MAC if using default MAC address */ 1464 if (iap == fec_mac_default) 1465 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; 1466} 1467 1468static void __inline__ fec_enable_phy_intr(void) 1469{ 1470} 1471 1472static void __inline__ fec_disable_phy_intr(void) 1473{ 1474} 1475 1476static void __inline__ fec_phy_ack_intr(void) 1477{ 1478} 1479 1480static void __inline__ fec_localhw_setup(void) 1481{ 1482} 1483 1484/* 1485 * Do not need to make region uncached on 5272. 1486 */ 1487static void __inline__ fec_uncache(unsigned long addr) 1488{ 1489} 1490 1491/* ------------------------------------------------------------------------- */ 1492 1493#elif defined(CONFIG_M520x) 1494 1495/* 1496 * Code specific to Coldfire 520x 1497 */ 1498static void __inline__ fec_request_intrs(struct net_device *dev) 1499{ 1500 struct fec_enet_private *fep; 1501 int b; 1502 static const struct idesc { 1503 char *name; 1504 unsigned short irq; 1505 } *idp, id[] = { 1506 { "fec(TXF)", 23 }, 1507 { "fec(TXB)", 24 }, 1508 { "fec(TXFIFO)", 25 }, 1509 { "fec(TXCR)", 26 }, 1510 { "fec(RXF)", 27 }, 1511 { "fec(RXB)", 28 }, 1512 { "fec(MII)", 29 }, 1513 { "fec(LC)", 30 }, 1514 { "fec(HBERR)", 31 }, 1515 { "fec(GRA)", 32 }, 1516 { "fec(EBERR)", 33 }, 1517 { "fec(BABT)", 34 }, 1518 { "fec(BABR)", 35 }, 1519 { NULL }, 1520 }; 1521 1522 fep = netdev_priv(dev); 1523 b = 64 + 13; 1524 1525 /* Setup interrupt handlers. */ 1526 for (idp = id; idp->name; idp++) { 1527 if (request_irq(b+idp->irq,fec_enet_interrupt,0,idp->name,dev)!=0) 1528 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq); 1529 } 1530 1531 /* Unmask interrupts at ColdFire interrupt controller */ 1532 { 1533 volatile unsigned char *icrp; 1534 volatile unsigned long *imrp; 1535 1536 icrp = (volatile unsigned char *) (MCF_IPSBAR + MCFICM_INTC0 + 1537 MCFINTC_ICR0); 1538 for (b = 36; (b < 49); b++) 1539 icrp[b] = 0x04; 1540 imrp = (volatile unsigned long *) (MCF_IPSBAR + MCFICM_INTC0 + 1541 MCFINTC_IMRH); 1542 *imrp &= ~0x0001FFF0; 1543 } 1544 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FEC) |= 0xf0; 1545 *(volatile unsigned char *)(MCF_IPSBAR + MCF_GPIO_PAR_FECI2C) |= 0x0f; 1546} 1547 1548static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) 1549{ 1550 volatile fec_t *fecp; 1551 1552 fecp = fep->hwp; 1553 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; 1554 fecp->fec_x_cntrl = 0x00; 1555 1556 /* 1557 * Set MII speed to 2.5 MHz 1558 * See 5282 manual section 17.5.4.7: MSCR 1559 */ 1560 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; 1561 fecp->fec_mii_speed = fep->phy_speed; 1562 1563 fec_restart(dev, 0); 1564} 1565 1566static void __inline__ fec_get_mac(struct net_device *dev) 1567{ 1568 struct fec_enet_private *fep = netdev_priv(dev); 1569 volatile fec_t *fecp; 1570 unsigned char *iap, tmpaddr[ETH_ALEN]; 1571 1572 fecp = fep->hwp; 1573 1574 if (FEC_FLASHMAC) { 1575 /* 1576 * Get MAC address from FLASH. 1577 * If it is all 1's or 0's, use the default. 1578 */ 1579 iap = FEC_FLASHMAC; 1580 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && 1581 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) 1582 iap = fec_mac_default; 1583 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && 1584 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) 1585 iap = fec_mac_default; 1586 } else { 1587 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; 1588 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); 1589 iap = &tmpaddr[0]; 1590 } 1591 1592 memcpy(dev->dev_addr, iap, ETH_ALEN); 1593 1594 /* Adjust MAC if using default MAC address */ 1595 if (iap == fec_mac_default) 1596 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index; 1597} 1598 1599static void __inline__ fec_enable_phy_intr(void) 1600{ 1601} 1602 1603static void __inline__ fec_disable_phy_intr(void) 1604{ 1605} 1606 1607static void __inline__ fec_phy_ack_intr(void) 1608{ 1609} 1610 1611static void __inline__ fec_localhw_setup(void) 1612{ 1613} 1614 1615static void __inline__ fec_uncache(unsigned long addr) 1616{ 1617} 1618 1619/* ------------------------------------------------------------------------- */ 1620 1621#else 1622 1623/* 1624 * Code specific to the MPC860T setup. 1625 */ 1626static void __inline__ fec_request_intrs(struct net_device *dev) 1627{ 1628 volatile immap_t *immap; 1629 1630 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ 1631 1632 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0) 1633 panic("Could not allocate FEC IRQ!"); 1634 1635#ifdef CONFIG_RPXCLASSIC 1636 /* Make Port C, bit 15 an input that causes interrupts. 1637 */ 1638 immap->im_ioport.iop_pcpar &= ~0x0001; 1639 immap->im_ioport.iop_pcdir &= ~0x0001; 1640 immap->im_ioport.iop_pcso &= ~0x0001; 1641 immap->im_ioport.iop_pcint |= 0x0001; 1642 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); 1643 1644 /* Make LEDS reflect Link status. 1645 */ 1646 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; 1647#endif 1648#ifdef CONFIG_FADS 1649 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0) 1650 panic("Could not allocate MII IRQ!"); 1651#endif 1652} 1653 1654static void __inline__ fec_get_mac(struct net_device *dev) 1655{ 1656 bd_t *bd; 1657 1658 bd = (bd_t *)__res; 1659 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN); 1660 1661#ifdef CONFIG_RPXCLASSIC 1662 /* The Embedded Planet boards have only one MAC address in 1663 * the EEPROM, but can have two Ethernet ports. For the 1664 * FEC port, we create another address by setting one of 1665 * the address bits above something that would have (up to 1666 * now) been allocated. 1667 */ 1668 dev->dev_adrd[3] |= 0x80; 1669#endif 1670} 1671 1672static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) 1673{ 1674 extern uint _get_IMMR(void); 1675 volatile immap_t *immap; 1676 volatile fec_t *fecp; 1677 1678 fecp = fep->hwp; 1679 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ 1680 1681 /* Configure all of port D for MII. 1682 */ 1683 immap->im_ioport.iop_pdpar = 0x1fff; 1684 1685 /* Bits moved from Rev. D onward. 1686 */ 1687 if ((_get_IMMR() & 0xffff) < 0x0501) 1688 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ 1689 else 1690 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ 1691 1692 /* Set MII speed to 2.5 MHz 1693 */ 1694 fecp->fec_mii_speed = fep->phy_speed = 1695 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e; 1696} 1697 1698static void __inline__ fec_enable_phy_intr(void) 1699{ 1700 volatile fec_t *fecp; 1701 1702 fecp = fep->hwp; 1703 1704 /* Enable MII command finished interrupt 1705 */ 1706 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; 1707} 1708 1709static void __inline__ fec_disable_phy_intr(void) 1710{ 1711} 1712 1713static void __inline__ fec_phy_ack_intr(void) 1714{ 1715} 1716 1717static void __inline__ fec_localhw_setup(void) 1718{ 1719 volatile fec_t *fecp; 1720 1721 fecp = fep->hwp; 1722 fecp->fec_r_hash = PKT_MAXBUF_SIZE; 1723 /* Enable big endian and don't care about SDMA FC. 1724 */ 1725 fecp->fec_fun_code = 0x78000000; 1726} 1727 1728static void __inline__ fec_uncache(unsigned long addr) 1729{ 1730 pte_t *pte; 1731 pte = va_to_pte(mem_addr); 1732 pte_val(*pte) |= _PAGE_NO_CACHE; 1733 flush_tlb_page(init_mm.mmap, mem_addr); 1734} 1735 1736#endif 1737 1738/* ------------------------------------------------------------------------- */ 1739 1740static void mii_display_status(struct net_device *dev) 1741{ 1742 struct fec_enet_private *fep = netdev_priv(dev); 1743 volatile uint *s = &(fep->phy_status); 1744 1745 if (!fep->link && !fep->old_link) { 1746 /* Link is still down - don't print anything */ 1747 return; 1748 } 1749 1750 printk("%s: status: ", dev->name); 1751 1752 if (!fep->link) { 1753 printk("link down"); 1754 } else { 1755 printk("link up"); 1756 1757 switch(*s & PHY_STAT_SPMASK) { 1758 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break; 1759 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break; 1760 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break; 1761 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break; 1762 default: 1763 printk(", Unknown speed/duplex"); 1764 } 1765 1766 if (*s & PHY_STAT_ANC) 1767 printk(", auto-negotiation complete"); 1768 } 1769 1770 if (*s & PHY_STAT_FAULT) 1771 printk(", remote fault"); 1772 1773 printk(".\n"); 1774} 1775 1776static void mii_display_config(struct net_device *dev) 1777{ 1778 struct fec_enet_private *fep = netdev_priv(dev); 1779 uint status = fep->phy_status; 1780 1781 /* 1782 ** When we get here, phy_task is already removed from 1783 ** the workqueue. It is thus safe to allow to reuse it. 1784 */ 1785 fep->mii_phy_task_queued = 0; 1786 printk("%s: config: auto-negotiation ", dev->name); 1787 1788 if (status & PHY_CONF_ANE) 1789 printk("on"); 1790 else 1791 printk("off"); 1792 1793 if (status & PHY_CONF_100FDX) 1794 printk(", 100FDX"); 1795 if (status & PHY_CONF_100HDX) 1796 printk(", 100HDX"); 1797 if (status & PHY_CONF_10FDX) 1798 printk(", 10FDX"); 1799 if (status & PHY_CONF_10HDX) 1800 printk(", 10HDX"); 1801 if (!(status & PHY_CONF_SPMASK)) 1802 printk(", No speed/duplex selected?"); 1803 1804 if (status & PHY_CONF_LOOP) 1805 printk(", loopback enabled"); 1806 1807 printk(".\n"); 1808 1809 fep->sequence_done = 1; 1810} 1811 1812static void mii_relink(struct net_device *dev) 1813{ 1814 struct fec_enet_private *fep = netdev_priv(dev); 1815 int duplex; 1816 1817 /* 1818 ** When we get here, phy_task is already removed from 1819 ** the workqueue. It is thus safe to allow to reuse it. 1820 */ 1821 fep->mii_phy_task_queued = 0; 1822 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; 1823 mii_display_status(dev); 1824 fep->old_link = fep->link; 1825 1826 if (fep->link) { 1827 duplex = 0; 1828 if (fep->phy_status 1829 & (PHY_STAT_100FDX | PHY_STAT_10FDX)) 1830 duplex = 1; 1831 fec_restart(dev, duplex); 1832 } 1833 else 1834 fec_stop(dev); 1835 1836#if 0 1837 enable_irq(fep->mii_irq); 1838#endif 1839 1840} 1841 1842/* mii_queue_relink is called in interrupt context from mii_link_interrupt */ 1843static void mii_queue_relink(uint mii_reg, struct net_device *dev) 1844{ 1845 struct fec_enet_private *fep = netdev_priv(dev); 1846 1847 /* 1848 ** We cannot queue phy_task twice in the workqueue. It 1849 ** would cause an endless loop in the workqueue. 1850 ** Fortunately, if the last mii_relink entry has not yet been 1851 ** executed now, it will do the job for the current interrupt, 1852 ** which is just what we want. 1853 */ 1854 if (fep->mii_phy_task_queued) 1855 return; 1856 1857 fep->mii_phy_task_queued = 1; 1858 INIT_WORK(&fep->phy_task, (void*)mii_relink, dev); 1859 schedule_work(&fep->phy_task); 1860} 1861 1862/* mii_queue_config is called in interrupt context from fec_enet_mii */ 1863static void mii_queue_config(uint mii_reg, struct net_device *dev) 1864{ 1865 struct fec_enet_private *fep = netdev_priv(dev); 1866 1867 if (fep->mii_phy_task_queued) 1868 return; 1869 1870 fep->mii_phy_task_queued = 1; 1871 INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev); 1872 schedule_work(&fep->phy_task); 1873} 1874 1875phy_cmd_t const phy_cmd_relink[] = { 1876 { mk_mii_read(MII_REG_CR), mii_queue_relink }, 1877 { mk_mii_end, } 1878 }; 1879phy_cmd_t const phy_cmd_config[] = { 1880 { mk_mii_read(MII_REG_CR), mii_queue_config }, 1881 { mk_mii_end, } 1882 }; 1883 1884/* Read remainder of PHY ID. 1885*/ 1886static void 1887mii_discover_phy3(uint mii_reg, struct net_device *dev) 1888{ 1889 struct fec_enet_private *fep; 1890 int i; 1891 1892 fep = netdev_priv(dev); 1893 fep->phy_id |= (mii_reg & 0xffff); 1894 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id); 1895 1896 for(i = 0; phy_info[i]; i++) { 1897 if(phy_info[i]->id == (fep->phy_id >> 4)) 1898 break; 1899 } 1900 1901 if (phy_info[i]) 1902 printk(" -- %s\n", phy_info[i]->name); 1903 else 1904 printk(" -- unknown PHY!\n"); 1905 1906 fep->phy = phy_info[i]; 1907 fep->phy_id_done = 1; 1908} 1909 1910/* Scan all of the MII PHY addresses looking for someone to respond 1911 * with a valid ID. This usually happens quickly. 1912 */ 1913static void 1914mii_discover_phy(uint mii_reg, struct net_device *dev) 1915{ 1916 struct fec_enet_private *fep; 1917 volatile fec_t *fecp; 1918 uint phytype; 1919 1920 fep = netdev_priv(dev); 1921 fecp = fep->hwp; 1922 1923 if (fep->phy_addr < 32) { 1924 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) { 1925 1926 /* Got first part of ID, now get remainder. 1927 */ 1928 fep->phy_id = phytype << 16; 1929 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), 1930 mii_discover_phy3); 1931 } 1932 else { 1933 fep->phy_addr++; 1934 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), 1935 mii_discover_phy); 1936 } 1937 } else { 1938 printk("FEC: No PHY device found.\n"); 1939 /* Disable external MII interface */ 1940 fecp->fec_mii_speed = fep->phy_speed = 0; 1941 fec_disable_phy_intr(); 1942 } 1943} 1944 1945/* This interrupt occurs when the PHY detects a link change. 1946*/ 1947#ifdef CONFIG_RPXCLASSIC 1948static void 1949mii_link_interrupt(void *dev_id) 1950#else 1951static irqreturn_t 1952mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) 1953#endif 1954{ 1955 struct net_device *dev = dev_id; 1956 struct fec_enet_private *fep = netdev_priv(dev); 1957 1958 fec_phy_ack_intr(); 1959 1960#if 0 1961 disable_irq(fep->mii_irq); /* disable now, enable later */ 1962#endif 1963 1964 mii_do_cmd(dev, fep->phy->ack_int); 1965 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ 1966 1967 return IRQ_HANDLED; 1968} 1969 1970static int 1971fec_enet_open(struct net_device *dev) 1972{ 1973 struct fec_enet_private *fep = netdev_priv(dev); 1974 1975 /* I should reset the ring buffers here, but I don't yet know 1976 * a simple way to do that. 1977 */ 1978 fec_set_mac_address(dev); 1979 1980 fep->sequence_done = 0; 1981 fep->link = 0; 1982 1983 if (fep->phy) { 1984 mii_do_cmd(dev, fep->phy->ack_int); 1985 mii_do_cmd(dev, fep->phy->config); 1986 mii_do_cmd(dev, phy_cmd_config); /* display configuration */ 1987 1988 /* FIXME: use netif_carrier_{on,off} ; this polls 1989 * until link is up which is wrong... could be 1990 * 30 seconds or more we are trapped in here. -jgarzik 1991 */ 1992 while(!fep->sequence_done) 1993 schedule(); 1994 1995 mii_do_cmd(dev, fep->phy->startup); 1996 1997 /* Set the initial link state to true. A lot of hardware 1998 * based on this device does not implement a PHY interrupt, 1999 * so we are never notified of link change. 2000 */ 2001 fep->link = 1; 2002 } else { 2003 fep->link = 1; /* lets just try it and see */ 2004 /* no phy, go full duplex, it's most likely a hub chip */ 2005 fec_restart(dev, 1); 2006 } 2007 2008 netif_start_queue(dev); 2009 fep->opened = 1; 2010 return 0; /* Success */ 2011} 2012 2013static int 2014fec_enet_close(struct net_device *dev) 2015{ 2016 struct fec_enet_private *fep = netdev_priv(dev); 2017 2018 /* Don't know what to do yet. 2019 */ 2020 fep->opened = 0; 2021 netif_stop_queue(dev); 2022 fec_stop(dev); 2023 2024 return 0; 2025} 2026 2027static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) 2028{ 2029 struct fec_enet_private *fep = netdev_priv(dev); 2030 2031 return &fep->stats; 2032} 2033 2034/* Set or clear the multicast filter for this adaptor. 2035 * Skeleton taken from sunlance driver. 2036 * The CPM Ethernet implementation allows Multicast as well as individual 2037 * MAC address filtering. Some of the drivers check to make sure it is 2038 * a group multicast address, and discard those that are not. I guess I 2039 * will do the same for now, but just remove the test if you want 2040 * individual filtering as well (do the upper net layers want or support 2041 * this kind of feature?). 2042 */ 2043 2044#define HASH_BITS 6 /* #bits in hash */ 2045#define CRC32_POLY 0xEDB88320 2046 2047static void set_multicast_list(struct net_device *dev) 2048{ 2049 struct fec_enet_private *fep; 2050 volatile fec_t *ep; 2051 struct dev_mc_list *dmi; 2052 unsigned int i, j, bit, data, crc; 2053 unsigned char hash; 2054 2055 fep = netdev_priv(dev); 2056 ep = fep->hwp; 2057 2058 if (dev->flags&IFF_PROMISC) { 2059 /* Log any net taps. */ 2060 printk("%s: Promiscuous mode enabled.\n", dev->name); 2061 ep->fec_r_cntrl |= 0x0008; 2062 } else { 2063 2064 ep->fec_r_cntrl &= ~0x0008; 2065 2066 if (dev->flags & IFF_ALLMULTI) { 2067 /* Catch all multicast addresses, so set the 2068 * filter to all 1's. 2069 */ 2070 ep->fec_hash_table_high = 0xffffffff; 2071 ep->fec_hash_table_low = 0xffffffff; 2072 } else { 2073 /* Clear filter and add the addresses in hash register. 2074 */ 2075 ep->fec_hash_table_high = 0; 2076 ep->fec_hash_table_low = 0; 2077 2078 dmi = dev->mc_list; 2079 2080 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) 2081 { 2082 /* Only support group multicast for now. 2083 */ 2084 if (!(dmi->dmi_addr[0] & 1)) 2085 continue; 2086 2087 /* calculate crc32 value of mac address 2088 */ 2089 crc = 0xffffffff; 2090 2091 for (i = 0; i < dmi->dmi_addrlen; i++) 2092 { 2093 data = dmi->dmi_addr[i]; 2094 for (bit = 0; bit < 8; bit++, data >>= 1) 2095 { 2096 crc = (crc >> 1) ^ 2097 (((crc ^ data) & 1) ? CRC32_POLY : 0); 2098 } 2099 } 2100 2101 /* only upper 6 bits (HASH_BITS) are used 2102 which point to specific bit in he hash registers 2103 */ 2104 hash = (crc >> (32 - HASH_BITS)) & 0x3f; 2105 2106 if (hash > 31) 2107 ep->fec_hash_table_high |= 1 << (hash - 32); 2108 else 2109 ep->fec_hash_table_low |= 1 << hash; 2110 } 2111 } 2112 } 2113} 2114 2115/* Set a MAC change in hardware. 2116 */ 2117static void 2118fec_set_mac_address(struct net_device *dev) 2119{ 2120 volatile fec_t *fecp; 2121 2122 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp; 2123 2124 /* Set station address. */ 2125 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) | 2126 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24); 2127 fecp->fec_addr_high = (dev->dev_addr[5] << 16) | 2128 (dev->dev_addr[4] << 24); 2129 2130} 2131 2132/* Initialize the FEC Ethernet on 860T (or ColdFire 5272). 2133 */ 2134 /* 2135 * XXX: We need to clean up on failure exits here. 2136 */ 2137int __init fec_enet_init(struct net_device *dev) 2138{ 2139 struct fec_enet_private *fep = netdev_priv(dev); 2140 unsigned long mem_addr; 2141 volatile cbd_t *bdp; 2142 cbd_t *cbd_base; 2143 volatile fec_t *fecp; 2144 int i, j; 2145 static int index = 0; 2146 2147 /* Only allow us to be probed once. */ 2148 if (index >= FEC_MAX_PORTS) 2149 return -ENXIO; 2150 2151 /* Allocate memory for buffer descriptors. 2152 */ 2153 mem_addr = __get_free_page(GFP_KERNEL); 2154 if (mem_addr == 0) { 2155 printk("FEC: allocate descriptor memory failed?\n"); 2156 return -ENOMEM; 2157 } 2158 2159 /* Create an Ethernet device instance. 2160 */ 2161 fecp = (volatile fec_t *) fec_hw[index]; 2162 2163 fep->index = index; 2164 fep->hwp = fecp; 2165 2166 /* Whack a reset. We should wait for this. 2167 */ 2168 fecp->fec_ecntrl = 1; 2169 udelay(10); 2170 2171 /* Set the Ethernet address. If using multiple Enets on the 8xx, 2172 * this needs some work to get unique addresses. 2173 * 2174 * This is our default MAC address unless the user changes 2175 * it via eth_mac_addr (our dev->set_mac_addr handler). 2176 */ 2177 fec_get_mac(dev); 2178 2179 cbd_base = (cbd_t *)mem_addr; 2180 /* XXX: missing check for allocation failure */ 2181 2182 fec_uncache(mem_addr); 2183 2184 /* Set receive and transmit descriptor base. 2185 */ 2186 fep->rx_bd_base = cbd_base; 2187 fep->tx_bd_base = cbd_base + RX_RING_SIZE; 2188 2189 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 2190 fep->cur_rx = fep->rx_bd_base; 2191 2192 fep->skb_cur = fep->skb_dirty = 0; 2193 2194 /* Initialize the receive buffer descriptors. 2195 */ 2196 bdp = fep->rx_bd_base; 2197 for (i=0; i<FEC_ENET_RX_PAGES; i++) { 2198 2199 /* Allocate a page. 2200 */ 2201 mem_addr = __get_free_page(GFP_KERNEL); 2202 /* XXX: missing check for allocation failure */ 2203 2204 fec_uncache(mem_addr); 2205 2206 /* Initialize the BD for every fragment in the page. 2207 */ 2208 for (j=0; j<FEC_ENET_RX_FRPPG; j++) { 2209 bdp->cbd_sc = BD_ENET_RX_EMPTY; 2210 bdp->cbd_bufaddr = __pa(mem_addr); 2211 mem_addr += FEC_ENET_RX_FRSIZE; 2212 bdp++; 2213 } 2214 } 2215 2216 /* Set the last buffer to wrap. 2217 */ 2218 bdp--; 2219 bdp->cbd_sc |= BD_SC_WRAP; 2220 2221 /* ...and the same for transmmit. 2222 */ 2223 bdp = fep->tx_bd_base; 2224 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) { 2225 if (j >= FEC_ENET_TX_FRPPG) { 2226 mem_addr = __get_free_page(GFP_KERNEL); 2227 j = 1; 2228 } else { 2229 mem_addr += FEC_ENET_TX_FRSIZE; 2230 j++; 2231 } 2232 fep->tx_bounce[i] = (unsigned char *) mem_addr; 2233 2234 /* Initialize the BD for every fragment in the page. 2235 */ 2236 bdp->cbd_sc = 0; 2237 bdp->cbd_bufaddr = 0; 2238 bdp++; 2239 } 2240 2241 /* Set the last buffer to wrap. 2242 */ 2243 bdp--; 2244 bdp->cbd_sc |= BD_SC_WRAP; 2245 2246 /* Set receive and transmit descriptor base. 2247 */ 2248 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); 2249 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); 2250 2251 /* Install our interrupt handlers. This varies depending on 2252 * the architecture. 2253 */ 2254 fec_request_intrs(dev); 2255 2256 /* Clear and enable interrupts */ 2257 fecp->fec_ievent = 0xffc00000; 2258 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | 2259 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); 2260 fecp->fec_hash_table_high = 0; 2261 fecp->fec_hash_table_low = 0; 2262 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; 2263 fecp->fec_ecntrl = 2; 2264 fecp->fec_r_des_active = 0x01000000; 2265 2266 dev->base_addr = (unsigned long)fecp; 2267 2268 /* The FEC Ethernet specific entries in the device structure. */ 2269 dev->open = fec_enet_open; 2270 dev->hard_start_xmit = fec_enet_start_xmit; 2271 dev->tx_timeout = fec_timeout; 2272 dev->watchdog_timeo = TX_TIMEOUT; 2273 dev->stop = fec_enet_close; 2274 dev->get_stats = fec_enet_get_stats; 2275 dev->set_multicast_list = set_multicast_list; 2276 2277 for (i=0; i<NMII-1; i++) 2278 mii_cmds[i].mii_next = &mii_cmds[i+1]; 2279 mii_free = mii_cmds; 2280 2281 /* setup MII interface */ 2282 fec_set_mii(dev, fep); 2283 2284 /* Queue up command to detect the PHY and initialize the 2285 * remainder of the interface. 2286 */ 2287 fep->phy_id_done = 0; 2288 fep->phy_addr = 0; 2289 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); 2290 2291 index++; 2292 return 0; 2293} 2294 2295/* This function is called to start or restart the FEC during a link 2296 * change. This only happens when switching between half and full 2297 * duplex. 2298 */ 2299static void 2300fec_restart(struct net_device *dev, int duplex) 2301{ 2302 struct fec_enet_private *fep; 2303 volatile cbd_t *bdp; 2304 volatile fec_t *fecp; 2305 int i; 2306 2307 fep = netdev_priv(dev); 2308 fecp = fep->hwp; 2309 2310 /* Whack a reset. We should wait for this. 2311 */ 2312 fecp->fec_ecntrl = 1; 2313 udelay(10); 2314 2315 /* Enable interrupts we wish to service. 2316 */ 2317 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | 2318 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); 2319 2320 /* Clear any outstanding interrupt. 2321 */ 2322 fecp->fec_ievent = 0xffc00000; 2323 fec_enable_phy_intr(); 2324 2325 /* Set station address. 2326 */ 2327 fec_set_mac_address(dev); 2328 2329 /* Reset all multicast. 2330 */ 2331 fecp->fec_hash_table_high = 0; 2332 fecp->fec_hash_table_low = 0; 2333 2334 /* Set maximum receive buffer size. 2335 */ 2336 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; 2337 2338 fec_localhw_setup(); 2339 2340 /* Set receive and transmit descriptor base. 2341 */ 2342 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); 2343 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); 2344 2345 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; 2346 fep->cur_rx = fep->rx_bd_base; 2347 2348 /* Reset SKB transmit buffers. 2349 */ 2350 fep->skb_cur = fep->skb_dirty = 0; 2351 for (i=0; i<=TX_RING_MOD_MASK; i++) { 2352 if (fep->tx_skbuff[i] != NULL) { 2353 dev_kfree_skb_any(fep->tx_skbuff[i]); 2354 fep->tx_skbuff[i] = NULL; 2355 } 2356 } 2357 2358 /* Initialize the receive buffer descriptors. 2359 */ 2360 bdp = fep->rx_bd_base; 2361 for (i=0; i<RX_RING_SIZE; i++) { 2362 2363 /* Initialize the BD for every fragment in the page. 2364 */ 2365 bdp->cbd_sc = BD_ENET_RX_EMPTY; 2366 bdp++; 2367 } 2368 2369 /* Set the last buffer to wrap. 2370 */ 2371 bdp--; 2372 bdp->cbd_sc |= BD_SC_WRAP; 2373 2374 /* ...and the same for transmmit. 2375 */ 2376 bdp = fep->tx_bd_base; 2377 for (i=0; i<TX_RING_SIZE; i++) { 2378 2379 /* Initialize the BD for every fragment in the page. 2380 */ 2381 bdp->cbd_sc = 0; 2382 bdp->cbd_bufaddr = 0; 2383 bdp++; 2384 } 2385 2386 /* Set the last buffer to wrap. 2387 */ 2388 bdp--; 2389 bdp->cbd_sc |= BD_SC_WRAP; 2390 2391 /* Enable MII mode. 2392 */ 2393 if (duplex) { 2394 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */ 2395 fecp->fec_x_cntrl = 0x04; /* FD enable */ 2396 } 2397 else { 2398 /* MII enable|No Rcv on Xmit */ 2399 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06; 2400 fecp->fec_x_cntrl = 0x00; 2401 } 2402 fep->full_duplex = duplex; 2403 2404 /* Set MII speed. 2405 */ 2406 fecp->fec_mii_speed = fep->phy_speed; 2407 2408 /* And last, enable the transmit and receive processing. 2409 */ 2410 fecp->fec_ecntrl = 2; 2411 fecp->fec_r_des_active = 0x01000000; 2412} 2413 2414static void 2415fec_stop(struct net_device *dev) 2416{ 2417 volatile fec_t *fecp; 2418 struct fec_enet_private *fep; 2419 2420 fep = netdev_priv(dev); 2421 fecp = fep->hwp; 2422 2423 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */ 2424 2425 while(!(fecp->fec_ievent & FEC_ENET_GRA)); 2426 2427 /* Whack a reset. We should wait for this. 2428 */ 2429 fecp->fec_ecntrl = 1; 2430 udelay(10); 2431 2432 /* Clear outstanding MII command interrupts. 2433 */ 2434 fecp->fec_ievent = FEC_ENET_MII; 2435 fec_enable_phy_intr(); 2436 2437 fecp->fec_imask = FEC_ENET_MII; 2438 fecp->fec_mii_speed = fep->phy_speed; 2439} 2440 2441static int __init fec_enet_module_init(void) 2442{ 2443 struct net_device *dev; 2444 int i, j, err; 2445 2446 printk("FEC ENET Version 0.2\n"); 2447 2448 for (i = 0; (i < FEC_MAX_PORTS); i++) { 2449 dev = alloc_etherdev(sizeof(struct fec_enet_private)); 2450 if (!dev) 2451 return -ENOMEM; 2452 err = fec_enet_init(dev); 2453 if (err) { 2454 free_netdev(dev); 2455 continue; 2456 } 2457 if (register_netdev(dev) != 0) { 2458 /* XXX: missing cleanup here */ 2459 free_netdev(dev); 2460 return -EIO; 2461 } 2462 2463 printk("%s: ethernet ", dev->name); 2464 for (j = 0; (j < 5); j++) 2465 printk("%02x:", dev->dev_addr[j]); 2466 printk("%02x\n", dev->dev_addr[5]); 2467 } 2468 return 0; 2469} 2470 2471module_init(fec_enet_module_init); 2472 2473MODULE_LICENSE("GPL");