at v2.6.16 20 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifdef __KERNEL__ 5#ifndef __ASSEMBLY__ 6 7#include <linux/config.h> 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <asm/atomic.h> 17 18/* Free memory management - zoned buddy allocator. */ 19#ifndef CONFIG_FORCE_MAX_ZONEORDER 20#define MAX_ORDER 11 21#else 22#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 23#endif 24 25struct free_area { 26 struct list_head free_list; 27 unsigned long nr_free; 28}; 29 30struct pglist_data; 31 32/* 33 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 34 * So add a wild amount of padding here to ensure that they fall into separate 35 * cachelines. There are very few zone structures in the machine, so space 36 * consumption is not a concern here. 37 */ 38#if defined(CONFIG_SMP) 39struct zone_padding { 40 char x[0]; 41} ____cacheline_internodealigned_in_smp; 42#define ZONE_PADDING(name) struct zone_padding name; 43#else 44#define ZONE_PADDING(name) 45#endif 46 47struct per_cpu_pages { 48 int count; /* number of pages in the list */ 49 int high; /* high watermark, emptying needed */ 50 int batch; /* chunk size for buddy add/remove */ 51 struct list_head list; /* the list of pages */ 52}; 53 54struct per_cpu_pageset { 55 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 56#ifdef CONFIG_NUMA 57 unsigned long numa_hit; /* allocated in intended node */ 58 unsigned long numa_miss; /* allocated in non intended node */ 59 unsigned long numa_foreign; /* was intended here, hit elsewhere */ 60 unsigned long interleave_hit; /* interleaver prefered this zone */ 61 unsigned long local_node; /* allocation from local node */ 62 unsigned long other_node; /* allocation from other node */ 63#endif 64} ____cacheline_aligned_in_smp; 65 66#ifdef CONFIG_NUMA 67#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 68#else 69#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 70#endif 71 72#define ZONE_DMA 0 73#define ZONE_DMA32 1 74#define ZONE_NORMAL 2 75#define ZONE_HIGHMEM 3 76 77#define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */ 78#define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */ 79 80 81/* 82 * When a memory allocation must conform to specific limitations (such 83 * as being suitable for DMA) the caller will pass in hints to the 84 * allocator in the gfp_mask, in the zone modifier bits. These bits 85 * are used to select a priority ordered list of memory zones which 86 * match the requested limits. GFP_ZONEMASK defines which bits within 87 * the gfp_mask should be considered as zone modifiers. Each valid 88 * combination of the zone modifier bits has a corresponding list 89 * of zones (in node_zonelists). Thus for two zone modifiers there 90 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will 91 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible 92 * combinations of zone modifiers in "zone modifier space". 93 * 94 * As an optimisation any zone modifier bits which are only valid when 95 * no other zone modifier bits are set (loners) should be placed in 96 * the highest order bits of this field. This allows us to reduce the 97 * extent of the zonelists thus saving space. For example in the case 98 * of three zone modifier bits, we could require up to eight zonelists. 99 * If the left most zone modifier is a "loner" then the highest valid 100 * zonelist would be four allowing us to allocate only five zonelists. 101 * Use the first form for GFP_ZONETYPES when the left most bit is not 102 * a "loner", otherwise use the second. 103 * 104 * NOTE! Make sure this matches the zones in <linux/gfp.h> 105 */ 106#define GFP_ZONEMASK 0x07 107/* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */ 108#define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */ 109 110/* 111 * On machines where it is needed (eg PCs) we divide physical memory 112 * into multiple physical zones. On a 32bit PC we have 4 zones: 113 * 114 * ZONE_DMA < 16 MB ISA DMA capable memory 115 * ZONE_DMA32 0 MB Empty 116 * ZONE_NORMAL 16-896 MB direct mapped by the kernel 117 * ZONE_HIGHMEM > 896 MB only page cache and user processes 118 */ 119 120struct zone { 121 /* Fields commonly accessed by the page allocator */ 122 unsigned long free_pages; 123 unsigned long pages_min, pages_low, pages_high; 124 /* 125 * We don't know if the memory that we're going to allocate will be freeable 126 * or/and it will be released eventually, so to avoid totally wasting several 127 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 128 * to run OOM on the lower zones despite there's tons of freeable ram 129 * on the higher zones). This array is recalculated at runtime if the 130 * sysctl_lowmem_reserve_ratio sysctl changes. 131 */ 132 unsigned long lowmem_reserve[MAX_NR_ZONES]; 133 134#ifdef CONFIG_NUMA 135 struct per_cpu_pageset *pageset[NR_CPUS]; 136#else 137 struct per_cpu_pageset pageset[NR_CPUS]; 138#endif 139 /* 140 * free areas of different sizes 141 */ 142 spinlock_t lock; 143#ifdef CONFIG_MEMORY_HOTPLUG 144 /* see spanned/present_pages for more description */ 145 seqlock_t span_seqlock; 146#endif 147 struct free_area free_area[MAX_ORDER]; 148 149 150 ZONE_PADDING(_pad1_) 151 152 /* Fields commonly accessed by the page reclaim scanner */ 153 spinlock_t lru_lock; 154 struct list_head active_list; 155 struct list_head inactive_list; 156 unsigned long nr_scan_active; 157 unsigned long nr_scan_inactive; 158 unsigned long nr_active; 159 unsigned long nr_inactive; 160 unsigned long pages_scanned; /* since last reclaim */ 161 int all_unreclaimable; /* All pages pinned */ 162 163 /* A count of how many reclaimers are scanning this zone */ 164 atomic_t reclaim_in_progress; 165 166 /* 167 * timestamp (in jiffies) of the last zone reclaim that did not 168 * result in freeing of pages. This is used to avoid repeated scans 169 * if all memory in the zone is in use. 170 */ 171 unsigned long last_unsuccessful_zone_reclaim; 172 173 /* 174 * prev_priority holds the scanning priority for this zone. It is 175 * defined as the scanning priority at which we achieved our reclaim 176 * target at the previous try_to_free_pages() or balance_pgdat() 177 * invokation. 178 * 179 * We use prev_priority as a measure of how much stress page reclaim is 180 * under - it drives the swappiness decision: whether to unmap mapped 181 * pages. 182 * 183 * temp_priority is used to remember the scanning priority at which 184 * this zone was successfully refilled to free_pages == pages_high. 185 * 186 * Access to both these fields is quite racy even on uniprocessor. But 187 * it is expected to average out OK. 188 */ 189 int temp_priority; 190 int prev_priority; 191 192 193 ZONE_PADDING(_pad2_) 194 /* Rarely used or read-mostly fields */ 195 196 /* 197 * wait_table -- the array holding the hash table 198 * wait_table_size -- the size of the hash table array 199 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 200 * 201 * The purpose of all these is to keep track of the people 202 * waiting for a page to become available and make them 203 * runnable again when possible. The trouble is that this 204 * consumes a lot of space, especially when so few things 205 * wait on pages at a given time. So instead of using 206 * per-page waitqueues, we use a waitqueue hash table. 207 * 208 * The bucket discipline is to sleep on the same queue when 209 * colliding and wake all in that wait queue when removing. 210 * When something wakes, it must check to be sure its page is 211 * truly available, a la thundering herd. The cost of a 212 * collision is great, but given the expected load of the 213 * table, they should be so rare as to be outweighed by the 214 * benefits from the saved space. 215 * 216 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 217 * primary users of these fields, and in mm/page_alloc.c 218 * free_area_init_core() performs the initialization of them. 219 */ 220 wait_queue_head_t * wait_table; 221 unsigned long wait_table_size; 222 unsigned long wait_table_bits; 223 224 /* 225 * Discontig memory support fields. 226 */ 227 struct pglist_data *zone_pgdat; 228 struct page *zone_mem_map; 229 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 230 unsigned long zone_start_pfn; 231 232 /* 233 * zone_start_pfn, spanned_pages and present_pages are all 234 * protected by span_seqlock. It is a seqlock because it has 235 * to be read outside of zone->lock, and it is done in the main 236 * allocator path. But, it is written quite infrequently. 237 * 238 * The lock is declared along with zone->lock because it is 239 * frequently read in proximity to zone->lock. It's good to 240 * give them a chance of being in the same cacheline. 241 */ 242 unsigned long spanned_pages; /* total size, including holes */ 243 unsigned long present_pages; /* amount of memory (excluding holes) */ 244 245 /* 246 * rarely used fields: 247 */ 248 char *name; 249} ____cacheline_internodealigned_in_smp; 250 251 252/* 253 * The "priority" of VM scanning is how much of the queues we will scan in one 254 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 255 * queues ("queue_length >> 12") during an aging round. 256 */ 257#define DEF_PRIORITY 12 258 259/* 260 * One allocation request operates on a zonelist. A zonelist 261 * is a list of zones, the first one is the 'goal' of the 262 * allocation, the other zones are fallback zones, in decreasing 263 * priority. 264 * 265 * Right now a zonelist takes up less than a cacheline. We never 266 * modify it apart from boot-up, and only a few indices are used, 267 * so despite the zonelist table being relatively big, the cache 268 * footprint of this construct is very small. 269 */ 270struct zonelist { 271 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited 272}; 273 274 275/* 276 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 277 * (mostly NUMA machines?) to denote a higher-level memory zone than the 278 * zone denotes. 279 * 280 * On NUMA machines, each NUMA node would have a pg_data_t to describe 281 * it's memory layout. 282 * 283 * Memory statistics and page replacement data structures are maintained on a 284 * per-zone basis. 285 */ 286struct bootmem_data; 287typedef struct pglist_data { 288 struct zone node_zones[MAX_NR_ZONES]; 289 struct zonelist node_zonelists[GFP_ZONETYPES]; 290 int nr_zones; 291#ifdef CONFIG_FLAT_NODE_MEM_MAP 292 struct page *node_mem_map; 293#endif 294 struct bootmem_data *bdata; 295#ifdef CONFIG_MEMORY_HOTPLUG 296 /* 297 * Must be held any time you expect node_start_pfn, node_present_pages 298 * or node_spanned_pages stay constant. Holding this will also 299 * guarantee that any pfn_valid() stays that way. 300 * 301 * Nests above zone->lock and zone->size_seqlock. 302 */ 303 spinlock_t node_size_lock; 304#endif 305 unsigned long node_start_pfn; 306 unsigned long node_present_pages; /* total number of physical pages */ 307 unsigned long node_spanned_pages; /* total size of physical page 308 range, including holes */ 309 int node_id; 310 struct pglist_data *pgdat_next; 311 wait_queue_head_t kswapd_wait; 312 struct task_struct *kswapd; 313 int kswapd_max_order; 314} pg_data_t; 315 316#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 317#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 318#ifdef CONFIG_FLAT_NODE_MEM_MAP 319#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 320#else 321#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 322#endif 323#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 324 325#include <linux/memory_hotplug.h> 326 327extern struct pglist_data *pgdat_list; 328 329void __get_zone_counts(unsigned long *active, unsigned long *inactive, 330 unsigned long *free, struct pglist_data *pgdat); 331void get_zone_counts(unsigned long *active, unsigned long *inactive, 332 unsigned long *free); 333void build_all_zonelists(void); 334void wakeup_kswapd(struct zone *zone, int order); 335int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 336 int classzone_idx, int alloc_flags); 337 338#ifdef CONFIG_HAVE_MEMORY_PRESENT 339void memory_present(int nid, unsigned long start, unsigned long end); 340#else 341static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 342#endif 343 344#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 345unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 346#endif 347 348/* 349 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 350 */ 351#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 352 353/** 354 * for_each_pgdat - helper macro to iterate over all nodes 355 * @pgdat - pointer to a pg_data_t variable 356 * 357 * Meant to help with common loops of the form 358 * pgdat = pgdat_list; 359 * while(pgdat) { 360 * ... 361 * pgdat = pgdat->pgdat_next; 362 * } 363 */ 364#define for_each_pgdat(pgdat) \ 365 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next) 366 367/* 368 * next_zone - helper magic for for_each_zone() 369 * Thanks to William Lee Irwin III for this piece of ingenuity. 370 */ 371static inline struct zone *next_zone(struct zone *zone) 372{ 373 pg_data_t *pgdat = zone->zone_pgdat; 374 375 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1) 376 zone++; 377 else if (pgdat->pgdat_next) { 378 pgdat = pgdat->pgdat_next; 379 zone = pgdat->node_zones; 380 } else 381 zone = NULL; 382 383 return zone; 384} 385 386/** 387 * for_each_zone - helper macro to iterate over all memory zones 388 * @zone - pointer to struct zone variable 389 * 390 * The user only needs to declare the zone variable, for_each_zone 391 * fills it in. This basically means for_each_zone() is an 392 * easier to read version of this piece of code: 393 * 394 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next) 395 * for (i = 0; i < MAX_NR_ZONES; ++i) { 396 * struct zone * z = pgdat->node_zones + i; 397 * ... 398 * } 399 * } 400 */ 401#define for_each_zone(zone) \ 402 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone)) 403 404static inline int populated_zone(struct zone *zone) 405{ 406 return (!!zone->present_pages); 407} 408 409static inline int is_highmem_idx(int idx) 410{ 411 return (idx == ZONE_HIGHMEM); 412} 413 414static inline int is_normal_idx(int idx) 415{ 416 return (idx == ZONE_NORMAL); 417} 418 419/** 420 * is_highmem - helper function to quickly check if a struct zone is a 421 * highmem zone or not. This is an attempt to keep references 422 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 423 * @zone - pointer to struct zone variable 424 */ 425static inline int is_highmem(struct zone *zone) 426{ 427 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; 428} 429 430static inline int is_normal(struct zone *zone) 431{ 432 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 433} 434 435static inline int is_dma32(struct zone *zone) 436{ 437 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32; 438} 439 440static inline int is_dma(struct zone *zone) 441{ 442 return zone == zone->zone_pgdat->node_zones + ZONE_DMA; 443} 444 445/* These two functions are used to setup the per zone pages min values */ 446struct ctl_table; 447struct file; 448int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 449 void __user *, size_t *, loff_t *); 450extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 451int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 452 void __user *, size_t *, loff_t *); 453int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *, 454 void __user *, size_t *, loff_t *); 455 456#include <linux/topology.h> 457/* Returns the number of the current Node. */ 458#ifndef numa_node_id 459#define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 460#endif 461 462#ifndef CONFIG_NEED_MULTIPLE_NODES 463 464extern struct pglist_data contig_page_data; 465#define NODE_DATA(nid) (&contig_page_data) 466#define NODE_MEM_MAP(nid) mem_map 467#define MAX_NODES_SHIFT 1 468 469#else /* CONFIG_NEED_MULTIPLE_NODES */ 470 471#include <asm/mmzone.h> 472 473#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 474 475#ifdef CONFIG_SPARSEMEM 476#include <asm/sparsemem.h> 477#endif 478 479#if BITS_PER_LONG == 32 480/* 481 * with 32 bit page->flags field, we reserve 9 bits for node/zone info. 482 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. 483 */ 484#define FLAGS_RESERVED 9 485 486#elif BITS_PER_LONG == 64 487/* 488 * with 64 bit flags field, there's plenty of room. 489 */ 490#define FLAGS_RESERVED 32 491 492#else 493 494#error BITS_PER_LONG not defined 495 496#endif 497 498#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 499#define early_pfn_to_nid(nid) (0UL) 500#endif 501 502#ifdef CONFIG_FLATMEM 503#define pfn_to_nid(pfn) (0) 504#endif 505 506#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 507#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 508 509#ifdef CONFIG_SPARSEMEM 510 511/* 512 * SECTION_SHIFT #bits space required to store a section # 513 * 514 * PA_SECTION_SHIFT physical address to/from section number 515 * PFN_SECTION_SHIFT pfn to/from section number 516 */ 517#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 518 519#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 520#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 521 522#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 523 524#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 525#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 526 527#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 528#error Allocator MAX_ORDER exceeds SECTION_SIZE 529#endif 530 531struct page; 532struct mem_section { 533 /* 534 * This is, logically, a pointer to an array of struct 535 * pages. However, it is stored with some other magic. 536 * (see sparse.c::sparse_init_one_section()) 537 * 538 * Making it a UL at least makes someone do a cast 539 * before using it wrong. 540 */ 541 unsigned long section_mem_map; 542}; 543 544#ifdef CONFIG_SPARSEMEM_EXTREME 545#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 546#else 547#define SECTIONS_PER_ROOT 1 548#endif 549 550#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 551#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 552#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 553 554#ifdef CONFIG_SPARSEMEM_EXTREME 555extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 556#else 557extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 558#endif 559 560static inline struct mem_section *__nr_to_section(unsigned long nr) 561{ 562 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 563 return NULL; 564 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 565} 566extern int __section_nr(struct mem_section* ms); 567 568/* 569 * We use the lower bits of the mem_map pointer to store 570 * a little bit of information. There should be at least 571 * 3 bits here due to 32-bit alignment. 572 */ 573#define SECTION_MARKED_PRESENT (1UL<<0) 574#define SECTION_HAS_MEM_MAP (1UL<<1) 575#define SECTION_MAP_LAST_BIT (1UL<<2) 576#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 577 578static inline struct page *__section_mem_map_addr(struct mem_section *section) 579{ 580 unsigned long map = section->section_mem_map; 581 map &= SECTION_MAP_MASK; 582 return (struct page *)map; 583} 584 585static inline int valid_section(struct mem_section *section) 586{ 587 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 588} 589 590static inline int section_has_mem_map(struct mem_section *section) 591{ 592 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 593} 594 595static inline int valid_section_nr(unsigned long nr) 596{ 597 return valid_section(__nr_to_section(nr)); 598} 599 600static inline struct mem_section *__pfn_to_section(unsigned long pfn) 601{ 602 return __nr_to_section(pfn_to_section_nr(pfn)); 603} 604 605#define pfn_to_page(pfn) \ 606({ \ 607 unsigned long __pfn = (pfn); \ 608 __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \ 609}) 610#define page_to_pfn(page) \ 611({ \ 612 page - __section_mem_map_addr(__nr_to_section( \ 613 page_to_section(page))); \ 614}) 615 616static inline int pfn_valid(unsigned long pfn) 617{ 618 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 619 return 0; 620 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 621} 622 623/* 624 * These are _only_ used during initialisation, therefore they 625 * can use __initdata ... They could have names to indicate 626 * this restriction. 627 */ 628#ifdef CONFIG_NUMA 629#define pfn_to_nid(pfn) \ 630({ \ 631 unsigned long __pfn_to_nid_pfn = (pfn); \ 632 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 633}) 634#else 635#define pfn_to_nid(pfn) (0) 636#endif 637 638#define early_pfn_valid(pfn) pfn_valid(pfn) 639void sparse_init(void); 640#else 641#define sparse_init() do {} while (0) 642#define sparse_index_init(_sec, _nid) do {} while (0) 643#endif /* CONFIG_SPARSEMEM */ 644 645#ifndef early_pfn_valid 646#define early_pfn_valid(pfn) (1) 647#endif 648 649void memory_present(int nid, unsigned long start, unsigned long end); 650unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 651 652#endif /* !__ASSEMBLY__ */ 653#endif /* __KERNEL__ */ 654#endif /* _LINUX_MMZONE_H */