at v2.6.16 48 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb_ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/config.h> 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23 24struct usb_device; 25struct usb_driver; 26 27/*-------------------------------------------------------------------------*/ 28 29/* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44/** 45 * struct usb_host_endpoint - host-side endpoint descriptor and queue 46 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 47 * @urb_list: urbs queued to this endpoint; maintained by usbcore 48 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 49 * with one or more transfer descriptors (TDs) per urb 50 * @kobj: kobject for sysfs info 51 * @extra: descriptors following this endpoint in the configuration 52 * @extralen: how many bytes of "extra" are valid 53 * 54 * USB requests are always queued to a given endpoint, identified by a 55 * descriptor within an active interface in a given USB configuration. 56 */ 57struct usb_host_endpoint { 58 struct usb_endpoint_descriptor desc; 59 struct list_head urb_list; 60 void *hcpriv; 61 struct kobject *kobj; /* For sysfs info */ 62 63 unsigned char *extra; /* Extra descriptors */ 64 int extralen; 65}; 66 67/* host-side wrapper for one interface setting's parsed descriptors */ 68struct usb_host_interface { 69 struct usb_interface_descriptor desc; 70 71 /* array of desc.bNumEndpoint endpoints associated with this 72 * interface setting. these will be in no particular order. 73 */ 74 struct usb_host_endpoint *endpoint; 75 76 char *string; /* iInterface string, if present */ 77 unsigned char *extra; /* Extra descriptors */ 78 int extralen; 79}; 80 81enum usb_interface_condition { 82 USB_INTERFACE_UNBOUND = 0, 83 USB_INTERFACE_BINDING, 84 USB_INTERFACE_BOUND, 85 USB_INTERFACE_UNBINDING, 86}; 87 88/** 89 * struct usb_interface - what usb device drivers talk to 90 * @altsetting: array of interface structures, one for each alternate 91 * setting that may be selected. Each one includes a set of 92 * endpoint configurations. They will be in no particular order. 93 * @num_altsetting: number of altsettings defined. 94 * @cur_altsetting: the current altsetting. 95 * @driver: the USB driver that is bound to this interface. 96 * @minor: the minor number assigned to this interface, if this 97 * interface is bound to a driver that uses the USB major number. 98 * If this interface does not use the USB major, this field should 99 * be unused. The driver should set this value in the probe() 100 * function of the driver, after it has been assigned a minor 101 * number from the USB core by calling usb_register_dev(). 102 * @condition: binding state of the interface: not bound, binding 103 * (in probe()), bound to a driver, or unbinding (in disconnect()) 104 * @dev: driver model's view of this device 105 * @class_dev: driver model's class view of this device. 106 * 107 * USB device drivers attach to interfaces on a physical device. Each 108 * interface encapsulates a single high level function, such as feeding 109 * an audio stream to a speaker or reporting a change in a volume control. 110 * Many USB devices only have one interface. The protocol used to talk to 111 * an interface's endpoints can be defined in a usb "class" specification, 112 * or by a product's vendor. The (default) control endpoint is part of 113 * every interface, but is never listed among the interface's descriptors. 114 * 115 * The driver that is bound to the interface can use standard driver model 116 * calls such as dev_get_drvdata() on the dev member of this structure. 117 * 118 * Each interface may have alternate settings. The initial configuration 119 * of a device sets altsetting 0, but the device driver can change 120 * that setting using usb_set_interface(). Alternate settings are often 121 * used to control the the use of periodic endpoints, such as by having 122 * different endpoints use different amounts of reserved USB bandwidth. 123 * All standards-conformant USB devices that use isochronous endpoints 124 * will use them in non-default settings. 125 * 126 * The USB specification says that alternate setting numbers must run from 127 * 0 to one less than the total number of alternate settings. But some 128 * devices manage to mess this up, and the structures aren't necessarily 129 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 130 * look up an alternate setting in the altsetting array based on its number. 131 */ 132struct usb_interface { 133 /* array of alternate settings for this interface, 134 * stored in no particular order */ 135 struct usb_host_interface *altsetting; 136 137 struct usb_host_interface *cur_altsetting; /* the currently 138 * active alternate setting */ 139 unsigned num_altsetting; /* number of alternate settings */ 140 141 int minor; /* minor number this interface is 142 * bound to */ 143 enum usb_interface_condition condition; /* state of binding */ 144 struct device dev; /* interface specific device info */ 145 struct class_device *class_dev; 146}; 147#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 148#define interface_to_usbdev(intf) \ 149 container_of(intf->dev.parent, struct usb_device, dev) 150 151static inline void *usb_get_intfdata (struct usb_interface *intf) 152{ 153 return dev_get_drvdata (&intf->dev); 154} 155 156static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 157{ 158 dev_set_drvdata(&intf->dev, data); 159} 160 161struct usb_interface *usb_get_intf(struct usb_interface *intf); 162void usb_put_intf(struct usb_interface *intf); 163 164/* this maximum is arbitrary */ 165#define USB_MAXINTERFACES 32 166 167/** 168 * struct usb_interface_cache - long-term representation of a device interface 169 * @num_altsetting: number of altsettings defined. 170 * @ref: reference counter. 171 * @altsetting: variable-length array of interface structures, one for 172 * each alternate setting that may be selected. Each one includes a 173 * set of endpoint configurations. They will be in no particular order. 174 * 175 * These structures persist for the lifetime of a usb_device, unlike 176 * struct usb_interface (which persists only as long as its configuration 177 * is installed). The altsetting arrays can be accessed through these 178 * structures at any time, permitting comparison of configurations and 179 * providing support for the /proc/bus/usb/devices pseudo-file. 180 */ 181struct usb_interface_cache { 182 unsigned num_altsetting; /* number of alternate settings */ 183 struct kref ref; /* reference counter */ 184 185 /* variable-length array of alternate settings for this interface, 186 * stored in no particular order */ 187 struct usb_host_interface altsetting[0]; 188}; 189#define ref_to_usb_interface_cache(r) \ 190 container_of(r, struct usb_interface_cache, ref) 191#define altsetting_to_usb_interface_cache(a) \ 192 container_of(a, struct usb_interface_cache, altsetting[0]) 193 194/** 195 * struct usb_host_config - representation of a device's configuration 196 * @desc: the device's configuration descriptor. 197 * @string: pointer to the cached version of the iConfiguration string, if 198 * present for this configuration. 199 * @interface: array of pointers to usb_interface structures, one for each 200 * interface in the configuration. The number of interfaces is stored 201 * in desc.bNumInterfaces. These pointers are valid only while the 202 * the configuration is active. 203 * @intf_cache: array of pointers to usb_interface_cache structures, one 204 * for each interface in the configuration. These structures exist 205 * for the entire life of the device. 206 * @extra: pointer to buffer containing all extra descriptors associated 207 * with this configuration (those preceding the first interface 208 * descriptor). 209 * @extralen: length of the extra descriptors buffer. 210 * 211 * USB devices may have multiple configurations, but only one can be active 212 * at any time. Each encapsulates a different operational environment; 213 * for example, a dual-speed device would have separate configurations for 214 * full-speed and high-speed operation. The number of configurations 215 * available is stored in the device descriptor as bNumConfigurations. 216 * 217 * A configuration can contain multiple interfaces. Each corresponds to 218 * a different function of the USB device, and all are available whenever 219 * the configuration is active. The USB standard says that interfaces 220 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 221 * of devices get this wrong. In addition, the interface array is not 222 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 223 * look up an interface entry based on its number. 224 * 225 * Device drivers should not attempt to activate configurations. The choice 226 * of which configuration to install is a policy decision based on such 227 * considerations as available power, functionality provided, and the user's 228 * desires (expressed through userspace tools). However, drivers can call 229 * usb_reset_configuration() to reinitialize the current configuration and 230 * all its interfaces. 231 */ 232struct usb_host_config { 233 struct usb_config_descriptor desc; 234 235 char *string; /* iConfiguration string, if present */ 236 /* the interfaces associated with this configuration, 237 * stored in no particular order */ 238 struct usb_interface *interface[USB_MAXINTERFACES]; 239 240 /* Interface information available even when this is not the 241 * active configuration */ 242 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 243 244 unsigned char *extra; /* Extra descriptors */ 245 int extralen; 246}; 247 248int __usb_get_extra_descriptor(char *buffer, unsigned size, 249 unsigned char type, void **ptr); 250#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 251 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 252 type,(void**)ptr) 253 254/* ----------------------------------------------------------------------- */ 255 256struct usb_operations; 257 258/* USB device number allocation bitmap */ 259struct usb_devmap { 260 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 261}; 262 263/* 264 * Allocated per bus (tree of devices) we have: 265 */ 266struct usb_bus { 267 struct device *controller; /* host/master side hardware */ 268 int busnum; /* Bus number (in order of reg) */ 269 char *bus_name; /* stable id (PCI slot_name etc) */ 270 u8 otg_port; /* 0, or number of OTG/HNP port */ 271 unsigned is_b_host:1; /* true during some HNP roleswitches */ 272 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 273 274 int devnum_next; /* Next open device number in 275 * round-robin allocation */ 276 277 struct usb_devmap devmap; /* device address allocation map */ 278 struct usb_operations *op; /* Operations (specific to the HC) */ 279 struct usb_device *root_hub; /* Root hub */ 280 struct list_head bus_list; /* list of busses */ 281 void *hcpriv; /* Host Controller private data */ 282 283 int bandwidth_allocated; /* on this bus: how much of the time 284 * reserved for periodic (intr/iso) 285 * requests is used, on average? 286 * Units: microseconds/frame. 287 * Limits: Full/low speed reserve 90%, 288 * while high speed reserves 80%. 289 */ 290 int bandwidth_int_reqs; /* number of Interrupt requests */ 291 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 292 293 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 294 295 struct class_device *class_dev; /* class device for this bus */ 296 struct kref kref; /* reference counting for this bus */ 297 void (*release)(struct usb_bus *bus); 298 299#if defined(CONFIG_USB_MON) 300 struct mon_bus *mon_bus; /* non-null when associated */ 301 int monitored; /* non-zero when monitored */ 302#endif 303}; 304 305/* ----------------------------------------------------------------------- */ 306 307/* This is arbitrary. 308 * From USB 2.0 spec Table 11-13, offset 7, a hub can 309 * have up to 255 ports. The most yet reported is 10. 310 */ 311#define USB_MAXCHILDREN (16) 312 313struct usb_tt; 314 315/* 316 * struct usb_device - kernel's representation of a USB device 317 * 318 * FIXME: Write the kerneldoc! 319 * 320 * Usbcore drivers should not set usbdev->state directly. Instead use 321 * usb_set_device_state(). 322 */ 323struct usb_device { 324 int devnum; /* Address on USB bus */ 325 char devpath [16]; /* Use in messages: /port/port/... */ 326 enum usb_device_state state; /* configured, not attached, etc */ 327 enum usb_device_speed speed; /* high/full/low (or error) */ 328 329 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 330 int ttport; /* device port on that tt hub */ 331 332 unsigned int toggle[2]; /* one bit for each endpoint 333 * ([0] = IN, [1] = OUT) */ 334 335 struct usb_device *parent; /* our hub, unless we're the root */ 336 struct usb_bus *bus; /* Bus we're part of */ 337 struct usb_host_endpoint ep0; 338 339 struct device dev; /* Generic device interface */ 340 341 struct usb_device_descriptor descriptor;/* Descriptor */ 342 struct usb_host_config *config; /* All of the configs */ 343 344 struct usb_host_config *actconfig;/* the active configuration */ 345 struct usb_host_endpoint *ep_in[16]; 346 struct usb_host_endpoint *ep_out[16]; 347 348 char **rawdescriptors; /* Raw descriptors for each config */ 349 350 unsigned short bus_mA; /* Current available from the bus */ 351 u8 portnum; /* Parent port number (origin 1) */ 352 353 int have_langid; /* whether string_langid is valid */ 354 int string_langid; /* language ID for strings */ 355 356 /* static strings from the device */ 357 char *product; /* iProduct string, if present */ 358 char *manufacturer; /* iManufacturer string, if present */ 359 char *serial; /* iSerialNumber string, if present */ 360 361 struct list_head filelist; 362 struct class_device *class_dev; 363 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 364 365 /* 366 * Child devices - these can be either new devices 367 * (if this is a hub device), or different instances 368 * of this same device. 369 * 370 * Each instance needs its own set of data structures. 371 */ 372 373 int maxchild; /* Number of ports if hub */ 374 struct usb_device *children[USB_MAXCHILDREN]; 375}; 376#define to_usb_device(d) container_of(d, struct usb_device, dev) 377 378extern struct usb_device *usb_get_dev(struct usb_device *dev); 379extern void usb_put_dev(struct usb_device *dev); 380 381/* USB device locking */ 382#define usb_lock_device(udev) down(&(udev)->dev.sem) 383#define usb_unlock_device(udev) up(&(udev)->dev.sem) 384#define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem) 385extern int usb_lock_device_for_reset(struct usb_device *udev, 386 struct usb_interface *iface); 387 388/* USB port reset for device reinitialization */ 389extern int usb_reset_device(struct usb_device *dev); 390 391extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 392 393/*-------------------------------------------------------------------------*/ 394 395/* for drivers using iso endpoints */ 396extern int usb_get_current_frame_number (struct usb_device *usb_dev); 397 398/* used these for multi-interface device registration */ 399extern int usb_driver_claim_interface(struct usb_driver *driver, 400 struct usb_interface *iface, void* priv); 401 402/** 403 * usb_interface_claimed - returns true iff an interface is claimed 404 * @iface: the interface being checked 405 * 406 * Returns true (nonzero) iff the interface is claimed, else false (zero). 407 * Callers must own the driver model's usb bus readlock. So driver 408 * probe() entries don't need extra locking, but other call contexts 409 * may need to explicitly claim that lock. 410 * 411 */ 412static inline int usb_interface_claimed(struct usb_interface *iface) { 413 return (iface->dev.driver != NULL); 414} 415 416extern void usb_driver_release_interface(struct usb_driver *driver, 417 struct usb_interface *iface); 418const struct usb_device_id *usb_match_id(struct usb_interface *interface, 419 const struct usb_device_id *id); 420 421extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 422 int minor); 423extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, 424 unsigned ifnum); 425extern struct usb_host_interface *usb_altnum_to_altsetting( 426 struct usb_interface *intf, unsigned int altnum); 427 428 429/** 430 * usb_make_path - returns stable device path in the usb tree 431 * @dev: the device whose path is being constructed 432 * @buf: where to put the string 433 * @size: how big is "buf"? 434 * 435 * Returns length of the string (> 0) or negative if size was too small. 436 * 437 * This identifier is intended to be "stable", reflecting physical paths in 438 * hardware such as physical bus addresses for host controllers or ports on 439 * USB hubs. That makes it stay the same until systems are physically 440 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 441 * controllers. Adding and removing devices, including virtual root hubs 442 * in host controller driver modules, does not change these path identifers; 443 * neither does rebooting or re-enumerating. These are more useful identifiers 444 * than changeable ("unstable") ones like bus numbers or device addresses. 445 * 446 * With a partial exception for devices connected to USB 2.0 root hubs, these 447 * identifiers are also predictable. So long as the device tree isn't changed, 448 * plugging any USB device into a given hub port always gives it the same path. 449 * Because of the use of "companion" controllers, devices connected to ports on 450 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 451 * high speed, and a different one if they are full or low speed. 452 */ 453static inline int usb_make_path (struct usb_device *dev, char *buf, 454 size_t size) 455{ 456 int actual; 457 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 458 dev->devpath); 459 return (actual >= (int)size) ? -1 : actual; 460} 461 462/*-------------------------------------------------------------------------*/ 463 464#define USB_DEVICE_ID_MATCH_DEVICE \ 465 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 466#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 467 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 468#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 469 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 470#define USB_DEVICE_ID_MATCH_DEV_INFO \ 471 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 472 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 473 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 474#define USB_DEVICE_ID_MATCH_INT_INFO \ 475 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 476 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 477 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 478 479/** 480 * USB_DEVICE - macro used to describe a specific usb device 481 * @vend: the 16 bit USB Vendor ID 482 * @prod: the 16 bit USB Product ID 483 * 484 * This macro is used to create a struct usb_device_id that matches a 485 * specific device. 486 */ 487#define USB_DEVICE(vend,prod) \ 488 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 489 .idProduct = (prod) 490/** 491 * USB_DEVICE_VER - macro used to describe a specific usb device with a 492 * version range 493 * @vend: the 16 bit USB Vendor ID 494 * @prod: the 16 bit USB Product ID 495 * @lo: the bcdDevice_lo value 496 * @hi: the bcdDevice_hi value 497 * 498 * This macro is used to create a struct usb_device_id that matches a 499 * specific device, with a version range. 500 */ 501#define USB_DEVICE_VER(vend,prod,lo,hi) \ 502 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 503 .idVendor = (vend), .idProduct = (prod), \ 504 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 505 506/** 507 * USB_DEVICE_INFO - macro used to describe a class of usb devices 508 * @cl: bDeviceClass value 509 * @sc: bDeviceSubClass value 510 * @pr: bDeviceProtocol value 511 * 512 * This macro is used to create a struct usb_device_id that matches a 513 * specific class of devices. 514 */ 515#define USB_DEVICE_INFO(cl,sc,pr) \ 516 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 517 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 518 519/** 520 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 521 * @cl: bInterfaceClass value 522 * @sc: bInterfaceSubClass value 523 * @pr: bInterfaceProtocol value 524 * 525 * This macro is used to create a struct usb_device_id that matches a 526 * specific class of interfaces. 527 */ 528#define USB_INTERFACE_INFO(cl,sc,pr) \ 529 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 530 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 531 532/* ----------------------------------------------------------------------- */ 533 534struct usb_dynids { 535 spinlock_t lock; 536 struct list_head list; 537}; 538 539/** 540 * struct usb_driver - identifies USB driver to usbcore 541 * @name: The driver name should be unique among USB drivers, 542 * and should normally be the same as the module name. 543 * @probe: Called to see if the driver is willing to manage a particular 544 * interface on a device. If it is, probe returns zero and uses 545 * dev_set_drvdata() to associate driver-specific data with the 546 * interface. It may also use usb_set_interface() to specify the 547 * appropriate altsetting. If unwilling to manage the interface, 548 * return a negative errno value. 549 * @disconnect: Called when the interface is no longer accessible, usually 550 * because its device has been (or is being) disconnected or the 551 * driver module is being unloaded. 552 * @ioctl: Used for drivers that want to talk to userspace through 553 * the "usbfs" filesystem. This lets devices provide ways to 554 * expose information to user space regardless of where they 555 * do (or don't) show up otherwise in the filesystem. 556 * @suspend: Called when the device is going to be suspended by the system. 557 * @resume: Called when the device is being resumed by the system. 558 * @id_table: USB drivers use ID table to support hotplugging. 559 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 560 * or your driver's probe function will never get called. 561 * @dynids: used internally to hold the list of dynamically added device 562 * ids for this driver. 563 * @driver: the driver model core driver structure. 564 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be 565 * added to this driver by preventing the sysfs file from being created. 566 * 567 * USB drivers must provide a name, probe() and disconnect() methods, 568 * and an id_table. Other driver fields are optional. 569 * 570 * The id_table is used in hotplugging. It holds a set of descriptors, 571 * and specialized data may be associated with each entry. That table 572 * is used by both user and kernel mode hotplugging support. 573 * 574 * The probe() and disconnect() methods are called in a context where 575 * they can sleep, but they should avoid abusing the privilege. Most 576 * work to connect to a device should be done when the device is opened, 577 * and undone at the last close. The disconnect code needs to address 578 * concurrency issues with respect to open() and close() methods, as 579 * well as forcing all pending I/O requests to complete (by unlinking 580 * them as necessary, and blocking until the unlinks complete). 581 */ 582struct usb_driver { 583 const char *name; 584 585 int (*probe) (struct usb_interface *intf, 586 const struct usb_device_id *id); 587 588 void (*disconnect) (struct usb_interface *intf); 589 590 int (*ioctl) (struct usb_interface *intf, unsigned int code, 591 void *buf); 592 593 int (*suspend) (struct usb_interface *intf, pm_message_t message); 594 int (*resume) (struct usb_interface *intf); 595 596 const struct usb_device_id *id_table; 597 598 struct usb_dynids dynids; 599 struct device_driver driver; 600 unsigned int no_dynamic_id:1; 601}; 602#define to_usb_driver(d) container_of(d, struct usb_driver, driver) 603 604extern struct bus_type usb_bus_type; 605 606/** 607 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 608 * @name: the usb class device name for this driver. Will show up in sysfs. 609 * @fops: pointer to the struct file_operations of this driver. 610 * @minor_base: the start of the minor range for this driver. 611 * 612 * This structure is used for the usb_register_dev() and 613 * usb_unregister_dev() functions, to consolidate a number of the 614 * parameters used for them. 615 */ 616struct usb_class_driver { 617 char *name; 618 struct file_operations *fops; 619 int minor_base; 620}; 621 622/* 623 * use these in module_init()/module_exit() 624 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 625 */ 626int usb_register_driver(struct usb_driver *, struct module *); 627static inline int usb_register(struct usb_driver *driver) 628{ 629 return usb_register_driver(driver, THIS_MODULE); 630} 631extern void usb_deregister(struct usb_driver *); 632 633extern int usb_register_dev(struct usb_interface *intf, 634 struct usb_class_driver *class_driver); 635extern void usb_deregister_dev(struct usb_interface *intf, 636 struct usb_class_driver *class_driver); 637 638extern int usb_disabled(void); 639 640/* ----------------------------------------------------------------------- */ 641 642/* 643 * URB support, for asynchronous request completions 644 */ 645 646/* 647 * urb->transfer_flags: 648 */ 649#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 650#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 651 * ignored */ 652#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 653#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 654#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 655#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 656#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 657 * needed */ 658 659struct usb_iso_packet_descriptor { 660 unsigned int offset; 661 unsigned int length; /* expected length */ 662 unsigned int actual_length; 663 unsigned int status; 664}; 665 666struct urb; 667struct pt_regs; 668 669typedef void (*usb_complete_t)(struct urb *, struct pt_regs *); 670 671/** 672 * struct urb - USB Request Block 673 * @urb_list: For use by current owner of the URB. 674 * @pipe: Holds endpoint number, direction, type, and more. 675 * Create these values with the eight macros available; 676 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 677 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 678 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 679 * numbers range from zero to fifteen. Note that "in" endpoint two 680 * is a different endpoint (and pipe) from "out" endpoint two. 681 * The current configuration controls the existence, type, and 682 * maximum packet size of any given endpoint. 683 * @dev: Identifies the USB device to perform the request. 684 * @status: This is read in non-iso completion functions to get the 685 * status of the particular request. ISO requests only use it 686 * to tell whether the URB was unlinked; detailed status for 687 * each frame is in the fields of the iso_frame-desc. 688 * @transfer_flags: A variety of flags may be used to affect how URB 689 * submission, unlinking, or operation are handled. Different 690 * kinds of URB can use different flags. 691 * @transfer_buffer: This identifies the buffer to (or from) which 692 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 693 * is set). This buffer must be suitable for DMA; allocate it with 694 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 695 * of this buffer will be modified. This buffer is used for the data 696 * stage of control transfers. 697 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 698 * the device driver is saying that it provided this DMA address, 699 * which the host controller driver should use in preference to the 700 * transfer_buffer. 701 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 702 * be broken up into chunks according to the current maximum packet 703 * size for the endpoint, which is a function of the configuration 704 * and is encoded in the pipe. When the length is zero, neither 705 * transfer_buffer nor transfer_dma is used. 706 * @actual_length: This is read in non-iso completion functions, and 707 * it tells how many bytes (out of transfer_buffer_length) were 708 * transferred. It will normally be the same as requested, unless 709 * either an error was reported or a short read was performed. 710 * The URB_SHORT_NOT_OK transfer flag may be used to make such 711 * short reads be reported as errors. 712 * @setup_packet: Only used for control transfers, this points to eight bytes 713 * of setup data. Control transfers always start by sending this data 714 * to the device. Then transfer_buffer is read or written, if needed. 715 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 716 * device driver has provided this DMA address for the setup packet. 717 * The host controller driver should use this in preference to 718 * setup_packet. 719 * @start_frame: Returns the initial frame for isochronous transfers. 720 * @number_of_packets: Lists the number of ISO transfer buffers. 721 * @interval: Specifies the polling interval for interrupt or isochronous 722 * transfers. The units are frames (milliseconds) for for full and low 723 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 724 * @error_count: Returns the number of ISO transfers that reported errors. 725 * @context: For use in completion functions. This normally points to 726 * request-specific driver context. 727 * @complete: Completion handler. This URB is passed as the parameter to the 728 * completion function. The completion function may then do what 729 * it likes with the URB, including resubmitting or freeing it. 730 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 731 * collect the transfer status for each buffer. 732 * 733 * This structure identifies USB transfer requests. URBs must be allocated by 734 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 735 * Initialization may be done using various usb_fill_*_urb() functions. URBs 736 * are submitted using usb_submit_urb(), and pending requests may be canceled 737 * using usb_unlink_urb() or usb_kill_urb(). 738 * 739 * Data Transfer Buffers: 740 * 741 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 742 * taken from the general page pool. That is provided by transfer_buffer 743 * (control requests also use setup_packet), and host controller drivers 744 * perform a dma mapping (and unmapping) for each buffer transferred. Those 745 * mapping operations can be expensive on some platforms (perhaps using a dma 746 * bounce buffer or talking to an IOMMU), 747 * although they're cheap on commodity x86 and ppc hardware. 748 * 749 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 750 * which tell the host controller driver that no such mapping is needed since 751 * the device driver is DMA-aware. For example, a device driver might 752 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 753 * When these transfer flags are provided, host controller drivers will 754 * attempt to use the dma addresses found in the transfer_dma and/or 755 * setup_dma fields rather than determining a dma address themselves. (Note 756 * that transfer_buffer and setup_packet must still be set because not all 757 * host controllers use DMA, nor do virtual root hubs). 758 * 759 * Initialization: 760 * 761 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 762 * zero), and complete fields. All URBs must also initialize 763 * transfer_buffer and transfer_buffer_length. They may provide the 764 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 765 * to be treated as errors; that flag is invalid for write requests. 766 * 767 * Bulk URBs may 768 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 769 * should always terminate with a short packet, even if it means adding an 770 * extra zero length packet. 771 * 772 * Control URBs must provide a setup_packet. The setup_packet and 773 * transfer_buffer may each be mapped for DMA or not, independently of 774 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 775 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 776 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 777 * 778 * Interrupt URBs must provide an interval, saying how often (in milliseconds 779 * or, for highspeed devices, 125 microsecond units) 780 * to poll for transfers. After the URB has been submitted, the interval 781 * field reflects how the transfer was actually scheduled. 782 * The polling interval may be more frequent than requested. 783 * For example, some controllers have a maximum interval of 32 milliseconds, 784 * while others support intervals of up to 1024 milliseconds. 785 * Isochronous URBs also have transfer intervals. (Note that for isochronous 786 * endpoints, as well as high speed interrupt endpoints, the encoding of 787 * the transfer interval in the endpoint descriptor is logarithmic. 788 * Device drivers must convert that value to linear units themselves.) 789 * 790 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 791 * the host controller to schedule the transfer as soon as bandwidth 792 * utilization allows, and then set start_frame to reflect the actual frame 793 * selected during submission. Otherwise drivers must specify the start_frame 794 * and handle the case where the transfer can't begin then. However, drivers 795 * won't know how bandwidth is currently allocated, and while they can 796 * find the current frame using usb_get_current_frame_number () they can't 797 * know the range for that frame number. (Ranges for frame counter values 798 * are HC-specific, and can go from 256 to 65536 frames from "now".) 799 * 800 * Isochronous URBs have a different data transfer model, in part because 801 * the quality of service is only "best effort". Callers provide specially 802 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 803 * at the end. Each such packet is an individual ISO transfer. Isochronous 804 * URBs are normally queued, submitted by drivers to arrange that 805 * transfers are at least double buffered, and then explicitly resubmitted 806 * in completion handlers, so 807 * that data (such as audio or video) streams at as constant a rate as the 808 * host controller scheduler can support. 809 * 810 * Completion Callbacks: 811 * 812 * The completion callback is made in_interrupt(), and one of the first 813 * things that a completion handler should do is check the status field. 814 * The status field is provided for all URBs. It is used to report 815 * unlinked URBs, and status for all non-ISO transfers. It should not 816 * be examined before the URB is returned to the completion handler. 817 * 818 * The context field is normally used to link URBs back to the relevant 819 * driver or request state. 820 * 821 * When the completion callback is invoked for non-isochronous URBs, the 822 * actual_length field tells how many bytes were transferred. This field 823 * is updated even when the URB terminated with an error or was unlinked. 824 * 825 * ISO transfer status is reported in the status and actual_length fields 826 * of the iso_frame_desc array, and the number of errors is reported in 827 * error_count. Completion callbacks for ISO transfers will normally 828 * (re)submit URBs to ensure a constant transfer rate. 829 * 830 * Note that even fields marked "public" should not be touched by the driver 831 * when the urb is owned by the hcd, that is, since the call to 832 * usb_submit_urb() till the entry into the completion routine. 833 */ 834struct urb 835{ 836 /* private: usb core and host controller only fields in the urb */ 837 struct kref kref; /* reference count of the URB */ 838 spinlock_t lock; /* lock for the URB */ 839 void *hcpriv; /* private data for host controller */ 840 int bandwidth; /* bandwidth for INT/ISO request */ 841 atomic_t use_count; /* concurrent submissions counter */ 842 u8 reject; /* submissions will fail */ 843 844 /* public: documented fields in the urb that can be used by drivers */ 845 struct list_head urb_list; /* list head for use by the urb's 846 * current owner */ 847 struct usb_device *dev; /* (in) pointer to associated device */ 848 unsigned int pipe; /* (in) pipe information */ 849 int status; /* (return) non-ISO status */ 850 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 851 void *transfer_buffer; /* (in) associated data buffer */ 852 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 853 int transfer_buffer_length; /* (in) data buffer length */ 854 int actual_length; /* (return) actual transfer length */ 855 unsigned char *setup_packet; /* (in) setup packet (control only) */ 856 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 857 int start_frame; /* (modify) start frame (ISO) */ 858 int number_of_packets; /* (in) number of ISO packets */ 859 int interval; /* (modify) transfer interval 860 * (INT/ISO) */ 861 int error_count; /* (return) number of ISO errors */ 862 void *context; /* (in) context for completion */ 863 usb_complete_t complete; /* (in) completion routine */ 864 struct usb_iso_packet_descriptor iso_frame_desc[0]; 865 /* (in) ISO ONLY */ 866}; 867 868/* ----------------------------------------------------------------------- */ 869 870/** 871 * usb_fill_control_urb - initializes a control urb 872 * @urb: pointer to the urb to initialize. 873 * @dev: pointer to the struct usb_device for this urb. 874 * @pipe: the endpoint pipe 875 * @setup_packet: pointer to the setup_packet buffer 876 * @transfer_buffer: pointer to the transfer buffer 877 * @buffer_length: length of the transfer buffer 878 * @complete: pointer to the usb_complete_t function 879 * @context: what to set the urb context to. 880 * 881 * Initializes a control urb with the proper information needed to submit 882 * it to a device. 883 */ 884static inline void usb_fill_control_urb (struct urb *urb, 885 struct usb_device *dev, 886 unsigned int pipe, 887 unsigned char *setup_packet, 888 void *transfer_buffer, 889 int buffer_length, 890 usb_complete_t complete, 891 void *context) 892{ 893 spin_lock_init(&urb->lock); 894 urb->dev = dev; 895 urb->pipe = pipe; 896 urb->setup_packet = setup_packet; 897 urb->transfer_buffer = transfer_buffer; 898 urb->transfer_buffer_length = buffer_length; 899 urb->complete = complete; 900 urb->context = context; 901} 902 903/** 904 * usb_fill_bulk_urb - macro to help initialize a bulk urb 905 * @urb: pointer to the urb to initialize. 906 * @dev: pointer to the struct usb_device for this urb. 907 * @pipe: the endpoint pipe 908 * @transfer_buffer: pointer to the transfer buffer 909 * @buffer_length: length of the transfer buffer 910 * @complete: pointer to the usb_complete_t function 911 * @context: what to set the urb context to. 912 * 913 * Initializes a bulk urb with the proper information needed to submit it 914 * to a device. 915 */ 916static inline void usb_fill_bulk_urb (struct urb *urb, 917 struct usb_device *dev, 918 unsigned int pipe, 919 void *transfer_buffer, 920 int buffer_length, 921 usb_complete_t complete, 922 void *context) 923{ 924 spin_lock_init(&urb->lock); 925 urb->dev = dev; 926 urb->pipe = pipe; 927 urb->transfer_buffer = transfer_buffer; 928 urb->transfer_buffer_length = buffer_length; 929 urb->complete = complete; 930 urb->context = context; 931} 932 933/** 934 * usb_fill_int_urb - macro to help initialize a interrupt urb 935 * @urb: pointer to the urb to initialize. 936 * @dev: pointer to the struct usb_device for this urb. 937 * @pipe: the endpoint pipe 938 * @transfer_buffer: pointer to the transfer buffer 939 * @buffer_length: length of the transfer buffer 940 * @complete: pointer to the usb_complete_t function 941 * @context: what to set the urb context to. 942 * @interval: what to set the urb interval to, encoded like 943 * the endpoint descriptor's bInterval value. 944 * 945 * Initializes a interrupt urb with the proper information needed to submit 946 * it to a device. 947 * Note that high speed interrupt endpoints use a logarithmic encoding of 948 * the endpoint interval, and express polling intervals in microframes 949 * (eight per millisecond) rather than in frames (one per millisecond). 950 */ 951static inline void usb_fill_int_urb (struct urb *urb, 952 struct usb_device *dev, 953 unsigned int pipe, 954 void *transfer_buffer, 955 int buffer_length, 956 usb_complete_t complete, 957 void *context, 958 int interval) 959{ 960 spin_lock_init(&urb->lock); 961 urb->dev = dev; 962 urb->pipe = pipe; 963 urb->transfer_buffer = transfer_buffer; 964 urb->transfer_buffer_length = buffer_length; 965 urb->complete = complete; 966 urb->context = context; 967 if (dev->speed == USB_SPEED_HIGH) 968 urb->interval = 1 << (interval - 1); 969 else 970 urb->interval = interval; 971 urb->start_frame = -1; 972} 973 974extern void usb_init_urb(struct urb *urb); 975extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 976extern void usb_free_urb(struct urb *urb); 977#define usb_put_urb usb_free_urb 978extern struct urb *usb_get_urb(struct urb *urb); 979extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 980extern int usb_unlink_urb(struct urb *urb); 981extern void usb_kill_urb(struct urb *urb); 982 983#define HAVE_USB_BUFFERS 984void *usb_buffer_alloc (struct usb_device *dev, size_t size, 985 gfp_t mem_flags, dma_addr_t *dma); 986void usb_buffer_free (struct usb_device *dev, size_t size, 987 void *addr, dma_addr_t dma); 988 989#if 0 990struct urb *usb_buffer_map (struct urb *urb); 991void usb_buffer_dmasync (struct urb *urb); 992void usb_buffer_unmap (struct urb *urb); 993#endif 994 995struct scatterlist; 996int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, 997 struct scatterlist *sg, int nents); 998#if 0 999void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, 1000 struct scatterlist *sg, int n_hw_ents); 1001#endif 1002void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, 1003 struct scatterlist *sg, int n_hw_ents); 1004 1005/*-------------------------------------------------------------------* 1006 * SYNCHRONOUS CALL SUPPORT * 1007 *-------------------------------------------------------------------*/ 1008 1009extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 1010 __u8 request, __u8 requesttype, __u16 value, __u16 index, 1011 void *data, __u16 size, int timeout); 1012extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1013 void *data, int len, int *actual_length, 1014 int timeout); 1015 1016/* wrappers around usb_control_msg() for the most common standard requests */ 1017extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1018 unsigned char descindex, void *buf, int size); 1019extern int usb_get_status(struct usb_device *dev, 1020 int type, int target, void *data); 1021extern int usb_get_string(struct usb_device *dev, 1022 unsigned short langid, unsigned char index, void *buf, int size); 1023extern int usb_string(struct usb_device *dev, int index, 1024 char *buf, size_t size); 1025 1026/* wrappers that also update important state inside usbcore */ 1027extern int usb_clear_halt(struct usb_device *dev, int pipe); 1028extern int usb_reset_configuration(struct usb_device *dev); 1029extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1030 1031/* 1032 * timeouts, in milliseconds, used for sending/receiving control messages 1033 * they typically complete within a few frames (msec) after they're issued 1034 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1035 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1036 */ 1037#define USB_CTRL_GET_TIMEOUT 5000 1038#define USB_CTRL_SET_TIMEOUT 5000 1039 1040 1041/** 1042 * struct usb_sg_request - support for scatter/gather I/O 1043 * @status: zero indicates success, else negative errno 1044 * @bytes: counts bytes transferred. 1045 * 1046 * These requests are initialized using usb_sg_init(), and then are used 1047 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1048 * members of the request object aren't for driver access. 1049 * 1050 * The status and bytecount values are valid only after usb_sg_wait() 1051 * returns. If the status is zero, then the bytecount matches the total 1052 * from the request. 1053 * 1054 * After an error completion, drivers may need to clear a halt condition 1055 * on the endpoint. 1056 */ 1057struct usb_sg_request { 1058 int status; 1059 size_t bytes; 1060 1061 /* 1062 * members below are private: to usbcore, 1063 * and are not provided for driver access! 1064 */ 1065 spinlock_t lock; 1066 1067 struct usb_device *dev; 1068 int pipe; 1069 struct scatterlist *sg; 1070 int nents; 1071 1072 int entries; 1073 struct urb **urbs; 1074 1075 int count; 1076 struct completion complete; 1077}; 1078 1079int usb_sg_init ( 1080 struct usb_sg_request *io, 1081 struct usb_device *dev, 1082 unsigned pipe, 1083 unsigned period, 1084 struct scatterlist *sg, 1085 int nents, 1086 size_t length, 1087 gfp_t mem_flags 1088); 1089void usb_sg_cancel (struct usb_sg_request *io); 1090void usb_sg_wait (struct usb_sg_request *io); 1091 1092 1093/* ----------------------------------------------------------------------- */ 1094 1095/* 1096 * For various legacy reasons, Linux has a small cookie that's paired with 1097 * a struct usb_device to identify an endpoint queue. Queue characteristics 1098 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1099 * an unsigned int encoded as: 1100 * 1101 * - direction: bit 7 (0 = Host-to-Device [Out], 1102 * 1 = Device-to-Host [In] ... 1103 * like endpoint bEndpointAddress) 1104 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1105 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1106 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1107 * 10 = control, 11 = bulk) 1108 * 1109 * Given the device address and endpoint descriptor, pipes are redundant. 1110 */ 1111 1112/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1113/* (yet ... they're the values used by usbfs) */ 1114#define PIPE_ISOCHRONOUS 0 1115#define PIPE_INTERRUPT 1 1116#define PIPE_CONTROL 2 1117#define PIPE_BULK 3 1118 1119#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1120#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1121 1122#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1123#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1124 1125#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1126#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1127#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1128#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1129#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1130 1131/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1132#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1133#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1134#define usb_settoggle(dev, ep, out, bit) \ 1135 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1136 ((bit) << (ep))) 1137 1138 1139static inline unsigned int __create_pipe(struct usb_device *dev, 1140 unsigned int endpoint) 1141{ 1142 return (dev->devnum << 8) | (endpoint << 15); 1143} 1144 1145/* Create various pipes... */ 1146#define usb_sndctrlpipe(dev,endpoint) \ 1147 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1148#define usb_rcvctrlpipe(dev,endpoint) \ 1149 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1150#define usb_sndisocpipe(dev,endpoint) \ 1151 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1152#define usb_rcvisocpipe(dev,endpoint) \ 1153 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1154#define usb_sndbulkpipe(dev,endpoint) \ 1155 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1156#define usb_rcvbulkpipe(dev,endpoint) \ 1157 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1158#define usb_sndintpipe(dev,endpoint) \ 1159 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1160#define usb_rcvintpipe(dev,endpoint) \ 1161 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1162 1163/*-------------------------------------------------------------------------*/ 1164 1165static inline __u16 1166usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1167{ 1168 struct usb_host_endpoint *ep; 1169 unsigned epnum = usb_pipeendpoint(pipe); 1170 1171 if (is_out) { 1172 WARN_ON(usb_pipein(pipe)); 1173 ep = udev->ep_out[epnum]; 1174 } else { 1175 WARN_ON(usb_pipeout(pipe)); 1176 ep = udev->ep_in[epnum]; 1177 } 1178 if (!ep) 1179 return 0; 1180 1181 /* NOTE: only 0x07ff bits are for packet size... */ 1182 return le16_to_cpu(ep->desc.wMaxPacketSize); 1183} 1184 1185/* ----------------------------------------------------------------------- */ 1186 1187/* Events from the usb core */ 1188#define USB_DEVICE_ADD 0x0001 1189#define USB_DEVICE_REMOVE 0x0002 1190#define USB_BUS_ADD 0x0003 1191#define USB_BUS_REMOVE 0x0004 1192extern void usb_register_notify(struct notifier_block *nb); 1193extern void usb_unregister_notify(struct notifier_block *nb); 1194 1195#ifdef DEBUG 1196#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1197 __FILE__ , ## arg) 1198#else 1199#define dbg(format, arg...) do {} while (0) 1200#endif 1201 1202#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1203 __FILE__ , ## arg) 1204#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1205 __FILE__ , ## arg) 1206#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1207 __FILE__ , ## arg) 1208 1209 1210#endif /* __KERNEL__ */ 1211 1212#endif