at v2.6.16 36 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/sched.h> 5#include <linux/errno.h> 6#include <linux/capability.h> 7 8#ifdef __KERNEL__ 9 10#include <linux/config.h> 11#include <linux/gfp.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/prio_tree.h> 16#include <linux/fs.h> 17#include <linux/mutex.h> 18 19struct mempolicy; 20struct anon_vma; 21 22#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 23extern unsigned long max_mapnr; 24#endif 25 26extern unsigned long num_physpages; 27extern void * high_memory; 28extern unsigned long vmalloc_earlyreserve; 29extern int page_cluster; 30 31#ifdef CONFIG_SYSCTL 32extern int sysctl_legacy_va_layout; 33#else 34#define sysctl_legacy_va_layout 0 35#endif 36 37#include <asm/page.h> 38#include <asm/pgtable.h> 39#include <asm/processor.h> 40#include <asm/atomic.h> 41 42#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44/* 45 * Linux kernel virtual memory manager primitives. 46 * The idea being to have a "virtual" mm in the same way 47 * we have a virtual fs - giving a cleaner interface to the 48 * mm details, and allowing different kinds of memory mappings 49 * (from shared memory to executable loading to arbitrary 50 * mmap() functions). 51 */ 52 53/* 54 * This struct defines a memory VMM memory area. There is one of these 55 * per VM-area/task. A VM area is any part of the process virtual memory 56 * space that has a special rule for the page-fault handlers (ie a shared 57 * library, the executable area etc). 58 */ 59struct vm_area_struct { 60 struct mm_struct * vm_mm; /* The address space we belong to. */ 61 unsigned long vm_start; /* Our start address within vm_mm. */ 62 unsigned long vm_end; /* The first byte after our end address 63 within vm_mm. */ 64 65 /* linked list of VM areas per task, sorted by address */ 66 struct vm_area_struct *vm_next; 67 68 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 69 unsigned long vm_flags; /* Flags, listed below. */ 70 71 struct rb_node vm_rb; 72 73 /* 74 * For areas with an address space and backing store, 75 * linkage into the address_space->i_mmap prio tree, or 76 * linkage to the list of like vmas hanging off its node, or 77 * linkage of vma in the address_space->i_mmap_nonlinear list. 78 */ 79 union { 80 struct { 81 struct list_head list; 82 void *parent; /* aligns with prio_tree_node parent */ 83 struct vm_area_struct *head; 84 } vm_set; 85 86 struct raw_prio_tree_node prio_tree_node; 87 } shared; 88 89 /* 90 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 91 * list, after a COW of one of the file pages. A MAP_SHARED vma 92 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 93 * or brk vma (with NULL file) can only be in an anon_vma list. 94 */ 95 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 96 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 97 98 /* Function pointers to deal with this struct. */ 99 struct vm_operations_struct * vm_ops; 100 101 /* Information about our backing store: */ 102 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 103 units, *not* PAGE_CACHE_SIZE */ 104 struct file * vm_file; /* File we map to (can be NULL). */ 105 void * vm_private_data; /* was vm_pte (shared mem) */ 106 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 107 108#ifndef CONFIG_MMU 109 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 110#endif 111#ifdef CONFIG_NUMA 112 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 113#endif 114}; 115 116/* 117 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 118 * disabled, then there's a single shared list of VMAs maintained by the 119 * system, and mm's subscribe to these individually 120 */ 121struct vm_list_struct { 122 struct vm_list_struct *next; 123 struct vm_area_struct *vma; 124}; 125 126#ifndef CONFIG_MMU 127extern struct rb_root nommu_vma_tree; 128extern struct rw_semaphore nommu_vma_sem; 129 130extern unsigned int kobjsize(const void *objp); 131#endif 132 133/* 134 * vm_flags.. 135 */ 136#define VM_READ 0x00000001 /* currently active flags */ 137#define VM_WRITE 0x00000002 138#define VM_EXEC 0x00000004 139#define VM_SHARED 0x00000008 140 141/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 142#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 143#define VM_MAYWRITE 0x00000020 144#define VM_MAYEXEC 0x00000040 145#define VM_MAYSHARE 0x00000080 146 147#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 148#define VM_GROWSUP 0x00000200 149#define VM_SHM 0x00000000 /* Means nothing: delete it later */ 150#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 151#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 152 153#define VM_EXECUTABLE 0x00001000 154#define VM_LOCKED 0x00002000 155#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 156 157 /* Used by sys_madvise() */ 158#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 159#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 160 161#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 162#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 163#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 164#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 165#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 166#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 167#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 168#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 169 170#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 171#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 172#endif 173 174#ifdef CONFIG_STACK_GROWSUP 175#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 176#else 177#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 178#endif 179 180#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 181#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 182#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 183#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 184#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 185 186/* 187 * mapping from the currently active vm_flags protection bits (the 188 * low four bits) to a page protection mask.. 189 */ 190extern pgprot_t protection_map[16]; 191 192 193/* 194 * These are the virtual MM functions - opening of an area, closing and 195 * unmapping it (needed to keep files on disk up-to-date etc), pointer 196 * to the functions called when a no-page or a wp-page exception occurs. 197 */ 198struct vm_operations_struct { 199 void (*open)(struct vm_area_struct * area); 200 void (*close)(struct vm_area_struct * area); 201 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 202 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 203#ifdef CONFIG_NUMA 204 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 205 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 206 unsigned long addr); 207#endif 208}; 209 210struct mmu_gather; 211struct inode; 212 213/* 214 * Each physical page in the system has a struct page associated with 215 * it to keep track of whatever it is we are using the page for at the 216 * moment. Note that we have no way to track which tasks are using 217 * a page. 218 */ 219struct page { 220 unsigned long flags; /* Atomic flags, some possibly 221 * updated asynchronously */ 222 atomic_t _count; /* Usage count, see below. */ 223 atomic_t _mapcount; /* Count of ptes mapped in mms, 224 * to show when page is mapped 225 * & limit reverse map searches. 226 */ 227 union { 228 struct { 229 unsigned long private; /* Mapping-private opaque data: 230 * usually used for buffer_heads 231 * if PagePrivate set; used for 232 * swp_entry_t if PageSwapCache. 233 * When page is free, this 234 * indicates order in the buddy 235 * system. 236 */ 237 struct address_space *mapping; /* If low bit clear, points to 238 * inode address_space, or NULL. 239 * If page mapped as anonymous 240 * memory, low bit is set, and 241 * it points to anon_vma object: 242 * see PAGE_MAPPING_ANON below. 243 */ 244 }; 245#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 246 spinlock_t ptl; 247#endif 248 }; 249 pgoff_t index; /* Our offset within mapping. */ 250 struct list_head lru; /* Pageout list, eg. active_list 251 * protected by zone->lru_lock ! 252 */ 253 /* 254 * On machines where all RAM is mapped into kernel address space, 255 * we can simply calculate the virtual address. On machines with 256 * highmem some memory is mapped into kernel virtual memory 257 * dynamically, so we need a place to store that address. 258 * Note that this field could be 16 bits on x86 ... ;) 259 * 260 * Architectures with slow multiplication can define 261 * WANT_PAGE_VIRTUAL in asm/page.h 262 */ 263#if defined(WANT_PAGE_VIRTUAL) 264 void *virtual; /* Kernel virtual address (NULL if 265 not kmapped, ie. highmem) */ 266#endif /* WANT_PAGE_VIRTUAL */ 267}; 268 269#define page_private(page) ((page)->private) 270#define set_page_private(page, v) ((page)->private = (v)) 271 272/* 273 * FIXME: take this include out, include page-flags.h in 274 * files which need it (119 of them) 275 */ 276#include <linux/page-flags.h> 277 278/* 279 * Methods to modify the page usage count. 280 * 281 * What counts for a page usage: 282 * - cache mapping (page->mapping) 283 * - private data (page->private) 284 * - page mapped in a task's page tables, each mapping 285 * is counted separately 286 * 287 * Also, many kernel routines increase the page count before a critical 288 * routine so they can be sure the page doesn't go away from under them. 289 * 290 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we 291 * can use atomic_add_negative(-1, page->_count) to detect when the page 292 * becomes free and so that we can also use atomic_inc_and_test to atomically 293 * detect when we just tried to grab a ref on a page which some other CPU has 294 * already deemed to be freeable. 295 * 296 * NO code should make assumptions about this internal detail! Use the provided 297 * macros which retain the old rules: page_count(page) == 0 is a free page. 298 */ 299 300/* 301 * Drop a ref, return true if the logical refcount fell to zero (the page has 302 * no users) 303 */ 304#define put_page_testzero(p) \ 305 ({ \ 306 BUG_ON(atomic_read(&(p)->_count) == -1);\ 307 atomic_add_negative(-1, &(p)->_count); \ 308 }) 309 310/* 311 * Grab a ref, return true if the page previously had a logical refcount of 312 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page 313 */ 314#define get_page_testone(p) atomic_inc_and_test(&(p)->_count) 315 316#define set_page_count(p,v) atomic_set(&(p)->_count, (v) - 1) 317#define __put_page(p) atomic_dec(&(p)->_count) 318 319extern void FASTCALL(__page_cache_release(struct page *)); 320 321static inline int page_count(struct page *page) 322{ 323 if (PageCompound(page)) 324 page = (struct page *)page_private(page); 325 return atomic_read(&page->_count) + 1; 326} 327 328static inline void get_page(struct page *page) 329{ 330 if (unlikely(PageCompound(page))) 331 page = (struct page *)page_private(page); 332 atomic_inc(&page->_count); 333} 334 335void put_page(struct page *page); 336 337/* 338 * Multiple processes may "see" the same page. E.g. for untouched 339 * mappings of /dev/null, all processes see the same page full of 340 * zeroes, and text pages of executables and shared libraries have 341 * only one copy in memory, at most, normally. 342 * 343 * For the non-reserved pages, page_count(page) denotes a reference count. 344 * page_count() == 0 means the page is free. page->lru is then used for 345 * freelist management in the buddy allocator. 346 * page_count() == 1 means the page is used for exactly one purpose 347 * (e.g. a private data page of one process). 348 * 349 * A page may be used for kmalloc() or anyone else who does a 350 * __get_free_page(). In this case the page_count() is at least 1, and 351 * all other fields are unused but should be 0 or NULL. The 352 * management of this page is the responsibility of the one who uses 353 * it. 354 * 355 * The other pages (we may call them "process pages") are completely 356 * managed by the Linux memory manager: I/O, buffers, swapping etc. 357 * The following discussion applies only to them. 358 * 359 * A page may belong to an inode's memory mapping. In this case, 360 * page->mapping is the pointer to the inode, and page->index is the 361 * file offset of the page, in units of PAGE_CACHE_SIZE. 362 * 363 * A page contains an opaque `private' member, which belongs to the 364 * page's address_space. Usually, this is the address of a circular 365 * list of the page's disk buffers. 366 * 367 * For pages belonging to inodes, the page_count() is the number of 368 * attaches, plus 1 if `private' contains something, plus one for 369 * the page cache itself. 370 * 371 * Instead of keeping dirty/clean pages in per address-space lists, we instead 372 * now tag pages as dirty/under writeback in the radix tree. 373 * 374 * There is also a per-mapping radix tree mapping index to the page 375 * in memory if present. The tree is rooted at mapping->root. 376 * 377 * All process pages can do I/O: 378 * - inode pages may need to be read from disk, 379 * - inode pages which have been modified and are MAP_SHARED may need 380 * to be written to disk, 381 * - private pages which have been modified may need to be swapped out 382 * to swap space and (later) to be read back into memory. 383 */ 384 385/* 386 * The zone field is never updated after free_area_init_core() 387 * sets it, so none of the operations on it need to be atomic. 388 */ 389 390 391/* 392 * page->flags layout: 393 * 394 * There are three possibilities for how page->flags get 395 * laid out. The first is for the normal case, without 396 * sparsemem. The second is for sparsemem when there is 397 * plenty of space for node and section. The last is when 398 * we have run out of space and have to fall back to an 399 * alternate (slower) way of determining the node. 400 * 401 * No sparsemem: | NODE | ZONE | ... | FLAGS | 402 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 403 * no space for node: | SECTION | ZONE | ... | FLAGS | 404 */ 405#ifdef CONFIG_SPARSEMEM 406#define SECTIONS_WIDTH SECTIONS_SHIFT 407#else 408#define SECTIONS_WIDTH 0 409#endif 410 411#define ZONES_WIDTH ZONES_SHIFT 412 413#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 414#define NODES_WIDTH NODES_SHIFT 415#else 416#define NODES_WIDTH 0 417#endif 418 419/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 420#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 421#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 422#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 423 424/* 425 * We are going to use the flags for the page to node mapping if its in 426 * there. This includes the case where there is no node, so it is implicit. 427 */ 428#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0) 429 430#ifndef PFN_SECTION_SHIFT 431#define PFN_SECTION_SHIFT 0 432#endif 433 434/* 435 * Define the bit shifts to access each section. For non-existant 436 * sections we define the shift as 0; that plus a 0 mask ensures 437 * the compiler will optimise away reference to them. 438 */ 439#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 440#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 441#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 442 443/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */ 444#if FLAGS_HAS_NODE 445#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT) 446#else 447#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 448#endif 449#define ZONETABLE_PGSHIFT ZONES_PGSHIFT 450 451#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 452#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 453#endif 454 455#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 456#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 457#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 458#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1) 459 460static inline unsigned long page_zonenum(struct page *page) 461{ 462 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 463} 464 465struct zone; 466extern struct zone *zone_table[]; 467 468static inline struct zone *page_zone(struct page *page) 469{ 470 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) & 471 ZONETABLE_MASK]; 472} 473 474static inline unsigned long page_to_nid(struct page *page) 475{ 476 if (FLAGS_HAS_NODE) 477 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 478 else 479 return page_zone(page)->zone_pgdat->node_id; 480} 481static inline unsigned long page_to_section(struct page *page) 482{ 483 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 484} 485 486static inline void set_page_zone(struct page *page, unsigned long zone) 487{ 488 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 489 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 490} 491static inline void set_page_node(struct page *page, unsigned long node) 492{ 493 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 494 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 495} 496static inline void set_page_section(struct page *page, unsigned long section) 497{ 498 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 499 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 500} 501 502static inline void set_page_links(struct page *page, unsigned long zone, 503 unsigned long node, unsigned long pfn) 504{ 505 set_page_zone(page, zone); 506 set_page_node(page, node); 507 set_page_section(page, pfn_to_section_nr(pfn)); 508} 509 510#ifndef CONFIG_DISCONTIGMEM 511/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 512extern struct page *mem_map; 513#endif 514 515static __always_inline void *lowmem_page_address(struct page *page) 516{ 517 return __va(page_to_pfn(page) << PAGE_SHIFT); 518} 519 520#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 521#define HASHED_PAGE_VIRTUAL 522#endif 523 524#if defined(WANT_PAGE_VIRTUAL) 525#define page_address(page) ((page)->virtual) 526#define set_page_address(page, address) \ 527 do { \ 528 (page)->virtual = (address); \ 529 } while(0) 530#define page_address_init() do { } while(0) 531#endif 532 533#if defined(HASHED_PAGE_VIRTUAL) 534void *page_address(struct page *page); 535void set_page_address(struct page *page, void *virtual); 536void page_address_init(void); 537#endif 538 539#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 540#define page_address(page) lowmem_page_address(page) 541#define set_page_address(page, address) do { } while(0) 542#define page_address_init() do { } while(0) 543#endif 544 545/* 546 * On an anonymous page mapped into a user virtual memory area, 547 * page->mapping points to its anon_vma, not to a struct address_space; 548 * with the PAGE_MAPPING_ANON bit set to distinguish it. 549 * 550 * Please note that, confusingly, "page_mapping" refers to the inode 551 * address_space which maps the page from disk; whereas "page_mapped" 552 * refers to user virtual address space into which the page is mapped. 553 */ 554#define PAGE_MAPPING_ANON 1 555 556extern struct address_space swapper_space; 557static inline struct address_space *page_mapping(struct page *page) 558{ 559 struct address_space *mapping = page->mapping; 560 561 if (unlikely(PageSwapCache(page))) 562 mapping = &swapper_space; 563 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 564 mapping = NULL; 565 return mapping; 566} 567 568static inline int PageAnon(struct page *page) 569{ 570 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 571} 572 573/* 574 * Return the pagecache index of the passed page. Regular pagecache pages 575 * use ->index whereas swapcache pages use ->private 576 */ 577static inline pgoff_t page_index(struct page *page) 578{ 579 if (unlikely(PageSwapCache(page))) 580 return page_private(page); 581 return page->index; 582} 583 584/* 585 * The atomic page->_mapcount, like _count, starts from -1: 586 * so that transitions both from it and to it can be tracked, 587 * using atomic_inc_and_test and atomic_add_negative(-1). 588 */ 589static inline void reset_page_mapcount(struct page *page) 590{ 591 atomic_set(&(page)->_mapcount, -1); 592} 593 594static inline int page_mapcount(struct page *page) 595{ 596 return atomic_read(&(page)->_mapcount) + 1; 597} 598 599/* 600 * Return true if this page is mapped into pagetables. 601 */ 602static inline int page_mapped(struct page *page) 603{ 604 return atomic_read(&(page)->_mapcount) >= 0; 605} 606 607/* 608 * Error return values for the *_nopage functions 609 */ 610#define NOPAGE_SIGBUS (NULL) 611#define NOPAGE_OOM ((struct page *) (-1)) 612 613/* 614 * Different kinds of faults, as returned by handle_mm_fault(). 615 * Used to decide whether a process gets delivered SIGBUS or 616 * just gets major/minor fault counters bumped up. 617 */ 618#define VM_FAULT_OOM 0x00 619#define VM_FAULT_SIGBUS 0x01 620#define VM_FAULT_MINOR 0x02 621#define VM_FAULT_MAJOR 0x03 622 623/* 624 * Special case for get_user_pages. 625 * Must be in a distinct bit from the above VM_FAULT_ flags. 626 */ 627#define VM_FAULT_WRITE 0x10 628 629#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 630 631extern void show_free_areas(void); 632 633#ifdef CONFIG_SHMEM 634struct page *shmem_nopage(struct vm_area_struct *vma, 635 unsigned long address, int *type); 636int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 637struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 638 unsigned long addr); 639int shmem_lock(struct file *file, int lock, struct user_struct *user); 640#else 641#define shmem_nopage filemap_nopage 642 643static inline int shmem_lock(struct file *file, int lock, 644 struct user_struct *user) 645{ 646 return 0; 647} 648 649static inline int shmem_set_policy(struct vm_area_struct *vma, 650 struct mempolicy *new) 651{ 652 return 0; 653} 654 655static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 656 unsigned long addr) 657{ 658 return NULL; 659} 660#endif 661struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 662extern int shmem_mmap(struct file *file, struct vm_area_struct *vma); 663 664int shmem_zero_setup(struct vm_area_struct *); 665 666#ifndef CONFIG_MMU 667extern unsigned long shmem_get_unmapped_area(struct file *file, 668 unsigned long addr, 669 unsigned long len, 670 unsigned long pgoff, 671 unsigned long flags); 672#endif 673 674static inline int can_do_mlock(void) 675{ 676 if (capable(CAP_IPC_LOCK)) 677 return 1; 678 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 679 return 1; 680 return 0; 681} 682extern int user_shm_lock(size_t, struct user_struct *); 683extern void user_shm_unlock(size_t, struct user_struct *); 684 685/* 686 * Parameter block passed down to zap_pte_range in exceptional cases. 687 */ 688struct zap_details { 689 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 690 struct address_space *check_mapping; /* Check page->mapping if set */ 691 pgoff_t first_index; /* Lowest page->index to unmap */ 692 pgoff_t last_index; /* Highest page->index to unmap */ 693 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 694 unsigned long truncate_count; /* Compare vm_truncate_count */ 695}; 696 697struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 698unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 699 unsigned long size, struct zap_details *); 700unsigned long unmap_vmas(struct mmu_gather **tlb, 701 struct vm_area_struct *start_vma, unsigned long start_addr, 702 unsigned long end_addr, unsigned long *nr_accounted, 703 struct zap_details *); 704void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 705 unsigned long end, unsigned long floor, unsigned long ceiling); 706void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 707 unsigned long floor, unsigned long ceiling); 708int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 709 struct vm_area_struct *vma); 710int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 711 unsigned long size, pgprot_t prot); 712void unmap_mapping_range(struct address_space *mapping, 713 loff_t const holebegin, loff_t const holelen, int even_cows); 714 715static inline void unmap_shared_mapping_range(struct address_space *mapping, 716 loff_t const holebegin, loff_t const holelen) 717{ 718 unmap_mapping_range(mapping, holebegin, holelen, 0); 719} 720 721extern int vmtruncate(struct inode * inode, loff_t offset); 722extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 723extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 724extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 725 726#ifdef CONFIG_MMU 727extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, 728 unsigned long address, int write_access); 729 730static inline int handle_mm_fault(struct mm_struct *mm, 731 struct vm_area_struct *vma, unsigned long address, 732 int write_access) 733{ 734 return __handle_mm_fault(mm, vma, address, write_access) & 735 (~VM_FAULT_WRITE); 736} 737#else 738static inline int handle_mm_fault(struct mm_struct *mm, 739 struct vm_area_struct *vma, unsigned long address, 740 int write_access) 741{ 742 /* should never happen if there's no MMU */ 743 BUG(); 744 return VM_FAULT_SIGBUS; 745} 746#endif 747 748extern int make_pages_present(unsigned long addr, unsigned long end); 749extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 750void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 751 752int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 753 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 754void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 755 756int __set_page_dirty_buffers(struct page *page); 757int __set_page_dirty_nobuffers(struct page *page); 758int redirty_page_for_writepage(struct writeback_control *wbc, 759 struct page *page); 760int FASTCALL(set_page_dirty(struct page *page)); 761int set_page_dirty_lock(struct page *page); 762int clear_page_dirty_for_io(struct page *page); 763 764extern unsigned long do_mremap(unsigned long addr, 765 unsigned long old_len, unsigned long new_len, 766 unsigned long flags, unsigned long new_addr); 767 768/* 769 * Prototype to add a shrinker callback for ageable caches. 770 * 771 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 772 * scan `nr_to_scan' objects, attempting to free them. 773 * 774 * The callback must return the number of objects which remain in the cache. 775 * 776 * The callback will be passed nr_to_scan == 0 when the VM is querying the 777 * cache size, so a fastpath for that case is appropriate. 778 */ 779typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); 780 781/* 782 * Add an aging callback. The int is the number of 'seeks' it takes 783 * to recreate one of the objects that these functions age. 784 */ 785 786#define DEFAULT_SEEKS 2 787struct shrinker; 788extern struct shrinker *set_shrinker(int, shrinker_t); 789extern void remove_shrinker(struct shrinker *shrinker); 790 791extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 792 793int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 794int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 795int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 796int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 797 798/* 799 * The following ifdef needed to get the 4level-fixup.h header to work. 800 * Remove it when 4level-fixup.h has been removed. 801 */ 802#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 803static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 804{ 805 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 806 NULL: pud_offset(pgd, address); 807} 808 809static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 810{ 811 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 812 NULL: pmd_offset(pud, address); 813} 814#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 815 816#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 817/* 818 * We tuck a spinlock to guard each pagetable page into its struct page, 819 * at page->private, with BUILD_BUG_ON to make sure that this will not 820 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 821 * When freeing, reset page->mapping so free_pages_check won't complain. 822 */ 823#define __pte_lockptr(page) &((page)->ptl) 824#define pte_lock_init(_page) do { \ 825 spin_lock_init(__pte_lockptr(_page)); \ 826} while (0) 827#define pte_lock_deinit(page) ((page)->mapping = NULL) 828#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 829#else 830/* 831 * We use mm->page_table_lock to guard all pagetable pages of the mm. 832 */ 833#define pte_lock_init(page) do {} while (0) 834#define pte_lock_deinit(page) do {} while (0) 835#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 836#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 837 838#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 839({ \ 840 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 841 pte_t *__pte = pte_offset_map(pmd, address); \ 842 *(ptlp) = __ptl; \ 843 spin_lock(__ptl); \ 844 __pte; \ 845}) 846 847#define pte_unmap_unlock(pte, ptl) do { \ 848 spin_unlock(ptl); \ 849 pte_unmap(pte); \ 850} while (0) 851 852#define pte_alloc_map(mm, pmd, address) \ 853 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 854 NULL: pte_offset_map(pmd, address)) 855 856#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 857 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 858 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 859 860#define pte_alloc_kernel(pmd, address) \ 861 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 862 NULL: pte_offset_kernel(pmd, address)) 863 864extern void free_area_init(unsigned long * zones_size); 865extern void free_area_init_node(int nid, pg_data_t *pgdat, 866 unsigned long * zones_size, unsigned long zone_start_pfn, 867 unsigned long *zholes_size); 868extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); 869extern void setup_per_zone_pages_min(void); 870extern void mem_init(void); 871extern void show_mem(void); 872extern void si_meminfo(struct sysinfo * val); 873extern void si_meminfo_node(struct sysinfo *val, int nid); 874 875#ifdef CONFIG_NUMA 876extern void setup_per_cpu_pageset(void); 877#else 878static inline void setup_per_cpu_pageset(void) {} 879#endif 880 881/* prio_tree.c */ 882void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 883void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 884void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 885struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 886 struct prio_tree_iter *iter); 887 888#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 889 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 890 (vma = vma_prio_tree_next(vma, iter)); ) 891 892static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 893 struct list_head *list) 894{ 895 vma->shared.vm_set.parent = NULL; 896 list_add_tail(&vma->shared.vm_set.list, list); 897} 898 899/* mmap.c */ 900extern int __vm_enough_memory(long pages, int cap_sys_admin); 901extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 902 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 903extern struct vm_area_struct *vma_merge(struct mm_struct *, 904 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 905 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 906 struct mempolicy *); 907extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 908extern int split_vma(struct mm_struct *, 909 struct vm_area_struct *, unsigned long addr, int new_below); 910extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 911extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 912 struct rb_node **, struct rb_node *); 913extern void unlink_file_vma(struct vm_area_struct *); 914extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 915 unsigned long addr, unsigned long len, pgoff_t pgoff); 916extern void exit_mmap(struct mm_struct *); 917extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 918 919extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 920 921extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 922 unsigned long len, unsigned long prot, 923 unsigned long flag, unsigned long pgoff); 924 925static inline unsigned long do_mmap(struct file *file, unsigned long addr, 926 unsigned long len, unsigned long prot, 927 unsigned long flag, unsigned long offset) 928{ 929 unsigned long ret = -EINVAL; 930 if ((offset + PAGE_ALIGN(len)) < offset) 931 goto out; 932 if (!(offset & ~PAGE_MASK)) 933 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 934out: 935 return ret; 936} 937 938extern int do_munmap(struct mm_struct *, unsigned long, size_t); 939 940extern unsigned long do_brk(unsigned long, unsigned long); 941 942/* filemap.c */ 943extern unsigned long page_unuse(struct page *); 944extern void truncate_inode_pages(struct address_space *, loff_t); 945extern void truncate_inode_pages_range(struct address_space *, 946 loff_t lstart, loff_t lend); 947 948/* generic vm_area_ops exported for stackable file systems */ 949extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 950extern int filemap_populate(struct vm_area_struct *, unsigned long, 951 unsigned long, pgprot_t, unsigned long, int); 952 953/* mm/page-writeback.c */ 954int write_one_page(struct page *page, int wait); 955 956/* readahead.c */ 957#define VM_MAX_READAHEAD 128 /* kbytes */ 958#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 959#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 960 * turning readahead off */ 961 962int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 963 pgoff_t offset, unsigned long nr_to_read); 964int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 965 pgoff_t offset, unsigned long nr_to_read); 966unsigned long page_cache_readahead(struct address_space *mapping, 967 struct file_ra_state *ra, 968 struct file *filp, 969 pgoff_t offset, 970 unsigned long size); 971void handle_ra_miss(struct address_space *mapping, 972 struct file_ra_state *ra, pgoff_t offset); 973unsigned long max_sane_readahead(unsigned long nr); 974 975/* Do stack extension */ 976extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 977#ifdef CONFIG_IA64 978extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 979#endif 980 981/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 982extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 983extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 984 struct vm_area_struct **pprev); 985 986/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 987 NULL if none. Assume start_addr < end_addr. */ 988static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 989{ 990 struct vm_area_struct * vma = find_vma(mm,start_addr); 991 992 if (vma && end_addr <= vma->vm_start) 993 vma = NULL; 994 return vma; 995} 996 997static inline unsigned long vma_pages(struct vm_area_struct *vma) 998{ 999 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1000} 1001 1002struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1003struct page *vmalloc_to_page(void *addr); 1004unsigned long vmalloc_to_pfn(void *addr); 1005int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1006 unsigned long pfn, unsigned long size, pgprot_t); 1007int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1008 1009struct page *follow_page(struct vm_area_struct *, unsigned long address, 1010 unsigned int foll_flags); 1011#define FOLL_WRITE 0x01 /* check pte is writable */ 1012#define FOLL_TOUCH 0x02 /* mark page accessed */ 1013#define FOLL_GET 0x04 /* do get_page on page */ 1014#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1015 1016#ifdef CONFIG_PROC_FS 1017void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1018#else 1019static inline void vm_stat_account(struct mm_struct *mm, 1020 unsigned long flags, struct file *file, long pages) 1021{ 1022} 1023#endif /* CONFIG_PROC_FS */ 1024 1025#ifndef CONFIG_DEBUG_PAGEALLOC 1026static inline void 1027kernel_map_pages(struct page *page, int numpages, int enable) 1028{ 1029 if (!PageHighMem(page) && !enable) 1030 mutex_debug_check_no_locks_freed(page_address(page), 1031 numpages * PAGE_SIZE); 1032} 1033#endif 1034 1035extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1036#ifdef __HAVE_ARCH_GATE_AREA 1037int in_gate_area_no_task(unsigned long addr); 1038int in_gate_area(struct task_struct *task, unsigned long addr); 1039#else 1040int in_gate_area_no_task(unsigned long addr); 1041#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1042#endif /* __HAVE_ARCH_GATE_AREA */ 1043 1044/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */ 1045#define OOM_DISABLE -17 1046 1047int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1048 void __user *, size_t *, loff_t *); 1049int shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1050 unsigned long lru_pages); 1051void drop_pagecache(void); 1052void drop_slab(void); 1053 1054#ifndef CONFIG_MMU 1055#define randomize_va_space 0 1056#else 1057extern int randomize_va_space; 1058#endif 1059 1060#endif /* __KERNEL__ */ 1061#endif /* _LINUX_MM_H */