at v2.6.17-rc2 2811 lines 82 kB view raw
1/******************************************************************************* 2 3 4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 2 of the License, or (at your option) 9 any later version. 10 11 This program is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 59 18 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 20 The full GNU General Public License is included in this distribution in the 21 file called LICENSE. 22 23 Contact Information: 24 Linux NICS <linux.nics@intel.com> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29/* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Recieve 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * Under typical operation, the receive unit (RU) is start once, 110 * and the controller happily fills RFDs as frames arrive. If 111 * replacement RFDs cannot be allocated, or the RU goes non-active, 112 * the RU must be restarted. Frame arrival generates an interrupt, 113 * and Rx indication and re-allocation happen in the same context, 114 * therefore no locking is required. A software-generated interrupt 115 * is generated from the watchdog to recover from a failed allocation 116 * senario where all Rx resources have been indicated and none re- 117 * placed. 118 * 119 * V. Miscellaneous 120 * 121 * VLAN offloading of tagging, stripping and filtering is not 122 * supported, but driver will accommodate the extra 4-byte VLAN tag 123 * for processing by upper layers. Tx/Rx Checksum offloading is not 124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 125 * not supported (hardware limitation). 126 * 127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 128 * 129 * Thanks to JC (jchapman@katalix.com) for helping with 130 * testing/troubleshooting the development driver. 131 * 132 * TODO: 133 * o several entry points race with dev->close 134 * o check for tx-no-resources/stop Q races with tx clean/wake Q 135 * 136 * FIXES: 137 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com> 138 * - Stratus87247: protect MDI control register manipulations 139 */ 140 141#include <linux/config.h> 142#include <linux/module.h> 143#include <linux/moduleparam.h> 144#include <linux/kernel.h> 145#include <linux/types.h> 146#include <linux/slab.h> 147#include <linux/delay.h> 148#include <linux/init.h> 149#include <linux/pci.h> 150#include <linux/dma-mapping.h> 151#include <linux/netdevice.h> 152#include <linux/etherdevice.h> 153#include <linux/mii.h> 154#include <linux/if_vlan.h> 155#include <linux/skbuff.h> 156#include <linux/ethtool.h> 157#include <linux/string.h> 158#include <asm/unaligned.h> 159 160 161#define DRV_NAME "e100" 162#define DRV_EXT "-NAPI" 163#define DRV_VERSION "3.5.10-k2"DRV_EXT 164#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 165#define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation" 166#define PFX DRV_NAME ": " 167 168#define E100_WATCHDOG_PERIOD (2 * HZ) 169#define E100_NAPI_WEIGHT 16 170 171MODULE_DESCRIPTION(DRV_DESCRIPTION); 172MODULE_AUTHOR(DRV_COPYRIGHT); 173MODULE_LICENSE("GPL"); 174MODULE_VERSION(DRV_VERSION); 175 176static int debug = 3; 177module_param(debug, int, 0); 178MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 179#define DPRINTK(nlevel, klevel, fmt, args...) \ 180 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ 181 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ 182 __FUNCTION__ , ## args)) 183 184#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 185 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 186 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 187static struct pci_device_id e100_id_table[] = { 188 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 189 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 190 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 191 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 192 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 193 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 194 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 195 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 196 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 197 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 198 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 199 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 200 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 201 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 202 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 203 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 204 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 205 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 206 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 207 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 208 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 209 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 210 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 211 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 212 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 213 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 214 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 215 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 216 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 217 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 218 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 219 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 220 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 221 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 222 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 223 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 224 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 225 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 226 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 227 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 228 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 229 { 0, } 230}; 231MODULE_DEVICE_TABLE(pci, e100_id_table); 232 233enum mac { 234 mac_82557_D100_A = 0, 235 mac_82557_D100_B = 1, 236 mac_82557_D100_C = 2, 237 mac_82558_D101_A4 = 4, 238 mac_82558_D101_B0 = 5, 239 mac_82559_D101M = 8, 240 mac_82559_D101S = 9, 241 mac_82550_D102 = 12, 242 mac_82550_D102_C = 13, 243 mac_82551_E = 14, 244 mac_82551_F = 15, 245 mac_82551_10 = 16, 246 mac_unknown = 0xFF, 247}; 248 249enum phy { 250 phy_100a = 0x000003E0, 251 phy_100c = 0x035002A8, 252 phy_82555_tx = 0x015002A8, 253 phy_nsc_tx = 0x5C002000, 254 phy_82562_et = 0x033002A8, 255 phy_82562_em = 0x032002A8, 256 phy_82562_ek = 0x031002A8, 257 phy_82562_eh = 0x017002A8, 258 phy_unknown = 0xFFFFFFFF, 259}; 260 261/* CSR (Control/Status Registers) */ 262struct csr { 263 struct { 264 u8 status; 265 u8 stat_ack; 266 u8 cmd_lo; 267 u8 cmd_hi; 268 u32 gen_ptr; 269 } scb; 270 u32 port; 271 u16 flash_ctrl; 272 u8 eeprom_ctrl_lo; 273 u8 eeprom_ctrl_hi; 274 u32 mdi_ctrl; 275 u32 rx_dma_count; 276}; 277 278enum scb_status { 279 rus_ready = 0x10, 280 rus_mask = 0x3C, 281}; 282 283enum ru_state { 284 RU_SUSPENDED = 0, 285 RU_RUNNING = 1, 286 RU_UNINITIALIZED = -1, 287}; 288 289enum scb_stat_ack { 290 stat_ack_not_ours = 0x00, 291 stat_ack_sw_gen = 0x04, 292 stat_ack_rnr = 0x10, 293 stat_ack_cu_idle = 0x20, 294 stat_ack_frame_rx = 0x40, 295 stat_ack_cu_cmd_done = 0x80, 296 stat_ack_not_present = 0xFF, 297 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 298 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 299}; 300 301enum scb_cmd_hi { 302 irq_mask_none = 0x00, 303 irq_mask_all = 0x01, 304 irq_sw_gen = 0x02, 305}; 306 307enum scb_cmd_lo { 308 cuc_nop = 0x00, 309 ruc_start = 0x01, 310 ruc_load_base = 0x06, 311 cuc_start = 0x10, 312 cuc_resume = 0x20, 313 cuc_dump_addr = 0x40, 314 cuc_dump_stats = 0x50, 315 cuc_load_base = 0x60, 316 cuc_dump_reset = 0x70, 317}; 318 319enum cuc_dump { 320 cuc_dump_complete = 0x0000A005, 321 cuc_dump_reset_complete = 0x0000A007, 322}; 323 324enum port { 325 software_reset = 0x0000, 326 selftest = 0x0001, 327 selective_reset = 0x0002, 328}; 329 330enum eeprom_ctrl_lo { 331 eesk = 0x01, 332 eecs = 0x02, 333 eedi = 0x04, 334 eedo = 0x08, 335}; 336 337enum mdi_ctrl { 338 mdi_write = 0x04000000, 339 mdi_read = 0x08000000, 340 mdi_ready = 0x10000000, 341}; 342 343enum eeprom_op { 344 op_write = 0x05, 345 op_read = 0x06, 346 op_ewds = 0x10, 347 op_ewen = 0x13, 348}; 349 350enum eeprom_offsets { 351 eeprom_cnfg_mdix = 0x03, 352 eeprom_id = 0x0A, 353 eeprom_config_asf = 0x0D, 354 eeprom_smbus_addr = 0x90, 355}; 356 357enum eeprom_cnfg_mdix { 358 eeprom_mdix_enabled = 0x0080, 359}; 360 361enum eeprom_id { 362 eeprom_id_wol = 0x0020, 363}; 364 365enum eeprom_config_asf { 366 eeprom_asf = 0x8000, 367 eeprom_gcl = 0x4000, 368}; 369 370enum cb_status { 371 cb_complete = 0x8000, 372 cb_ok = 0x2000, 373}; 374 375enum cb_command { 376 cb_nop = 0x0000, 377 cb_iaaddr = 0x0001, 378 cb_config = 0x0002, 379 cb_multi = 0x0003, 380 cb_tx = 0x0004, 381 cb_ucode = 0x0005, 382 cb_dump = 0x0006, 383 cb_tx_sf = 0x0008, 384 cb_cid = 0x1f00, 385 cb_i = 0x2000, 386 cb_s = 0x4000, 387 cb_el = 0x8000, 388}; 389 390struct rfd { 391 u16 status; 392 u16 command; 393 u32 link; 394 u32 rbd; 395 u16 actual_size; 396 u16 size; 397}; 398 399struct rx { 400 struct rx *next, *prev; 401 struct sk_buff *skb; 402 dma_addr_t dma_addr; 403}; 404 405#if defined(__BIG_ENDIAN_BITFIELD) 406#define X(a,b) b,a 407#else 408#define X(a,b) a,b 409#endif 410struct config { 411/*0*/ u8 X(byte_count:6, pad0:2); 412/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 413/*2*/ u8 adaptive_ifs; 414/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 415 term_write_cache_line:1), pad3:4); 416/*4*/ u8 X(rx_dma_max_count:7, pad4:1); 417/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 418/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 419 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 420 rx_discard_overruns:1), rx_save_bad_frames:1); 421/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 422 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 423 tx_dynamic_tbd:1); 424/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 425/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 426 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 427/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 428 loopback:2); 429/*11*/ u8 X(linear_priority:3, pad11:5); 430/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 431/*13*/ u8 ip_addr_lo; 432/*14*/ u8 ip_addr_hi; 433/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 434 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 435 pad15_2:1), crs_or_cdt:1); 436/*16*/ u8 fc_delay_lo; 437/*17*/ u8 fc_delay_hi; 438/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 439 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 440/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 441 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 442 full_duplex_force:1), full_duplex_pin:1); 443/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 444/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 445/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 446 u8 pad_d102[9]; 447}; 448 449#define E100_MAX_MULTICAST_ADDRS 64 450struct multi { 451 u16 count; 452 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 453}; 454 455/* Important: keep total struct u32-aligned */ 456#define UCODE_SIZE 134 457struct cb { 458 u16 status; 459 u16 command; 460 u32 link; 461 union { 462 u8 iaaddr[ETH_ALEN]; 463 u32 ucode[UCODE_SIZE]; 464 struct config config; 465 struct multi multi; 466 struct { 467 u32 tbd_array; 468 u16 tcb_byte_count; 469 u8 threshold; 470 u8 tbd_count; 471 struct { 472 u32 buf_addr; 473 u16 size; 474 u16 eol; 475 } tbd; 476 } tcb; 477 u32 dump_buffer_addr; 478 } u; 479 struct cb *next, *prev; 480 dma_addr_t dma_addr; 481 struct sk_buff *skb; 482}; 483 484enum loopback { 485 lb_none = 0, lb_mac = 1, lb_phy = 3, 486}; 487 488struct stats { 489 u32 tx_good_frames, tx_max_collisions, tx_late_collisions, 490 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 491 tx_multiple_collisions, tx_total_collisions; 492 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 493 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 494 rx_short_frame_errors; 495 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 496 u16 xmt_tco_frames, rcv_tco_frames; 497 u32 complete; 498}; 499 500struct mem { 501 struct { 502 u32 signature; 503 u32 result; 504 } selftest; 505 struct stats stats; 506 u8 dump_buf[596]; 507}; 508 509struct param_range { 510 u32 min; 511 u32 max; 512 u32 count; 513}; 514 515struct params { 516 struct param_range rfds; 517 struct param_range cbs; 518}; 519 520struct nic { 521 /* Begin: frequently used values: keep adjacent for cache effect */ 522 u32 msg_enable ____cacheline_aligned; 523 struct net_device *netdev; 524 struct pci_dev *pdev; 525 526 struct rx *rxs ____cacheline_aligned; 527 struct rx *rx_to_use; 528 struct rx *rx_to_clean; 529 struct rfd blank_rfd; 530 enum ru_state ru_running; 531 532 spinlock_t cb_lock ____cacheline_aligned; 533 spinlock_t cmd_lock; 534 struct csr __iomem *csr; 535 enum scb_cmd_lo cuc_cmd; 536 unsigned int cbs_avail; 537 struct cb *cbs; 538 struct cb *cb_to_use; 539 struct cb *cb_to_send; 540 struct cb *cb_to_clean; 541 u16 tx_command; 542 /* End: frequently used values: keep adjacent for cache effect */ 543 544 enum { 545 ich = (1 << 0), 546 promiscuous = (1 << 1), 547 multicast_all = (1 << 2), 548 wol_magic = (1 << 3), 549 ich_10h_workaround = (1 << 4), 550 } flags ____cacheline_aligned; 551 552 enum mac mac; 553 enum phy phy; 554 struct params params; 555 struct net_device_stats net_stats; 556 struct timer_list watchdog; 557 struct timer_list blink_timer; 558 struct mii_if_info mii; 559 struct work_struct tx_timeout_task; 560 enum loopback loopback; 561 562 struct mem *mem; 563 dma_addr_t dma_addr; 564 565 dma_addr_t cbs_dma_addr; 566 u8 adaptive_ifs; 567 u8 tx_threshold; 568 u32 tx_frames; 569 u32 tx_collisions; 570 u32 tx_deferred; 571 u32 tx_single_collisions; 572 u32 tx_multiple_collisions; 573 u32 tx_fc_pause; 574 u32 tx_tco_frames; 575 576 u32 rx_fc_pause; 577 u32 rx_fc_unsupported; 578 u32 rx_tco_frames; 579 u32 rx_over_length_errors; 580 581 u8 rev_id; 582 u16 leds; 583 u16 eeprom_wc; 584 u16 eeprom[256]; 585 spinlock_t mdio_lock; 586}; 587 588static inline void e100_write_flush(struct nic *nic) 589{ 590 /* Flush previous PCI writes through intermediate bridges 591 * by doing a benign read */ 592 (void)readb(&nic->csr->scb.status); 593} 594 595static void e100_enable_irq(struct nic *nic) 596{ 597 unsigned long flags; 598 599 spin_lock_irqsave(&nic->cmd_lock, flags); 600 writeb(irq_mask_none, &nic->csr->scb.cmd_hi); 601 e100_write_flush(nic); 602 spin_unlock_irqrestore(&nic->cmd_lock, flags); 603} 604 605static void e100_disable_irq(struct nic *nic) 606{ 607 unsigned long flags; 608 609 spin_lock_irqsave(&nic->cmd_lock, flags); 610 writeb(irq_mask_all, &nic->csr->scb.cmd_hi); 611 e100_write_flush(nic); 612 spin_unlock_irqrestore(&nic->cmd_lock, flags); 613} 614 615static void e100_hw_reset(struct nic *nic) 616{ 617 /* Put CU and RU into idle with a selective reset to get 618 * device off of PCI bus */ 619 writel(selective_reset, &nic->csr->port); 620 e100_write_flush(nic); udelay(20); 621 622 /* Now fully reset device */ 623 writel(software_reset, &nic->csr->port); 624 e100_write_flush(nic); udelay(20); 625 626 /* Mask off our interrupt line - it's unmasked after reset */ 627 e100_disable_irq(nic); 628} 629 630static int e100_self_test(struct nic *nic) 631{ 632 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 633 634 /* Passing the self-test is a pretty good indication 635 * that the device can DMA to/from host memory */ 636 637 nic->mem->selftest.signature = 0; 638 nic->mem->selftest.result = 0xFFFFFFFF; 639 640 writel(selftest | dma_addr, &nic->csr->port); 641 e100_write_flush(nic); 642 /* Wait 10 msec for self-test to complete */ 643 msleep(10); 644 645 /* Interrupts are enabled after self-test */ 646 e100_disable_irq(nic); 647 648 /* Check results of self-test */ 649 if(nic->mem->selftest.result != 0) { 650 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", 651 nic->mem->selftest.result); 652 return -ETIMEDOUT; 653 } 654 if(nic->mem->selftest.signature == 0) { 655 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); 656 return -ETIMEDOUT; 657 } 658 659 return 0; 660} 661 662static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data) 663{ 664 u32 cmd_addr_data[3]; 665 u8 ctrl; 666 int i, j; 667 668 /* Three cmds: write/erase enable, write data, write/erase disable */ 669 cmd_addr_data[0] = op_ewen << (addr_len - 2); 670 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 671 cpu_to_le16(data); 672 cmd_addr_data[2] = op_ewds << (addr_len - 2); 673 674 /* Bit-bang cmds to write word to eeprom */ 675 for(j = 0; j < 3; j++) { 676 677 /* Chip select */ 678 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 679 e100_write_flush(nic); udelay(4); 680 681 for(i = 31; i >= 0; i--) { 682 ctrl = (cmd_addr_data[j] & (1 << i)) ? 683 eecs | eedi : eecs; 684 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); 685 e100_write_flush(nic); udelay(4); 686 687 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 688 e100_write_flush(nic); udelay(4); 689 } 690 /* Wait 10 msec for cmd to complete */ 691 msleep(10); 692 693 /* Chip deselect */ 694 writeb(0, &nic->csr->eeprom_ctrl_lo); 695 e100_write_flush(nic); udelay(4); 696 } 697}; 698 699/* General technique stolen from the eepro100 driver - very clever */ 700static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 701{ 702 u32 cmd_addr_data; 703 u16 data = 0; 704 u8 ctrl; 705 int i; 706 707 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 708 709 /* Chip select */ 710 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 711 e100_write_flush(nic); udelay(4); 712 713 /* Bit-bang to read word from eeprom */ 714 for(i = 31; i >= 0; i--) { 715 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 716 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); 717 e100_write_flush(nic); udelay(4); 718 719 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 720 e100_write_flush(nic); udelay(4); 721 722 /* Eeprom drives a dummy zero to EEDO after receiving 723 * complete address. Use this to adjust addr_len. */ 724 ctrl = readb(&nic->csr->eeprom_ctrl_lo); 725 if(!(ctrl & eedo) && i > 16) { 726 *addr_len -= (i - 16); 727 i = 17; 728 } 729 730 data = (data << 1) | (ctrl & eedo ? 1 : 0); 731 } 732 733 /* Chip deselect */ 734 writeb(0, &nic->csr->eeprom_ctrl_lo); 735 e100_write_flush(nic); udelay(4); 736 737 return le16_to_cpu(data); 738}; 739 740/* Load entire EEPROM image into driver cache and validate checksum */ 741static int e100_eeprom_load(struct nic *nic) 742{ 743 u16 addr, addr_len = 8, checksum = 0; 744 745 /* Try reading with an 8-bit addr len to discover actual addr len */ 746 e100_eeprom_read(nic, &addr_len, 0); 747 nic->eeprom_wc = 1 << addr_len; 748 749 for(addr = 0; addr < nic->eeprom_wc; addr++) { 750 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 751 if(addr < nic->eeprom_wc - 1) 752 checksum += cpu_to_le16(nic->eeprom[addr]); 753 } 754 755 /* The checksum, stored in the last word, is calculated such that 756 * the sum of words should be 0xBABA */ 757 checksum = le16_to_cpu(0xBABA - checksum); 758 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) { 759 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); 760 return -EAGAIN; 761 } 762 763 return 0; 764} 765 766/* Save (portion of) driver EEPROM cache to device and update checksum */ 767static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 768{ 769 u16 addr, addr_len = 8, checksum = 0; 770 771 /* Try reading with an 8-bit addr len to discover actual addr len */ 772 e100_eeprom_read(nic, &addr_len, 0); 773 nic->eeprom_wc = 1 << addr_len; 774 775 if(start + count >= nic->eeprom_wc) 776 return -EINVAL; 777 778 for(addr = start; addr < start + count; addr++) 779 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 780 781 /* The checksum, stored in the last word, is calculated such that 782 * the sum of words should be 0xBABA */ 783 for(addr = 0; addr < nic->eeprom_wc - 1; addr++) 784 checksum += cpu_to_le16(nic->eeprom[addr]); 785 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum); 786 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 787 nic->eeprom[nic->eeprom_wc - 1]); 788 789 return 0; 790} 791 792#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 793#define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 794static int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 795{ 796 unsigned long flags; 797 unsigned int i; 798 int err = 0; 799 800 spin_lock_irqsave(&nic->cmd_lock, flags); 801 802 /* Previous command is accepted when SCB clears */ 803 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 804 if(likely(!readb(&nic->csr->scb.cmd_lo))) 805 break; 806 cpu_relax(); 807 if(unlikely(i > E100_WAIT_SCB_FAST)) 808 udelay(5); 809 } 810 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 811 err = -EAGAIN; 812 goto err_unlock; 813 } 814 815 if(unlikely(cmd != cuc_resume)) 816 writel(dma_addr, &nic->csr->scb.gen_ptr); 817 writeb(cmd, &nic->csr->scb.cmd_lo); 818 819err_unlock: 820 spin_unlock_irqrestore(&nic->cmd_lock, flags); 821 822 return err; 823} 824 825static int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 826 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 827{ 828 struct cb *cb; 829 unsigned long flags; 830 int err = 0; 831 832 spin_lock_irqsave(&nic->cb_lock, flags); 833 834 if(unlikely(!nic->cbs_avail)) { 835 err = -ENOMEM; 836 goto err_unlock; 837 } 838 839 cb = nic->cb_to_use; 840 nic->cb_to_use = cb->next; 841 nic->cbs_avail--; 842 cb->skb = skb; 843 844 if(unlikely(!nic->cbs_avail)) 845 err = -ENOSPC; 846 847 cb_prepare(nic, cb, skb); 848 849 /* Order is important otherwise we'll be in a race with h/w: 850 * set S-bit in current first, then clear S-bit in previous. */ 851 cb->command |= cpu_to_le16(cb_s); 852 wmb(); 853 cb->prev->command &= cpu_to_le16(~cb_s); 854 855 while(nic->cb_to_send != nic->cb_to_use) { 856 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 857 nic->cb_to_send->dma_addr))) { 858 /* Ok, here's where things get sticky. It's 859 * possible that we can't schedule the command 860 * because the controller is too busy, so 861 * let's just queue the command and try again 862 * when another command is scheduled. */ 863 if(err == -ENOSPC) { 864 //request a reset 865 schedule_work(&nic->tx_timeout_task); 866 } 867 break; 868 } else { 869 nic->cuc_cmd = cuc_resume; 870 nic->cb_to_send = nic->cb_to_send->next; 871 } 872 } 873 874err_unlock: 875 spin_unlock_irqrestore(&nic->cb_lock, flags); 876 877 return err; 878} 879 880static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 881{ 882 u32 data_out = 0; 883 unsigned int i; 884 unsigned long flags; 885 886 887 /* 888 * Stratus87247: we shouldn't be writing the MDI control 889 * register until the Ready bit shows True. Also, since 890 * manipulation of the MDI control registers is a multi-step 891 * procedure it should be done under lock. 892 */ 893 spin_lock_irqsave(&nic->mdio_lock, flags); 894 for (i = 100; i; --i) { 895 if (readl(&nic->csr->mdi_ctrl) & mdi_ready) 896 break; 897 udelay(20); 898 } 899 if (unlikely(!i)) { 900 printk("e100.mdio_ctrl(%s) won't go Ready\n", 901 nic->netdev->name ); 902 spin_unlock_irqrestore(&nic->mdio_lock, flags); 903 return 0; /* No way to indicate timeout error */ 904 } 905 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 906 907 for (i = 0; i < 100; i++) { 908 udelay(20); 909 if ((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready) 910 break; 911 } 912 spin_unlock_irqrestore(&nic->mdio_lock, flags); 913 DPRINTK(HW, DEBUG, 914 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 915 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); 916 return (u16)data_out; 917} 918 919static int mdio_read(struct net_device *netdev, int addr, int reg) 920{ 921 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); 922} 923 924static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 925{ 926 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); 927} 928 929static void e100_get_defaults(struct nic *nic) 930{ 931 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 932 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 933 934 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); 935 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 936 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id; 937 if(nic->mac == mac_unknown) 938 nic->mac = mac_82557_D100_A; 939 940 nic->params.rfds = rfds; 941 nic->params.cbs = cbs; 942 943 /* Quadwords to DMA into FIFO before starting frame transmit */ 944 nic->tx_threshold = 0xE0; 945 946 /* no interrupt for every tx completion, delay = 256us if not 557*/ 947 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 948 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 949 950 /* Template for a freshly allocated RFD */ 951 nic->blank_rfd.command = cpu_to_le16(cb_el); 952 nic->blank_rfd.rbd = 0xFFFFFFFF; 953 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 954 955 /* MII setup */ 956 nic->mii.phy_id_mask = 0x1F; 957 nic->mii.reg_num_mask = 0x1F; 958 nic->mii.dev = nic->netdev; 959 nic->mii.mdio_read = mdio_read; 960 nic->mii.mdio_write = mdio_write; 961} 962 963static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 964{ 965 struct config *config = &cb->u.config; 966 u8 *c = (u8 *)config; 967 968 cb->command = cpu_to_le16(cb_config); 969 970 memset(config, 0, sizeof(struct config)); 971 972 config->byte_count = 0x16; /* bytes in this struct */ 973 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 974 config->direct_rx_dma = 0x1; /* reserved */ 975 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 976 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 977 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 978 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 979 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ 980 config->pad10 = 0x6; 981 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 982 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 983 config->ifs = 0x6; /* x16 = inter frame spacing */ 984 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 985 config->pad15_1 = 0x1; 986 config->pad15_2 = 0x1; 987 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 988 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 989 config->tx_padding = 0x1; /* 1=pad short frames */ 990 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 991 config->pad18 = 0x1; 992 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 993 config->pad20_1 = 0x1F; 994 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 995 config->pad21_1 = 0x5; 996 997 config->adaptive_ifs = nic->adaptive_ifs; 998 config->loopback = nic->loopback; 999 1000 if(nic->mii.force_media && nic->mii.full_duplex) 1001 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 1002 1003 if(nic->flags & promiscuous || nic->loopback) { 1004 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 1005 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 1006 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 1007 } 1008 1009 if(nic->flags & multicast_all) 1010 config->multicast_all = 0x1; /* 1=accept, 0=no */ 1011 1012 /* disable WoL when up */ 1013 if(netif_running(nic->netdev) || !(nic->flags & wol_magic)) 1014 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 1015 1016 if(nic->mac >= mac_82558_D101_A4) { 1017 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 1018 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 1019 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 1020 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 1021 if(nic->mac >= mac_82559_D101M) 1022 config->tno_intr = 0x1; /* TCO stats enable */ 1023 else 1024 config->standard_stat_counter = 0x0; 1025 } 1026 1027 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1028 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); 1029 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1030 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); 1031 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1032 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); 1033} 1034 1035/********************************************************/ 1036/* Micro code for 8086:1229 Rev 8 */ 1037/********************************************************/ 1038 1039/* Parameter values for the D101M B-step */ 1040#define D101M_CPUSAVER_TIMER_DWORD 78 1041#define D101M_CPUSAVER_BUNDLE_DWORD 65 1042#define D101M_CPUSAVER_MIN_SIZE_DWORD 126 1043 1044#define D101M_B_RCVBUNDLE_UCODE \ 1045{\ 10460x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \ 10470x000C0001, 0x00101312, 0x000C0008, 0x00380216, \ 10480x0010009C, 0x00204056, 0x002380CC, 0x00380056, \ 10490x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \ 10500x00380438, 0x00000000, 0x00140000, 0x00380555, \ 10510x00308000, 0x00100662, 0x00100561, 0x000E0408, \ 10520x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 10530x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 10540x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \ 10550x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \ 10560x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10570x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \ 10580x003A0437, 0x00044010, 0x0038078A, 0x00000000, \ 10590x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \ 10600x00130824, 0x000C0001, 0x00101213, 0x00260C75, \ 10610x00041000, 0x00010004, 0x00130826, 0x000C0006, \ 10620x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \ 10630x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10640x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10650x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 10660x00101210, 0x00380C34, 0x00000000, 0x00000000, \ 10670x0021155B, 0x00100099, 0x00206559, 0x0010009C, \ 10680x00244559, 0x00130836, 0x000C0000, 0x00220C62, \ 10690x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \ 10700x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \ 10710x00214C0E, 0x00380555, 0x00010004, 0x00041000, \ 10720x00278C67, 0x00040800, 0x00018100, 0x003A0437, \ 10730x00130826, 0x000C0001, 0x00220559, 0x00101313, \ 10740x00380559, 0x00000000, 0x00000000, 0x00000000, \ 10750x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10760x00000000, 0x00130831, 0x0010090B, 0x00124813, \ 10770x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \ 10780x003806A8, 0x00000000, 0x00000000, 0x00000000, \ 1079} 1080 1081/********************************************************/ 1082/* Micro code for 8086:1229 Rev 9 */ 1083/********************************************************/ 1084 1085/* Parameter values for the D101S */ 1086#define D101S_CPUSAVER_TIMER_DWORD 78 1087#define D101S_CPUSAVER_BUNDLE_DWORD 67 1088#define D101S_CPUSAVER_MIN_SIZE_DWORD 128 1089 1090#define D101S_RCVBUNDLE_UCODE \ 1091{\ 10920x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \ 10930x000C0001, 0x00101312, 0x000C0008, 0x00380243, \ 10940x0010009C, 0x00204056, 0x002380D0, 0x00380056, \ 10950x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \ 10960x0038047F, 0x00000000, 0x00140000, 0x003805A3, \ 10970x00308000, 0x00100610, 0x00100561, 0x000E0408, \ 10980x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 10990x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 11000x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \ 11010x00380F90, 0x00080000, 0x00103090, 0x00380F90, \ 11020x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11030x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \ 11040x003A047E, 0x00044010, 0x00380819, 0x00000000, \ 11050x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \ 11060x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \ 11070x00101213, 0x00260FF7, 0x00041000, 0x00010004, \ 11080x00130826, 0x000C0006, 0x00220700, 0x0013C926, \ 11090x00101313, 0x00380700, 0x00000000, 0x00000000, \ 11100x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11110x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 11120x00101210, 0x00380FB6, 0x00000000, 0x00000000, \ 11130x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \ 11140x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \ 11150x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \ 11160x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \ 11170x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \ 11180x00010004, 0x00041000, 0x00278FE9, 0x00040800, \ 11190x00018100, 0x003A047E, 0x00130826, 0x000C0001, \ 11200x002205A7, 0x00101313, 0x003805A7, 0x00000000, \ 11210x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11220x00000000, 0x00000000, 0x00000000, 0x00130831, \ 11230x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \ 11240x00041000, 0x00010004, 0x00380700 \ 1125} 1126 1127/********************************************************/ 1128/* Micro code for the 8086:1229 Rev F/10 */ 1129/********************************************************/ 1130 1131/* Parameter values for the D102 E-step */ 1132#define D102_E_CPUSAVER_TIMER_DWORD 42 1133#define D102_E_CPUSAVER_BUNDLE_DWORD 54 1134#define D102_E_CPUSAVER_MIN_SIZE_DWORD 46 1135 1136#define D102_E_RCVBUNDLE_UCODE \ 1137{\ 11380x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \ 11390x00E014B9, 0x00000000, 0x00000000, 0x00000000, \ 11400x00E014BD, 0x00000000, 0x00000000, 0x00000000, \ 11410x00E014D5, 0x00000000, 0x00000000, 0x00000000, \ 11420x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11430x00E014C1, 0x00000000, 0x00000000, 0x00000000, \ 11440x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11450x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11460x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11470x00E014C8, 0x00000000, 0x00000000, 0x00000000, \ 11480x00200600, 0x00E014EE, 0x00000000, 0x00000000, \ 11490x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \ 11500x00E00E43, 0x00000000, 0x00000000, 0x00000000, \ 11510x00300006, 0x00E014FB, 0x00000000, 0x00000000, \ 11520x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11530x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11540x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11550x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \ 11560x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \ 11570x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11580x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11590x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11600x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11610x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11620x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11630x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11640x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11650x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11660x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11670x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11680x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11690x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11700x00000000, 0x00000000, 0x00000000, 0x00000000, \ 1171} 1172 1173static void e100_setup_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1174{ 1175/* *INDENT-OFF* */ 1176 static struct { 1177 u32 ucode[UCODE_SIZE + 1]; 1178 u8 mac; 1179 u8 timer_dword; 1180 u8 bundle_dword; 1181 u8 min_size_dword; 1182 } ucode_opts[] = { 1183 { D101M_B_RCVBUNDLE_UCODE, 1184 mac_82559_D101M, 1185 D101M_CPUSAVER_TIMER_DWORD, 1186 D101M_CPUSAVER_BUNDLE_DWORD, 1187 D101M_CPUSAVER_MIN_SIZE_DWORD }, 1188 { D101S_RCVBUNDLE_UCODE, 1189 mac_82559_D101S, 1190 D101S_CPUSAVER_TIMER_DWORD, 1191 D101S_CPUSAVER_BUNDLE_DWORD, 1192 D101S_CPUSAVER_MIN_SIZE_DWORD }, 1193 { D102_E_RCVBUNDLE_UCODE, 1194 mac_82551_F, 1195 D102_E_CPUSAVER_TIMER_DWORD, 1196 D102_E_CPUSAVER_BUNDLE_DWORD, 1197 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1198 { D102_E_RCVBUNDLE_UCODE, 1199 mac_82551_10, 1200 D102_E_CPUSAVER_TIMER_DWORD, 1201 D102_E_CPUSAVER_BUNDLE_DWORD, 1202 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1203 { {0}, 0, 0, 0, 0} 1204 }, *opts; 1205/* *INDENT-ON* */ 1206 1207/************************************************************************* 1208* CPUSaver parameters 1209* 1210* All CPUSaver parameters are 16-bit literals that are part of a 1211* "move immediate value" instruction. By changing the value of 1212* the literal in the instruction before the code is loaded, the 1213* driver can change the algorithm. 1214* 1215* INTDELAY - This loads the dead-man timer with its inital value. 1216* When this timer expires the interrupt is asserted, and the 1217* timer is reset each time a new packet is received. (see 1218* BUNDLEMAX below to set the limit on number of chained packets) 1219* The current default is 0x600 or 1536. Experiments show that 1220* the value should probably stay within the 0x200 - 0x1000. 1221* 1222* BUNDLEMAX - 1223* This sets the maximum number of frames that will be bundled. In 1224* some situations, such as the TCP windowing algorithm, it may be 1225* better to limit the growth of the bundle size than let it go as 1226* high as it can, because that could cause too much added latency. 1227* The default is six, because this is the number of packets in the 1228* default TCP window size. A value of 1 would make CPUSaver indicate 1229* an interrupt for every frame received. If you do not want to put 1230* a limit on the bundle size, set this value to xFFFF. 1231* 1232* BUNDLESMALL - 1233* This contains a bit-mask describing the minimum size frame that 1234* will be bundled. The default masks the lower 7 bits, which means 1235* that any frame less than 128 bytes in length will not be bundled, 1236* but will instead immediately generate an interrupt. This does 1237* not affect the current bundle in any way. Any frame that is 128 1238* bytes or large will be bundled normally. This feature is meant 1239* to provide immediate indication of ACK frames in a TCP environment. 1240* Customers were seeing poor performance when a machine with CPUSaver 1241* enabled was sending but not receiving. The delay introduced when 1242* the ACKs were received was enough to reduce total throughput, because 1243* the sender would sit idle until the ACK was finally seen. 1244* 1245* The current default is 0xFF80, which masks out the lower 7 bits. 1246* This means that any frame which is x7F (127) bytes or smaller 1247* will cause an immediate interrupt. Because this value must be a 1248* bit mask, there are only a few valid values that can be used. To 1249* turn this feature off, the driver can write the value xFFFF to the 1250* lower word of this instruction (in the same way that the other 1251* parameters are used). Likewise, a value of 0xF800 (2047) would 1252* cause an interrupt to be generated for every frame, because all 1253* standard Ethernet frames are <= 2047 bytes in length. 1254*************************************************************************/ 1255 1256/* if you wish to disable the ucode functionality, while maintaining the 1257 * workarounds it provides, set the following defines to: 1258 * BUNDLESMALL 0 1259 * BUNDLEMAX 1 1260 * INTDELAY 1 1261 */ 1262#define BUNDLESMALL 1 1263#define BUNDLEMAX (u16)6 1264#define INTDELAY (u16)1536 /* 0x600 */ 1265 1266 /* do not load u-code for ICH devices */ 1267 if (nic->flags & ich) 1268 goto noloaducode; 1269 1270 /* Search for ucode match against h/w rev_id */ 1271 for (opts = ucode_opts; opts->mac; opts++) { 1272 int i; 1273 u32 *ucode = opts->ucode; 1274 if (nic->mac != opts->mac) 1275 continue; 1276 1277 /* Insert user-tunable settings */ 1278 ucode[opts->timer_dword] &= 0xFFFF0000; 1279 ucode[opts->timer_dword] |= INTDELAY; 1280 ucode[opts->bundle_dword] &= 0xFFFF0000; 1281 ucode[opts->bundle_dword] |= BUNDLEMAX; 1282 ucode[opts->min_size_dword] &= 0xFFFF0000; 1283 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80; 1284 1285 for (i = 0; i < UCODE_SIZE; i++) 1286 cb->u.ucode[i] = cpu_to_le32(ucode[i]); 1287 cb->command = cpu_to_le16(cb_ucode | cb_el); 1288 return; 1289 } 1290 1291noloaducode: 1292 cb->command = cpu_to_le16(cb_nop | cb_el); 1293} 1294 1295static inline int e100_exec_cb_wait(struct nic *nic, struct sk_buff *skb, 1296 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 1297{ 1298 int err = 0, counter = 50; 1299 struct cb *cb = nic->cb_to_clean; 1300 1301 if ((err = e100_exec_cb(nic, NULL, e100_setup_ucode))) 1302 DPRINTK(PROBE,ERR, "ucode cmd failed with error %d\n", err); 1303 1304 /* must restart cuc */ 1305 nic->cuc_cmd = cuc_start; 1306 1307 /* wait for completion */ 1308 e100_write_flush(nic); 1309 udelay(10); 1310 1311 /* wait for possibly (ouch) 500ms */ 1312 while (!(cb->status & cpu_to_le16(cb_complete))) { 1313 msleep(10); 1314 if (!--counter) break; 1315 } 1316 1317 /* ack any interupts, something could have been set */ 1318 writeb(~0, &nic->csr->scb.stat_ack); 1319 1320 /* if the command failed, or is not OK, notify and return */ 1321 if (!counter || !(cb->status & cpu_to_le16(cb_ok))) { 1322 DPRINTK(PROBE,ERR, "ucode load failed\n"); 1323 err = -EPERM; 1324 } 1325 1326 return err; 1327} 1328 1329static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1330 struct sk_buff *skb) 1331{ 1332 cb->command = cpu_to_le16(cb_iaaddr); 1333 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1334} 1335 1336static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1337{ 1338 cb->command = cpu_to_le16(cb_dump); 1339 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1340 offsetof(struct mem, dump_buf)); 1341} 1342 1343#define NCONFIG_AUTO_SWITCH 0x0080 1344#define MII_NSC_CONG MII_RESV1 1345#define NSC_CONG_ENABLE 0x0100 1346#define NSC_CONG_TXREADY 0x0400 1347#define ADVERTISE_FC_SUPPORTED 0x0400 1348static int e100_phy_init(struct nic *nic) 1349{ 1350 struct net_device *netdev = nic->netdev; 1351 u32 addr; 1352 u16 bmcr, stat, id_lo, id_hi, cong; 1353 1354 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1355 for(addr = 0; addr < 32; addr++) { 1356 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1357 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1358 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1359 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1360 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1361 break; 1362 } 1363 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); 1364 if(addr == 32) 1365 return -EAGAIN; 1366 1367 /* Selected the phy and isolate the rest */ 1368 for(addr = 0; addr < 32; addr++) { 1369 if(addr != nic->mii.phy_id) { 1370 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1371 } else { 1372 bmcr = mdio_read(netdev, addr, MII_BMCR); 1373 mdio_write(netdev, addr, MII_BMCR, 1374 bmcr & ~BMCR_ISOLATE); 1375 } 1376 } 1377 1378 /* Get phy ID */ 1379 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1380 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1381 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1382 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); 1383 1384 /* Handle National tx phys */ 1385#define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1386 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1387 /* Disable congestion control */ 1388 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1389 cong |= NSC_CONG_TXREADY; 1390 cong &= ~NSC_CONG_ENABLE; 1391 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1392 } 1393 1394 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1395 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000))) { 1396 /* enable/disable MDI/MDI-X auto-switching. 1397 MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */ 1398 if((nic->mac == mac_82551_E) || (nic->mac == mac_82551_F) || 1399 (nic->mac == mac_82551_10) || (nic->mii.force_media) || 1400 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)) 1401 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 0); 1402 else 1403 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, NCONFIG_AUTO_SWITCH); 1404 } 1405 1406 return 0; 1407} 1408 1409static int e100_hw_init(struct nic *nic) 1410{ 1411 int err; 1412 1413 e100_hw_reset(nic); 1414 1415 DPRINTK(HW, ERR, "e100_hw_init\n"); 1416 if(!in_interrupt() && (err = e100_self_test(nic))) 1417 return err; 1418 1419 if((err = e100_phy_init(nic))) 1420 return err; 1421 if((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1422 return err; 1423 if((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1424 return err; 1425 if ((err = e100_exec_cb_wait(nic, NULL, e100_setup_ucode))) 1426 return err; 1427 if((err = e100_exec_cb(nic, NULL, e100_configure))) 1428 return err; 1429 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1430 return err; 1431 if((err = e100_exec_cmd(nic, cuc_dump_addr, 1432 nic->dma_addr + offsetof(struct mem, stats)))) 1433 return err; 1434 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1435 return err; 1436 1437 e100_disable_irq(nic); 1438 1439 return 0; 1440} 1441 1442static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1443{ 1444 struct net_device *netdev = nic->netdev; 1445 struct dev_mc_list *list = netdev->mc_list; 1446 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); 1447 1448 cb->command = cpu_to_le16(cb_multi); 1449 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1450 for(i = 0; list && i < count; i++, list = list->next) 1451 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, 1452 ETH_ALEN); 1453} 1454 1455static void e100_set_multicast_list(struct net_device *netdev) 1456{ 1457 struct nic *nic = netdev_priv(netdev); 1458 1459 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", 1460 netdev->mc_count, netdev->flags); 1461 1462 if(netdev->flags & IFF_PROMISC) 1463 nic->flags |= promiscuous; 1464 else 1465 nic->flags &= ~promiscuous; 1466 1467 if(netdev->flags & IFF_ALLMULTI || 1468 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) 1469 nic->flags |= multicast_all; 1470 else 1471 nic->flags &= ~multicast_all; 1472 1473 e100_exec_cb(nic, NULL, e100_configure); 1474 e100_exec_cb(nic, NULL, e100_multi); 1475} 1476 1477static void e100_update_stats(struct nic *nic) 1478{ 1479 struct net_device_stats *ns = &nic->net_stats; 1480 struct stats *s = &nic->mem->stats; 1481 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1482 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames : 1483 &s->complete; 1484 1485 /* Device's stats reporting may take several microseconds to 1486 * complete, so where always waiting for results of the 1487 * previous command. */ 1488 1489 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) { 1490 *complete = 0; 1491 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1492 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1493 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1494 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1495 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1496 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1497 ns->collisions += nic->tx_collisions; 1498 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1499 le32_to_cpu(s->tx_lost_crs); 1500 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + 1501 nic->rx_over_length_errors; 1502 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1503 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1504 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1505 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1506 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1507 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1508 le32_to_cpu(s->rx_alignment_errors) + 1509 le32_to_cpu(s->rx_short_frame_errors) + 1510 le32_to_cpu(s->rx_cdt_errors); 1511 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1512 nic->tx_single_collisions += 1513 le32_to_cpu(s->tx_single_collisions); 1514 nic->tx_multiple_collisions += 1515 le32_to_cpu(s->tx_multiple_collisions); 1516 if(nic->mac >= mac_82558_D101_A4) { 1517 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1518 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1519 nic->rx_fc_unsupported += 1520 le32_to_cpu(s->fc_rcv_unsupported); 1521 if(nic->mac >= mac_82559_D101M) { 1522 nic->tx_tco_frames += 1523 le16_to_cpu(s->xmt_tco_frames); 1524 nic->rx_tco_frames += 1525 le16_to_cpu(s->rcv_tco_frames); 1526 } 1527 } 1528 } 1529 1530 1531 if(e100_exec_cmd(nic, cuc_dump_reset, 0)) 1532 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); 1533} 1534 1535static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1536{ 1537 /* Adjust inter-frame-spacing (IFS) between two transmits if 1538 * we're getting collisions on a half-duplex connection. */ 1539 1540 if(duplex == DUPLEX_HALF) { 1541 u32 prev = nic->adaptive_ifs; 1542 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1543 1544 if((nic->tx_frames / 32 < nic->tx_collisions) && 1545 (nic->tx_frames > min_frames)) { 1546 if(nic->adaptive_ifs < 60) 1547 nic->adaptive_ifs += 5; 1548 } else if (nic->tx_frames < min_frames) { 1549 if(nic->adaptive_ifs >= 5) 1550 nic->adaptive_ifs -= 5; 1551 } 1552 if(nic->adaptive_ifs != prev) 1553 e100_exec_cb(nic, NULL, e100_configure); 1554 } 1555} 1556 1557static void e100_watchdog(unsigned long data) 1558{ 1559 struct nic *nic = (struct nic *)data; 1560 struct ethtool_cmd cmd; 1561 1562 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); 1563 1564 /* mii library handles link maintenance tasks */ 1565 1566 mii_ethtool_gset(&nic->mii, &cmd); 1567 1568 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1569 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", 1570 cmd.speed == SPEED_100 ? "100" : "10", 1571 cmd.duplex == DUPLEX_FULL ? "full" : "half"); 1572 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1573 DPRINTK(LINK, INFO, "link down\n"); 1574 } 1575 1576 mii_check_link(&nic->mii); 1577 1578 /* Software generated interrupt to recover from (rare) Rx 1579 * allocation failure. 1580 * Unfortunately have to use a spinlock to not re-enable interrupts 1581 * accidentally, due to hardware that shares a register between the 1582 * interrupt mask bit and the SW Interrupt generation bit */ 1583 spin_lock_irq(&nic->cmd_lock); 1584 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1585 e100_write_flush(nic); 1586 spin_unlock_irq(&nic->cmd_lock); 1587 1588 e100_update_stats(nic); 1589 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); 1590 1591 if(nic->mac <= mac_82557_D100_C) 1592 /* Issue a multicast command to workaround a 557 lock up */ 1593 e100_set_multicast_list(nic->netdev); 1594 1595 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) 1596 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1597 nic->flags |= ich_10h_workaround; 1598 else 1599 nic->flags &= ~ich_10h_workaround; 1600 1601 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD); 1602} 1603 1604static void e100_xmit_prepare(struct nic *nic, struct cb *cb, 1605 struct sk_buff *skb) 1606{ 1607 cb->command = nic->tx_command; 1608 /* interrupt every 16 packets regardless of delay */ 1609 if((nic->cbs_avail & ~15) == nic->cbs_avail) 1610 cb->command |= cpu_to_le16(cb_i); 1611 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1612 cb->u.tcb.tcb_byte_count = 0; 1613 cb->u.tcb.threshold = nic->tx_threshold; 1614 cb->u.tcb.tbd_count = 1; 1615 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, 1616 skb->data, skb->len, PCI_DMA_TODEVICE)); 1617 /* check for mapping failure? */ 1618 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1619} 1620 1621static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 1622{ 1623 struct nic *nic = netdev_priv(netdev); 1624 int err; 1625 1626 if(nic->flags & ich_10h_workaround) { 1627 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1628 Issue a NOP command followed by a 1us delay before 1629 issuing the Tx command. */ 1630 if(e100_exec_cmd(nic, cuc_nop, 0)) 1631 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); 1632 udelay(1); 1633 } 1634 1635 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1636 1637 switch(err) { 1638 case -ENOSPC: 1639 /* We queued the skb, but now we're out of space. */ 1640 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); 1641 netif_stop_queue(netdev); 1642 break; 1643 case -ENOMEM: 1644 /* This is a hard error - log it. */ 1645 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); 1646 netif_stop_queue(netdev); 1647 return 1; 1648 } 1649 1650 netdev->trans_start = jiffies; 1651 return 0; 1652} 1653 1654static int e100_tx_clean(struct nic *nic) 1655{ 1656 struct cb *cb; 1657 int tx_cleaned = 0; 1658 1659 spin_lock(&nic->cb_lock); 1660 1661 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n", 1662 nic->cb_to_clean->status); 1663 1664 /* Clean CBs marked complete */ 1665 for(cb = nic->cb_to_clean; 1666 cb->status & cpu_to_le16(cb_complete); 1667 cb = nic->cb_to_clean = cb->next) { 1668 if(likely(cb->skb != NULL)) { 1669 nic->net_stats.tx_packets++; 1670 nic->net_stats.tx_bytes += cb->skb->len; 1671 1672 pci_unmap_single(nic->pdev, 1673 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1674 le16_to_cpu(cb->u.tcb.tbd.size), 1675 PCI_DMA_TODEVICE); 1676 dev_kfree_skb_any(cb->skb); 1677 cb->skb = NULL; 1678 tx_cleaned = 1; 1679 } 1680 cb->status = 0; 1681 nic->cbs_avail++; 1682 } 1683 1684 spin_unlock(&nic->cb_lock); 1685 1686 /* Recover from running out of Tx resources in xmit_frame */ 1687 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1688 netif_wake_queue(nic->netdev); 1689 1690 return tx_cleaned; 1691} 1692 1693static void e100_clean_cbs(struct nic *nic) 1694{ 1695 if(nic->cbs) { 1696 while(nic->cbs_avail != nic->params.cbs.count) { 1697 struct cb *cb = nic->cb_to_clean; 1698 if(cb->skb) { 1699 pci_unmap_single(nic->pdev, 1700 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1701 le16_to_cpu(cb->u.tcb.tbd.size), 1702 PCI_DMA_TODEVICE); 1703 dev_kfree_skb(cb->skb); 1704 } 1705 nic->cb_to_clean = nic->cb_to_clean->next; 1706 nic->cbs_avail++; 1707 } 1708 pci_free_consistent(nic->pdev, 1709 sizeof(struct cb) * nic->params.cbs.count, 1710 nic->cbs, nic->cbs_dma_addr); 1711 nic->cbs = NULL; 1712 nic->cbs_avail = 0; 1713 } 1714 nic->cuc_cmd = cuc_start; 1715 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1716 nic->cbs; 1717} 1718 1719static int e100_alloc_cbs(struct nic *nic) 1720{ 1721 struct cb *cb; 1722 unsigned int i, count = nic->params.cbs.count; 1723 1724 nic->cuc_cmd = cuc_start; 1725 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1726 nic->cbs_avail = 0; 1727 1728 nic->cbs = pci_alloc_consistent(nic->pdev, 1729 sizeof(struct cb) * count, &nic->cbs_dma_addr); 1730 if(!nic->cbs) 1731 return -ENOMEM; 1732 1733 for(cb = nic->cbs, i = 0; i < count; cb++, i++) { 1734 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1735 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1736 1737 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1738 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1739 ((i+1) % count) * sizeof(struct cb)); 1740 cb->skb = NULL; 1741 } 1742 1743 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1744 nic->cbs_avail = count; 1745 1746 return 0; 1747} 1748 1749static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1750{ 1751 if(!nic->rxs) return; 1752 if(RU_SUSPENDED != nic->ru_running) return; 1753 1754 /* handle init time starts */ 1755 if(!rx) rx = nic->rxs; 1756 1757 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1758 if(rx->skb) { 1759 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1760 nic->ru_running = RU_RUNNING; 1761 } 1762} 1763 1764#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) 1765static int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1766{ 1767 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN))) 1768 return -ENOMEM; 1769 1770 /* Align, init, and map the RFD. */ 1771 rx->skb->dev = nic->netdev; 1772 skb_reserve(rx->skb, NET_IP_ALIGN); 1773 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd)); 1774 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1775 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1776 1777 if(pci_dma_mapping_error(rx->dma_addr)) { 1778 dev_kfree_skb_any(rx->skb); 1779 rx->skb = NULL; 1780 rx->dma_addr = 0; 1781 return -ENOMEM; 1782 } 1783 1784 /* Link the RFD to end of RFA by linking previous RFD to 1785 * this one, and clearing EL bit of previous. */ 1786 if(rx->prev->skb) { 1787 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1788 put_unaligned(cpu_to_le32(rx->dma_addr), 1789 (u32 *)&prev_rfd->link); 1790 wmb(); 1791 prev_rfd->command &= ~cpu_to_le16(cb_el); 1792 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1793 sizeof(struct rfd), PCI_DMA_TODEVICE); 1794 } 1795 1796 return 0; 1797} 1798 1799static int e100_rx_indicate(struct nic *nic, struct rx *rx, 1800 unsigned int *work_done, unsigned int work_to_do) 1801{ 1802 struct sk_buff *skb = rx->skb; 1803 struct rfd *rfd = (struct rfd *)skb->data; 1804 u16 rfd_status, actual_size; 1805 1806 if(unlikely(work_done && *work_done >= work_to_do)) 1807 return -EAGAIN; 1808 1809 /* Need to sync before taking a peek at cb_complete bit */ 1810 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1811 sizeof(struct rfd), PCI_DMA_FROMDEVICE); 1812 rfd_status = le16_to_cpu(rfd->status); 1813 1814 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); 1815 1816 /* If data isn't ready, nothing to indicate */ 1817 if(unlikely(!(rfd_status & cb_complete))) 1818 return -ENODATA; 1819 1820 /* Get actual data size */ 1821 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1822 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1823 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1824 1825 /* Get data */ 1826 pci_unmap_single(nic->pdev, rx->dma_addr, 1827 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1828 1829 /* this allows for a fast restart without re-enabling interrupts */ 1830 if(le16_to_cpu(rfd->command) & cb_el) 1831 nic->ru_running = RU_SUSPENDED; 1832 1833 /* Pull off the RFD and put the actual data (minus eth hdr) */ 1834 skb_reserve(skb, sizeof(struct rfd)); 1835 skb_put(skb, actual_size); 1836 skb->protocol = eth_type_trans(skb, nic->netdev); 1837 1838 if(unlikely(!(rfd_status & cb_ok))) { 1839 /* Don't indicate if hardware indicates errors */ 1840 dev_kfree_skb_any(skb); 1841 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { 1842 /* Don't indicate oversized frames */ 1843 nic->rx_over_length_errors++; 1844 dev_kfree_skb_any(skb); 1845 } else { 1846 nic->net_stats.rx_packets++; 1847 nic->net_stats.rx_bytes += actual_size; 1848 nic->netdev->last_rx = jiffies; 1849 netif_receive_skb(skb); 1850 if(work_done) 1851 (*work_done)++; 1852 } 1853 1854 rx->skb = NULL; 1855 1856 return 0; 1857} 1858 1859static void e100_rx_clean(struct nic *nic, unsigned int *work_done, 1860 unsigned int work_to_do) 1861{ 1862 struct rx *rx; 1863 int restart_required = 0; 1864 struct rx *rx_to_start = NULL; 1865 1866 /* are we already rnr? then pay attention!!! this ensures that 1867 * the state machine progression never allows a start with a 1868 * partially cleaned list, avoiding a race between hardware 1869 * and rx_to_clean when in NAPI mode */ 1870 if(RU_SUSPENDED == nic->ru_running) 1871 restart_required = 1; 1872 1873 /* Indicate newly arrived packets */ 1874 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 1875 int err = e100_rx_indicate(nic, rx, work_done, work_to_do); 1876 if(-EAGAIN == err) { 1877 /* hit quota so have more work to do, restart once 1878 * cleanup is complete */ 1879 restart_required = 0; 1880 break; 1881 } else if(-ENODATA == err) 1882 break; /* No more to clean */ 1883 } 1884 1885 /* save our starting point as the place we'll restart the receiver */ 1886 if(restart_required) 1887 rx_to_start = nic->rx_to_clean; 1888 1889 /* Alloc new skbs to refill list */ 1890 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 1891 if(unlikely(e100_rx_alloc_skb(nic, rx))) 1892 break; /* Better luck next time (see watchdog) */ 1893 } 1894 1895 if(restart_required) { 1896 // ack the rnr? 1897 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack); 1898 e100_start_receiver(nic, rx_to_start); 1899 if(work_done) 1900 (*work_done)++; 1901 } 1902} 1903 1904static void e100_rx_clean_list(struct nic *nic) 1905{ 1906 struct rx *rx; 1907 unsigned int i, count = nic->params.rfds.count; 1908 1909 nic->ru_running = RU_UNINITIALIZED; 1910 1911 if(nic->rxs) { 1912 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1913 if(rx->skb) { 1914 pci_unmap_single(nic->pdev, rx->dma_addr, 1915 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1916 dev_kfree_skb(rx->skb); 1917 } 1918 } 1919 kfree(nic->rxs); 1920 nic->rxs = NULL; 1921 } 1922 1923 nic->rx_to_use = nic->rx_to_clean = NULL; 1924} 1925 1926static int e100_rx_alloc_list(struct nic *nic) 1927{ 1928 struct rx *rx; 1929 unsigned int i, count = nic->params.rfds.count; 1930 1931 nic->rx_to_use = nic->rx_to_clean = NULL; 1932 nic->ru_running = RU_UNINITIALIZED; 1933 1934 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) 1935 return -ENOMEM; 1936 memset(nic->rxs, 0, sizeof(struct rx) * count); 1937 1938 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1939 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 1940 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 1941 if(e100_rx_alloc_skb(nic, rx)) { 1942 e100_rx_clean_list(nic); 1943 return -ENOMEM; 1944 } 1945 } 1946 1947 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 1948 nic->ru_running = RU_SUSPENDED; 1949 1950 return 0; 1951} 1952 1953static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs) 1954{ 1955 struct net_device *netdev = dev_id; 1956 struct nic *nic = netdev_priv(netdev); 1957 u8 stat_ack = readb(&nic->csr->scb.stat_ack); 1958 1959 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); 1960 1961 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ 1962 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 1963 return IRQ_NONE; 1964 1965 /* Ack interrupt(s) */ 1966 writeb(stat_ack, &nic->csr->scb.stat_ack); 1967 1968 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 1969 if(stat_ack & stat_ack_rnr) 1970 nic->ru_running = RU_SUSPENDED; 1971 1972 if(likely(netif_rx_schedule_prep(netdev))) { 1973 e100_disable_irq(nic); 1974 __netif_rx_schedule(netdev); 1975 } 1976 1977 return IRQ_HANDLED; 1978} 1979 1980static int e100_poll(struct net_device *netdev, int *budget) 1981{ 1982 struct nic *nic = netdev_priv(netdev); 1983 unsigned int work_to_do = min(netdev->quota, *budget); 1984 unsigned int work_done = 0; 1985 int tx_cleaned; 1986 1987 e100_rx_clean(nic, &work_done, work_to_do); 1988 tx_cleaned = e100_tx_clean(nic); 1989 1990 /* If no Rx and Tx cleanup work was done, exit polling mode. */ 1991 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { 1992 netif_rx_complete(netdev); 1993 e100_enable_irq(nic); 1994 return 0; 1995 } 1996 1997 *budget -= work_done; 1998 netdev->quota -= work_done; 1999 2000 return 1; 2001} 2002 2003#ifdef CONFIG_NET_POLL_CONTROLLER 2004static void e100_netpoll(struct net_device *netdev) 2005{ 2006 struct nic *nic = netdev_priv(netdev); 2007 2008 e100_disable_irq(nic); 2009 e100_intr(nic->pdev->irq, netdev, NULL); 2010 e100_tx_clean(nic); 2011 e100_enable_irq(nic); 2012} 2013#endif 2014 2015static struct net_device_stats *e100_get_stats(struct net_device *netdev) 2016{ 2017 struct nic *nic = netdev_priv(netdev); 2018 return &nic->net_stats; 2019} 2020 2021static int e100_set_mac_address(struct net_device *netdev, void *p) 2022{ 2023 struct nic *nic = netdev_priv(netdev); 2024 struct sockaddr *addr = p; 2025 2026 if (!is_valid_ether_addr(addr->sa_data)) 2027 return -EADDRNOTAVAIL; 2028 2029 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 2030 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 2031 2032 return 0; 2033} 2034 2035static int e100_change_mtu(struct net_device *netdev, int new_mtu) 2036{ 2037 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 2038 return -EINVAL; 2039 netdev->mtu = new_mtu; 2040 return 0; 2041} 2042 2043#ifdef CONFIG_PM 2044static int e100_asf(struct nic *nic) 2045{ 2046 /* ASF can be enabled from eeprom */ 2047 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 2048 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 2049 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 2050 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); 2051} 2052#endif 2053 2054static int e100_up(struct nic *nic) 2055{ 2056 int err; 2057 2058 if((err = e100_rx_alloc_list(nic))) 2059 return err; 2060 if((err = e100_alloc_cbs(nic))) 2061 goto err_rx_clean_list; 2062 if((err = e100_hw_init(nic))) 2063 goto err_clean_cbs; 2064 e100_set_multicast_list(nic->netdev); 2065 e100_start_receiver(nic, NULL); 2066 mod_timer(&nic->watchdog, jiffies); 2067 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ, 2068 nic->netdev->name, nic->netdev))) 2069 goto err_no_irq; 2070 netif_wake_queue(nic->netdev); 2071 netif_poll_enable(nic->netdev); 2072 /* enable ints _after_ enabling poll, preventing a race between 2073 * disable ints+schedule */ 2074 e100_enable_irq(nic); 2075 return 0; 2076 2077err_no_irq: 2078 del_timer_sync(&nic->watchdog); 2079err_clean_cbs: 2080 e100_clean_cbs(nic); 2081err_rx_clean_list: 2082 e100_rx_clean_list(nic); 2083 return err; 2084} 2085 2086static void e100_down(struct nic *nic) 2087{ 2088 /* wait here for poll to complete */ 2089 netif_poll_disable(nic->netdev); 2090 netif_stop_queue(nic->netdev); 2091 e100_hw_reset(nic); 2092 free_irq(nic->pdev->irq, nic->netdev); 2093 del_timer_sync(&nic->watchdog); 2094 netif_carrier_off(nic->netdev); 2095 e100_clean_cbs(nic); 2096 e100_rx_clean_list(nic); 2097} 2098 2099static void e100_tx_timeout(struct net_device *netdev) 2100{ 2101 struct nic *nic = netdev_priv(netdev); 2102 2103 /* Reset outside of interrupt context, to avoid request_irq 2104 * in interrupt context */ 2105 schedule_work(&nic->tx_timeout_task); 2106} 2107 2108static void e100_tx_timeout_task(struct net_device *netdev) 2109{ 2110 struct nic *nic = netdev_priv(netdev); 2111 2112 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", 2113 readb(&nic->csr->scb.status)); 2114 e100_down(netdev_priv(netdev)); 2115 e100_up(netdev_priv(netdev)); 2116} 2117 2118static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2119{ 2120 int err; 2121 struct sk_buff *skb; 2122 2123 /* Use driver resources to perform internal MAC or PHY 2124 * loopback test. A single packet is prepared and transmitted 2125 * in loopback mode, and the test passes if the received 2126 * packet compares byte-for-byte to the transmitted packet. */ 2127 2128 if((err = e100_rx_alloc_list(nic))) 2129 return err; 2130 if((err = e100_alloc_cbs(nic))) 2131 goto err_clean_rx; 2132 2133 /* ICH PHY loopback is broken so do MAC loopback instead */ 2134 if(nic->flags & ich && loopback_mode == lb_phy) 2135 loopback_mode = lb_mac; 2136 2137 nic->loopback = loopback_mode; 2138 if((err = e100_hw_init(nic))) 2139 goto err_loopback_none; 2140 2141 if(loopback_mode == lb_phy) 2142 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2143 BMCR_LOOPBACK); 2144 2145 e100_start_receiver(nic, NULL); 2146 2147 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { 2148 err = -ENOMEM; 2149 goto err_loopback_none; 2150 } 2151 skb_put(skb, ETH_DATA_LEN); 2152 memset(skb->data, 0xFF, ETH_DATA_LEN); 2153 e100_xmit_frame(skb, nic->netdev); 2154 2155 msleep(10); 2156 2157 pci_dma_sync_single_for_cpu(nic->pdev, nic->rx_to_clean->dma_addr, 2158 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 2159 2160 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2161 skb->data, ETH_DATA_LEN)) 2162 err = -EAGAIN; 2163 2164err_loopback_none: 2165 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2166 nic->loopback = lb_none; 2167 e100_clean_cbs(nic); 2168 e100_hw_reset(nic); 2169err_clean_rx: 2170 e100_rx_clean_list(nic); 2171 return err; 2172} 2173 2174#define MII_LED_CONTROL 0x1B 2175static void e100_blink_led(unsigned long data) 2176{ 2177 struct nic *nic = (struct nic *)data; 2178 enum led_state { 2179 led_on = 0x01, 2180 led_off = 0x04, 2181 led_on_559 = 0x05, 2182 led_on_557 = 0x07, 2183 }; 2184 2185 nic->leds = (nic->leds & led_on) ? led_off : 2186 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 2187 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); 2188 mod_timer(&nic->blink_timer, jiffies + HZ / 4); 2189} 2190 2191static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2192{ 2193 struct nic *nic = netdev_priv(netdev); 2194 return mii_ethtool_gset(&nic->mii, cmd); 2195} 2196 2197static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2198{ 2199 struct nic *nic = netdev_priv(netdev); 2200 int err; 2201 2202 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2203 err = mii_ethtool_sset(&nic->mii, cmd); 2204 e100_exec_cb(nic, NULL, e100_configure); 2205 2206 return err; 2207} 2208 2209static void e100_get_drvinfo(struct net_device *netdev, 2210 struct ethtool_drvinfo *info) 2211{ 2212 struct nic *nic = netdev_priv(netdev); 2213 strcpy(info->driver, DRV_NAME); 2214 strcpy(info->version, DRV_VERSION); 2215 strcpy(info->fw_version, "N/A"); 2216 strcpy(info->bus_info, pci_name(nic->pdev)); 2217} 2218 2219static int e100_get_regs_len(struct net_device *netdev) 2220{ 2221 struct nic *nic = netdev_priv(netdev); 2222#define E100_PHY_REGS 0x1C 2223#define E100_REGS_LEN 1 + E100_PHY_REGS + \ 2224 sizeof(nic->mem->dump_buf) / sizeof(u32) 2225 return E100_REGS_LEN * sizeof(u32); 2226} 2227 2228static void e100_get_regs(struct net_device *netdev, 2229 struct ethtool_regs *regs, void *p) 2230{ 2231 struct nic *nic = netdev_priv(netdev); 2232 u32 *buff = p; 2233 int i; 2234 2235 regs->version = (1 << 24) | nic->rev_id; 2236 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 | 2237 readb(&nic->csr->scb.cmd_lo) << 16 | 2238 readw(&nic->csr->scb.status); 2239 for(i = E100_PHY_REGS; i >= 0; i--) 2240 buff[1 + E100_PHY_REGS - i] = 2241 mdio_read(netdev, nic->mii.phy_id, i); 2242 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2243 e100_exec_cb(nic, NULL, e100_dump); 2244 msleep(10); 2245 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2246 sizeof(nic->mem->dump_buf)); 2247} 2248 2249static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2250{ 2251 struct nic *nic = netdev_priv(netdev); 2252 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2253 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2254} 2255 2256static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2257{ 2258 struct nic *nic = netdev_priv(netdev); 2259 2260 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) 2261 return -EOPNOTSUPP; 2262 2263 if(wol->wolopts) 2264 nic->flags |= wol_magic; 2265 else 2266 nic->flags &= ~wol_magic; 2267 2268 e100_exec_cb(nic, NULL, e100_configure); 2269 2270 return 0; 2271} 2272 2273static u32 e100_get_msglevel(struct net_device *netdev) 2274{ 2275 struct nic *nic = netdev_priv(netdev); 2276 return nic->msg_enable; 2277} 2278 2279static void e100_set_msglevel(struct net_device *netdev, u32 value) 2280{ 2281 struct nic *nic = netdev_priv(netdev); 2282 nic->msg_enable = value; 2283} 2284 2285static int e100_nway_reset(struct net_device *netdev) 2286{ 2287 struct nic *nic = netdev_priv(netdev); 2288 return mii_nway_restart(&nic->mii); 2289} 2290 2291static u32 e100_get_link(struct net_device *netdev) 2292{ 2293 struct nic *nic = netdev_priv(netdev); 2294 return mii_link_ok(&nic->mii); 2295} 2296 2297static int e100_get_eeprom_len(struct net_device *netdev) 2298{ 2299 struct nic *nic = netdev_priv(netdev); 2300 return nic->eeprom_wc << 1; 2301} 2302 2303#define E100_EEPROM_MAGIC 0x1234 2304static int e100_get_eeprom(struct net_device *netdev, 2305 struct ethtool_eeprom *eeprom, u8 *bytes) 2306{ 2307 struct nic *nic = netdev_priv(netdev); 2308 2309 eeprom->magic = E100_EEPROM_MAGIC; 2310 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2311 2312 return 0; 2313} 2314 2315static int e100_set_eeprom(struct net_device *netdev, 2316 struct ethtool_eeprom *eeprom, u8 *bytes) 2317{ 2318 struct nic *nic = netdev_priv(netdev); 2319 2320 if(eeprom->magic != E100_EEPROM_MAGIC) 2321 return -EINVAL; 2322 2323 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2324 2325 return e100_eeprom_save(nic, eeprom->offset >> 1, 2326 (eeprom->len >> 1) + 1); 2327} 2328 2329static void e100_get_ringparam(struct net_device *netdev, 2330 struct ethtool_ringparam *ring) 2331{ 2332 struct nic *nic = netdev_priv(netdev); 2333 struct param_range *rfds = &nic->params.rfds; 2334 struct param_range *cbs = &nic->params.cbs; 2335 2336 ring->rx_max_pending = rfds->max; 2337 ring->tx_max_pending = cbs->max; 2338 ring->rx_mini_max_pending = 0; 2339 ring->rx_jumbo_max_pending = 0; 2340 ring->rx_pending = rfds->count; 2341 ring->tx_pending = cbs->count; 2342 ring->rx_mini_pending = 0; 2343 ring->rx_jumbo_pending = 0; 2344} 2345 2346static int e100_set_ringparam(struct net_device *netdev, 2347 struct ethtool_ringparam *ring) 2348{ 2349 struct nic *nic = netdev_priv(netdev); 2350 struct param_range *rfds = &nic->params.rfds; 2351 struct param_range *cbs = &nic->params.cbs; 2352 2353 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2354 return -EINVAL; 2355 2356 if(netif_running(netdev)) 2357 e100_down(nic); 2358 rfds->count = max(ring->rx_pending, rfds->min); 2359 rfds->count = min(rfds->count, rfds->max); 2360 cbs->count = max(ring->tx_pending, cbs->min); 2361 cbs->count = min(cbs->count, cbs->max); 2362 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", 2363 rfds->count, cbs->count); 2364 if(netif_running(netdev)) 2365 e100_up(nic); 2366 2367 return 0; 2368} 2369 2370static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2371 "Link test (on/offline)", 2372 "Eeprom test (on/offline)", 2373 "Self test (offline)", 2374 "Mac loopback (offline)", 2375 "Phy loopback (offline)", 2376}; 2377#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN 2378 2379static int e100_diag_test_count(struct net_device *netdev) 2380{ 2381 return E100_TEST_LEN; 2382} 2383 2384static void e100_diag_test(struct net_device *netdev, 2385 struct ethtool_test *test, u64 *data) 2386{ 2387 struct ethtool_cmd cmd; 2388 struct nic *nic = netdev_priv(netdev); 2389 int i, err; 2390 2391 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2392 data[0] = !mii_link_ok(&nic->mii); 2393 data[1] = e100_eeprom_load(nic); 2394 if(test->flags & ETH_TEST_FL_OFFLINE) { 2395 2396 /* save speed, duplex & autoneg settings */ 2397 err = mii_ethtool_gset(&nic->mii, &cmd); 2398 2399 if(netif_running(netdev)) 2400 e100_down(nic); 2401 data[2] = e100_self_test(nic); 2402 data[3] = e100_loopback_test(nic, lb_mac); 2403 data[4] = e100_loopback_test(nic, lb_phy); 2404 2405 /* restore speed, duplex & autoneg settings */ 2406 err = mii_ethtool_sset(&nic->mii, &cmd); 2407 2408 if(netif_running(netdev)) 2409 e100_up(nic); 2410 } 2411 for(i = 0; i < E100_TEST_LEN; i++) 2412 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2413 2414 msleep_interruptible(4 * 1000); 2415} 2416 2417static int e100_phys_id(struct net_device *netdev, u32 data) 2418{ 2419 struct nic *nic = netdev_priv(netdev); 2420 2421 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 2422 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); 2423 mod_timer(&nic->blink_timer, jiffies); 2424 msleep_interruptible(data * 1000); 2425 del_timer_sync(&nic->blink_timer); 2426 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); 2427 2428 return 0; 2429} 2430 2431static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2432 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2433 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2434 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2435 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2436 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2437 "tx_heartbeat_errors", "tx_window_errors", 2438 /* device-specific stats */ 2439 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2440 "tx_flow_control_pause", "rx_flow_control_pause", 2441 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2442}; 2443#define E100_NET_STATS_LEN 21 2444#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN 2445 2446static int e100_get_stats_count(struct net_device *netdev) 2447{ 2448 return E100_STATS_LEN; 2449} 2450 2451static void e100_get_ethtool_stats(struct net_device *netdev, 2452 struct ethtool_stats *stats, u64 *data) 2453{ 2454 struct nic *nic = netdev_priv(netdev); 2455 int i; 2456 2457 for(i = 0; i < E100_NET_STATS_LEN; i++) 2458 data[i] = ((unsigned long *)&nic->net_stats)[i]; 2459 2460 data[i++] = nic->tx_deferred; 2461 data[i++] = nic->tx_single_collisions; 2462 data[i++] = nic->tx_multiple_collisions; 2463 data[i++] = nic->tx_fc_pause; 2464 data[i++] = nic->rx_fc_pause; 2465 data[i++] = nic->rx_fc_unsupported; 2466 data[i++] = nic->tx_tco_frames; 2467 data[i++] = nic->rx_tco_frames; 2468} 2469 2470static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2471{ 2472 switch(stringset) { 2473 case ETH_SS_TEST: 2474 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2475 break; 2476 case ETH_SS_STATS: 2477 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2478 break; 2479 } 2480} 2481 2482static struct ethtool_ops e100_ethtool_ops = { 2483 .get_settings = e100_get_settings, 2484 .set_settings = e100_set_settings, 2485 .get_drvinfo = e100_get_drvinfo, 2486 .get_regs_len = e100_get_regs_len, 2487 .get_regs = e100_get_regs, 2488 .get_wol = e100_get_wol, 2489 .set_wol = e100_set_wol, 2490 .get_msglevel = e100_get_msglevel, 2491 .set_msglevel = e100_set_msglevel, 2492 .nway_reset = e100_nway_reset, 2493 .get_link = e100_get_link, 2494 .get_eeprom_len = e100_get_eeprom_len, 2495 .get_eeprom = e100_get_eeprom, 2496 .set_eeprom = e100_set_eeprom, 2497 .get_ringparam = e100_get_ringparam, 2498 .set_ringparam = e100_set_ringparam, 2499 .self_test_count = e100_diag_test_count, 2500 .self_test = e100_diag_test, 2501 .get_strings = e100_get_strings, 2502 .phys_id = e100_phys_id, 2503 .get_stats_count = e100_get_stats_count, 2504 .get_ethtool_stats = e100_get_ethtool_stats, 2505 .get_perm_addr = ethtool_op_get_perm_addr, 2506}; 2507 2508static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2509{ 2510 struct nic *nic = netdev_priv(netdev); 2511 2512 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2513} 2514 2515static int e100_alloc(struct nic *nic) 2516{ 2517 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2518 &nic->dma_addr); 2519 return nic->mem ? 0 : -ENOMEM; 2520} 2521 2522static void e100_free(struct nic *nic) 2523{ 2524 if(nic->mem) { 2525 pci_free_consistent(nic->pdev, sizeof(struct mem), 2526 nic->mem, nic->dma_addr); 2527 nic->mem = NULL; 2528 } 2529} 2530 2531static int e100_open(struct net_device *netdev) 2532{ 2533 struct nic *nic = netdev_priv(netdev); 2534 int err = 0; 2535 2536 netif_carrier_off(netdev); 2537 if((err = e100_up(nic))) 2538 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); 2539 return err; 2540} 2541 2542static int e100_close(struct net_device *netdev) 2543{ 2544 e100_down(netdev_priv(netdev)); 2545 return 0; 2546} 2547 2548static int __devinit e100_probe(struct pci_dev *pdev, 2549 const struct pci_device_id *ent) 2550{ 2551 struct net_device *netdev; 2552 struct nic *nic; 2553 int err; 2554 2555 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { 2556 if(((1 << debug) - 1) & NETIF_MSG_PROBE) 2557 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); 2558 return -ENOMEM; 2559 } 2560 2561 netdev->open = e100_open; 2562 netdev->stop = e100_close; 2563 netdev->hard_start_xmit = e100_xmit_frame; 2564 netdev->get_stats = e100_get_stats; 2565 netdev->set_multicast_list = e100_set_multicast_list; 2566 netdev->set_mac_address = e100_set_mac_address; 2567 netdev->change_mtu = e100_change_mtu; 2568 netdev->do_ioctl = e100_do_ioctl; 2569 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); 2570 netdev->tx_timeout = e100_tx_timeout; 2571 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2572 netdev->poll = e100_poll; 2573 netdev->weight = E100_NAPI_WEIGHT; 2574#ifdef CONFIG_NET_POLL_CONTROLLER 2575 netdev->poll_controller = e100_netpoll; 2576#endif 2577 strcpy(netdev->name, pci_name(pdev)); 2578 2579 nic = netdev_priv(netdev); 2580 nic->netdev = netdev; 2581 nic->pdev = pdev; 2582 nic->msg_enable = (1 << debug) - 1; 2583 pci_set_drvdata(pdev, netdev); 2584 2585 if((err = pci_enable_device(pdev))) { 2586 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); 2587 goto err_out_free_dev; 2588 } 2589 2590 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2591 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " 2592 "base address, aborting.\n"); 2593 err = -ENODEV; 2594 goto err_out_disable_pdev; 2595 } 2596 2597 if((err = pci_request_regions(pdev, DRV_NAME))) { 2598 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); 2599 goto err_out_disable_pdev; 2600 } 2601 2602 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { 2603 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); 2604 goto err_out_free_res; 2605 } 2606 2607 SET_MODULE_OWNER(netdev); 2608 SET_NETDEV_DEV(netdev, &pdev->dev); 2609 2610 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr)); 2611 if(!nic->csr) { 2612 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); 2613 err = -ENOMEM; 2614 goto err_out_free_res; 2615 } 2616 2617 if(ent->driver_data) 2618 nic->flags |= ich; 2619 else 2620 nic->flags &= ~ich; 2621 2622 e100_get_defaults(nic); 2623 2624 /* locks must be initialized before calling hw_reset */ 2625 spin_lock_init(&nic->cb_lock); 2626 spin_lock_init(&nic->cmd_lock); 2627 spin_lock_init(&nic->mdio_lock); 2628 2629 /* Reset the device before pci_set_master() in case device is in some 2630 * funky state and has an interrupt pending - hint: we don't have the 2631 * interrupt handler registered yet. */ 2632 e100_hw_reset(nic); 2633 2634 pci_set_master(pdev); 2635 2636 init_timer(&nic->watchdog); 2637 nic->watchdog.function = e100_watchdog; 2638 nic->watchdog.data = (unsigned long)nic; 2639 init_timer(&nic->blink_timer); 2640 nic->blink_timer.function = e100_blink_led; 2641 nic->blink_timer.data = (unsigned long)nic; 2642 2643 INIT_WORK(&nic->tx_timeout_task, 2644 (void (*)(void *))e100_tx_timeout_task, netdev); 2645 2646 if((err = e100_alloc(nic))) { 2647 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); 2648 goto err_out_iounmap; 2649 } 2650 2651 if((err = e100_eeprom_load(nic))) 2652 goto err_out_free; 2653 2654 e100_phy_init(nic); 2655 2656 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2657 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); 2658 if(!is_valid_ether_addr(netdev->perm_addr)) { 2659 DPRINTK(PROBE, ERR, "Invalid MAC address from " 2660 "EEPROM, aborting.\n"); 2661 err = -EAGAIN; 2662 goto err_out_free; 2663 } 2664 2665 /* Wol magic packet can be enabled from eeprom */ 2666 if((nic->mac >= mac_82558_D101_A4) && 2667 (nic->eeprom[eeprom_id] & eeprom_id_wol)) 2668 nic->flags |= wol_magic; 2669 2670 /* ack any pending wake events, disable PME */ 2671 err = pci_enable_wake(pdev, 0, 0); 2672 if (err) 2673 DPRINTK(PROBE, ERR, "Error clearing wake event\n"); 2674 2675 strcpy(netdev->name, "eth%d"); 2676 if((err = register_netdev(netdev))) { 2677 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); 2678 goto err_out_free; 2679 } 2680 2681 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, " 2682 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", 2683 pci_resource_start(pdev, 0), pdev->irq, 2684 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], 2685 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); 2686 2687 return 0; 2688 2689err_out_free: 2690 e100_free(nic); 2691err_out_iounmap: 2692 iounmap(nic->csr); 2693err_out_free_res: 2694 pci_release_regions(pdev); 2695err_out_disable_pdev: 2696 pci_disable_device(pdev); 2697err_out_free_dev: 2698 pci_set_drvdata(pdev, NULL); 2699 free_netdev(netdev); 2700 return err; 2701} 2702 2703static void __devexit e100_remove(struct pci_dev *pdev) 2704{ 2705 struct net_device *netdev = pci_get_drvdata(pdev); 2706 2707 if(netdev) { 2708 struct nic *nic = netdev_priv(netdev); 2709 unregister_netdev(netdev); 2710 e100_free(nic); 2711 iounmap(nic->csr); 2712 free_netdev(netdev); 2713 pci_release_regions(pdev); 2714 pci_disable_device(pdev); 2715 pci_set_drvdata(pdev, NULL); 2716 } 2717} 2718 2719#ifdef CONFIG_PM 2720static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 2721{ 2722 struct net_device *netdev = pci_get_drvdata(pdev); 2723 struct nic *nic = netdev_priv(netdev); 2724 int retval; 2725 2726 if(netif_running(netdev)) 2727 e100_down(nic); 2728 e100_hw_reset(nic); 2729 netif_device_detach(netdev); 2730 2731 pci_save_state(pdev); 2732 retval = pci_enable_wake(pdev, pci_choose_state(pdev, state), 2733 nic->flags & (wol_magic | e100_asf(nic))); 2734 if (retval) 2735 DPRINTK(PROBE,ERR, "Error enabling wake\n"); 2736 pci_disable_device(pdev); 2737 retval = pci_set_power_state(pdev, pci_choose_state(pdev, state)); 2738 if (retval) 2739 DPRINTK(PROBE,ERR, "Error %d setting power state\n", retval); 2740 2741 return 0; 2742} 2743 2744static int e100_resume(struct pci_dev *pdev) 2745{ 2746 struct net_device *netdev = pci_get_drvdata(pdev); 2747 struct nic *nic = netdev_priv(netdev); 2748 int retval; 2749 2750 retval = pci_set_power_state(pdev, PCI_D0); 2751 if (retval) 2752 DPRINTK(PROBE,ERR, "Error waking adapter\n"); 2753 pci_restore_state(pdev); 2754 /* ack any pending wake events, disable PME */ 2755 retval = pci_enable_wake(pdev, 0, 0); 2756 if (retval) 2757 DPRINTK(PROBE,ERR, "Error clearing wake events\n"); 2758 2759 netif_device_attach(netdev); 2760 if(netif_running(netdev)) 2761 e100_up(nic); 2762 2763 return 0; 2764} 2765#endif 2766 2767 2768static void e100_shutdown(struct pci_dev *pdev) 2769{ 2770 struct net_device *netdev = pci_get_drvdata(pdev); 2771 struct nic *nic = netdev_priv(netdev); 2772 int retval; 2773 2774#ifdef CONFIG_PM 2775 retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); 2776#else 2777 retval = pci_enable_wake(pdev, 0, nic->flags & (wol_magic)); 2778#endif 2779 if (retval) 2780 DPRINTK(PROBE,ERR, "Error enabling wake\n"); 2781} 2782 2783 2784static struct pci_driver e100_driver = { 2785 .name = DRV_NAME, 2786 .id_table = e100_id_table, 2787 .probe = e100_probe, 2788 .remove = __devexit_p(e100_remove), 2789#ifdef CONFIG_PM 2790 .suspend = e100_suspend, 2791 .resume = e100_resume, 2792#endif 2793 .shutdown = e100_shutdown, 2794}; 2795 2796static int __init e100_init_module(void) 2797{ 2798 if(((1 << debug) - 1) & NETIF_MSG_DRV) { 2799 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 2800 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); 2801 } 2802 return pci_module_init(&e100_driver); 2803} 2804 2805static void __exit e100_cleanup_module(void) 2806{ 2807 pci_unregister_driver(&e100_driver); 2808} 2809 2810module_init(e100_init_module); 2811module_exit(e100_cleanup_module);