at v2.6.16 25 kB view raw
1#ifndef _LINUX_LIST_H 2#define _LINUX_LIST_H 3 4#ifdef __KERNEL__ 5 6#include <linux/stddef.h> 7#include <linux/prefetch.h> 8#include <asm/system.h> 9 10/* 11 * These are non-NULL pointers that will result in page faults 12 * under normal circumstances, used to verify that nobody uses 13 * non-initialized list entries. 14 */ 15#define LIST_POISON1 ((void *) 0x00100100) 16#define LIST_POISON2 ((void *) 0x00200200) 17 18/* 19 * Simple doubly linked list implementation. 20 * 21 * Some of the internal functions ("__xxx") are useful when 22 * manipulating whole lists rather than single entries, as 23 * sometimes we already know the next/prev entries and we can 24 * generate better code by using them directly rather than 25 * using the generic single-entry routines. 26 */ 27 28struct list_head { 29 struct list_head *next, *prev; 30}; 31 32#define LIST_HEAD_INIT(name) { &(name), &(name) } 33 34#define LIST_HEAD(name) \ 35 struct list_head name = LIST_HEAD_INIT(name) 36 37static inline void INIT_LIST_HEAD(struct list_head *list) 38{ 39 list->next = list; 40 list->prev = list; 41} 42 43/* 44 * Insert a new entry between two known consecutive entries. 45 * 46 * This is only for internal list manipulation where we know 47 * the prev/next entries already! 48 */ 49static inline void __list_add(struct list_head *new, 50 struct list_head *prev, 51 struct list_head *next) 52{ 53 next->prev = new; 54 new->next = next; 55 new->prev = prev; 56 prev->next = new; 57} 58 59/** 60 * list_add - add a new entry 61 * @new: new entry to be added 62 * @head: list head to add it after 63 * 64 * Insert a new entry after the specified head. 65 * This is good for implementing stacks. 66 */ 67static inline void list_add(struct list_head *new, struct list_head *head) 68{ 69 __list_add(new, head, head->next); 70} 71 72/** 73 * list_add_tail - add a new entry 74 * @new: new entry to be added 75 * @head: list head to add it before 76 * 77 * Insert a new entry before the specified head. 78 * This is useful for implementing queues. 79 */ 80static inline void list_add_tail(struct list_head *new, struct list_head *head) 81{ 82 __list_add(new, head->prev, head); 83} 84 85/* 86 * Insert a new entry between two known consecutive entries. 87 * 88 * This is only for internal list manipulation where we know 89 * the prev/next entries already! 90 */ 91static inline void __list_add_rcu(struct list_head * new, 92 struct list_head * prev, struct list_head * next) 93{ 94 new->next = next; 95 new->prev = prev; 96 smp_wmb(); 97 next->prev = new; 98 prev->next = new; 99} 100 101/** 102 * list_add_rcu - add a new entry to rcu-protected list 103 * @new: new entry to be added 104 * @head: list head to add it after 105 * 106 * Insert a new entry after the specified head. 107 * This is good for implementing stacks. 108 * 109 * The caller must take whatever precautions are necessary 110 * (such as holding appropriate locks) to avoid racing 111 * with another list-mutation primitive, such as list_add_rcu() 112 * or list_del_rcu(), running on this same list. 113 * However, it is perfectly legal to run concurrently with 114 * the _rcu list-traversal primitives, such as 115 * list_for_each_entry_rcu(). 116 */ 117static inline void list_add_rcu(struct list_head *new, struct list_head *head) 118{ 119 __list_add_rcu(new, head, head->next); 120} 121 122/** 123 * list_add_tail_rcu - add a new entry to rcu-protected list 124 * @new: new entry to be added 125 * @head: list head to add it before 126 * 127 * Insert a new entry before the specified head. 128 * This is useful for implementing queues. 129 * 130 * The caller must take whatever precautions are necessary 131 * (such as holding appropriate locks) to avoid racing 132 * with another list-mutation primitive, such as list_add_tail_rcu() 133 * or list_del_rcu(), running on this same list. 134 * However, it is perfectly legal to run concurrently with 135 * the _rcu list-traversal primitives, such as 136 * list_for_each_entry_rcu(). 137 */ 138static inline void list_add_tail_rcu(struct list_head *new, 139 struct list_head *head) 140{ 141 __list_add_rcu(new, head->prev, head); 142} 143 144/* 145 * Delete a list entry by making the prev/next entries 146 * point to each other. 147 * 148 * This is only for internal list manipulation where we know 149 * the prev/next entries already! 150 */ 151static inline void __list_del(struct list_head * prev, struct list_head * next) 152{ 153 next->prev = prev; 154 prev->next = next; 155} 156 157/** 158 * list_del - deletes entry from list. 159 * @entry: the element to delete from the list. 160 * Note: list_empty on entry does not return true after this, the entry is 161 * in an undefined state. 162 */ 163static inline void list_del(struct list_head *entry) 164{ 165 __list_del(entry->prev, entry->next); 166 entry->next = LIST_POISON1; 167 entry->prev = LIST_POISON2; 168} 169 170/** 171 * list_del_rcu - deletes entry from list without re-initialization 172 * @entry: the element to delete from the list. 173 * 174 * Note: list_empty on entry does not return true after this, 175 * the entry is in an undefined state. It is useful for RCU based 176 * lockfree traversal. 177 * 178 * In particular, it means that we can not poison the forward 179 * pointers that may still be used for walking the list. 180 * 181 * The caller must take whatever precautions are necessary 182 * (such as holding appropriate locks) to avoid racing 183 * with another list-mutation primitive, such as list_del_rcu() 184 * or list_add_rcu(), running on this same list. 185 * However, it is perfectly legal to run concurrently with 186 * the _rcu list-traversal primitives, such as 187 * list_for_each_entry_rcu(). 188 * 189 * Note that the caller is not permitted to immediately free 190 * the newly deleted entry. Instead, either synchronize_rcu() 191 * or call_rcu() must be used to defer freeing until an RCU 192 * grace period has elapsed. 193 */ 194static inline void list_del_rcu(struct list_head *entry) 195{ 196 __list_del(entry->prev, entry->next); 197 entry->prev = LIST_POISON2; 198} 199 200/* 201 * list_replace_rcu - replace old entry by new one 202 * @old : the element to be replaced 203 * @new : the new element to insert 204 * 205 * The old entry will be replaced with the new entry atomically. 206 */ 207static inline void list_replace_rcu(struct list_head *old, 208 struct list_head *new) 209{ 210 new->next = old->next; 211 new->prev = old->prev; 212 smp_wmb(); 213 new->next->prev = new; 214 new->prev->next = new; 215 old->prev = LIST_POISON2; 216} 217 218/** 219 * list_del_init - deletes entry from list and reinitialize it. 220 * @entry: the element to delete from the list. 221 */ 222static inline void list_del_init(struct list_head *entry) 223{ 224 __list_del(entry->prev, entry->next); 225 INIT_LIST_HEAD(entry); 226} 227 228/** 229 * list_move - delete from one list and add as another's head 230 * @list: the entry to move 231 * @head: the head that will precede our entry 232 */ 233static inline void list_move(struct list_head *list, struct list_head *head) 234{ 235 __list_del(list->prev, list->next); 236 list_add(list, head); 237} 238 239/** 240 * list_move_tail - delete from one list and add as another's tail 241 * @list: the entry to move 242 * @head: the head that will follow our entry 243 */ 244static inline void list_move_tail(struct list_head *list, 245 struct list_head *head) 246{ 247 __list_del(list->prev, list->next); 248 list_add_tail(list, head); 249} 250 251/** 252 * list_empty - tests whether a list is empty 253 * @head: the list to test. 254 */ 255static inline int list_empty(const struct list_head *head) 256{ 257 return head->next == head; 258} 259 260/** 261 * list_empty_careful - tests whether a list is 262 * empty _and_ checks that no other CPU might be 263 * in the process of still modifying either member 264 * 265 * NOTE: using list_empty_careful() without synchronization 266 * can only be safe if the only activity that can happen 267 * to the list entry is list_del_init(). Eg. it cannot be used 268 * if another CPU could re-list_add() it. 269 * 270 * @head: the list to test. 271 */ 272static inline int list_empty_careful(const struct list_head *head) 273{ 274 struct list_head *next = head->next; 275 return (next == head) && (next == head->prev); 276} 277 278static inline void __list_splice(struct list_head *list, 279 struct list_head *head) 280{ 281 struct list_head *first = list->next; 282 struct list_head *last = list->prev; 283 struct list_head *at = head->next; 284 285 first->prev = head; 286 head->next = first; 287 288 last->next = at; 289 at->prev = last; 290} 291 292/** 293 * list_splice - join two lists 294 * @list: the new list to add. 295 * @head: the place to add it in the first list. 296 */ 297static inline void list_splice(struct list_head *list, struct list_head *head) 298{ 299 if (!list_empty(list)) 300 __list_splice(list, head); 301} 302 303/** 304 * list_splice_init - join two lists and reinitialise the emptied list. 305 * @list: the new list to add. 306 * @head: the place to add it in the first list. 307 * 308 * The list at @list is reinitialised 309 */ 310static inline void list_splice_init(struct list_head *list, 311 struct list_head *head) 312{ 313 if (!list_empty(list)) { 314 __list_splice(list, head); 315 INIT_LIST_HEAD(list); 316 } 317} 318 319/** 320 * list_entry - get the struct for this entry 321 * @ptr: the &struct list_head pointer. 322 * @type: the type of the struct this is embedded in. 323 * @member: the name of the list_struct within the struct. 324 */ 325#define list_entry(ptr, type, member) \ 326 container_of(ptr, type, member) 327 328/** 329 * list_for_each - iterate over a list 330 * @pos: the &struct list_head to use as a loop counter. 331 * @head: the head for your list. 332 */ 333#define list_for_each(pos, head) \ 334 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 335 pos = pos->next) 336 337/** 338 * __list_for_each - iterate over a list 339 * @pos: the &struct list_head to use as a loop counter. 340 * @head: the head for your list. 341 * 342 * This variant differs from list_for_each() in that it's the 343 * simplest possible list iteration code, no prefetching is done. 344 * Use this for code that knows the list to be very short (empty 345 * or 1 entry) most of the time. 346 */ 347#define __list_for_each(pos, head) \ 348 for (pos = (head)->next; pos != (head); pos = pos->next) 349 350/** 351 * list_for_each_prev - iterate over a list backwards 352 * @pos: the &struct list_head to use as a loop counter. 353 * @head: the head for your list. 354 */ 355#define list_for_each_prev(pos, head) \ 356 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 357 pos = pos->prev) 358 359/** 360 * list_for_each_safe - iterate over a list safe against removal of list entry 361 * @pos: the &struct list_head to use as a loop counter. 362 * @n: another &struct list_head to use as temporary storage 363 * @head: the head for your list. 364 */ 365#define list_for_each_safe(pos, n, head) \ 366 for (pos = (head)->next, n = pos->next; pos != (head); \ 367 pos = n, n = pos->next) 368 369/** 370 * list_for_each_entry - iterate over list of given type 371 * @pos: the type * to use as a loop counter. 372 * @head: the head for your list. 373 * @member: the name of the list_struct within the struct. 374 */ 375#define list_for_each_entry(pos, head, member) \ 376 for (pos = list_entry((head)->next, typeof(*pos), member); \ 377 prefetch(pos->member.next), &pos->member != (head); \ 378 pos = list_entry(pos->member.next, typeof(*pos), member)) 379 380/** 381 * list_for_each_entry_reverse - iterate backwards over list of given type. 382 * @pos: the type * to use as a loop counter. 383 * @head: the head for your list. 384 * @member: the name of the list_struct within the struct. 385 */ 386#define list_for_each_entry_reverse(pos, head, member) \ 387 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 388 prefetch(pos->member.prev), &pos->member != (head); \ 389 pos = list_entry(pos->member.prev, typeof(*pos), member)) 390 391/** 392 * list_prepare_entry - prepare a pos entry for use as a start point in 393 * list_for_each_entry_continue 394 * @pos: the type * to use as a start point 395 * @head: the head of the list 396 * @member: the name of the list_struct within the struct. 397 */ 398#define list_prepare_entry(pos, head, member) \ 399 ((pos) ? : list_entry(head, typeof(*pos), member)) 400 401/** 402 * list_for_each_entry_continue - iterate over list of given type 403 * continuing after existing point 404 * @pos: the type * to use as a loop counter. 405 * @head: the head for your list. 406 * @member: the name of the list_struct within the struct. 407 */ 408#define list_for_each_entry_continue(pos, head, member) \ 409 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 410 prefetch(pos->member.next), &pos->member != (head); \ 411 pos = list_entry(pos->member.next, typeof(*pos), member)) 412 413/** 414 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 415 * @pos: the type * to use as a loop counter. 416 * @n: another type * to use as temporary storage 417 * @head: the head for your list. 418 * @member: the name of the list_struct within the struct. 419 */ 420#define list_for_each_entry_safe(pos, n, head, member) \ 421 for (pos = list_entry((head)->next, typeof(*pos), member), \ 422 n = list_entry(pos->member.next, typeof(*pos), member); \ 423 &pos->member != (head); \ 424 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 425 426/** 427 * list_for_each_entry_safe_continue - iterate over list of given type 428 * continuing after existing point safe against removal of list entry 429 * @pos: the type * to use as a loop counter. 430 * @n: another type * to use as temporary storage 431 * @head: the head for your list. 432 * @member: the name of the list_struct within the struct. 433 */ 434#define list_for_each_entry_safe_continue(pos, n, head, member) \ 435 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 436 n = list_entry(pos->member.next, typeof(*pos), member); \ 437 &pos->member != (head); \ 438 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 439 440/** 441 * list_for_each_entry_safe_reverse - iterate backwards over list of given type safe against 442 * removal of list entry 443 * @pos: the type * to use as a loop counter. 444 * @n: another type * to use as temporary storage 445 * @head: the head for your list. 446 * @member: the name of the list_struct within the struct. 447 */ 448#define list_for_each_entry_safe_reverse(pos, n, head, member) \ 449 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 450 n = list_entry(pos->member.prev, typeof(*pos), member); \ 451 &pos->member != (head); \ 452 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 453 454/** 455 * list_for_each_rcu - iterate over an rcu-protected list 456 * @pos: the &struct list_head to use as a loop counter. 457 * @head: the head for your list. 458 * 459 * This list-traversal primitive may safely run concurrently with 460 * the _rcu list-mutation primitives such as list_add_rcu() 461 * as long as the traversal is guarded by rcu_read_lock(). 462 */ 463#define list_for_each_rcu(pos, head) \ 464 for (pos = (head)->next; \ 465 prefetch(rcu_dereference(pos)->next), pos != (head); \ 466 pos = pos->next) 467 468#define __list_for_each_rcu(pos, head) \ 469 for (pos = (head)->next; \ 470 rcu_dereference(pos) != (head); \ 471 pos = pos->next) 472 473/** 474 * list_for_each_safe_rcu - iterate over an rcu-protected list safe 475 * against removal of list entry 476 * @pos: the &struct list_head to use as a loop counter. 477 * @n: another &struct list_head to use as temporary storage 478 * @head: the head for your list. 479 * 480 * This list-traversal primitive may safely run concurrently with 481 * the _rcu list-mutation primitives such as list_add_rcu() 482 * as long as the traversal is guarded by rcu_read_lock(). 483 */ 484#define list_for_each_safe_rcu(pos, n, head) \ 485 for (pos = (head)->next; \ 486 n = rcu_dereference(pos)->next, pos != (head); \ 487 pos = n) 488 489/** 490 * list_for_each_entry_rcu - iterate over rcu list of given type 491 * @pos: the type * to use as a loop counter. 492 * @head: the head for your list. 493 * @member: the name of the list_struct within the struct. 494 * 495 * This list-traversal primitive may safely run concurrently with 496 * the _rcu list-mutation primitives such as list_add_rcu() 497 * as long as the traversal is guarded by rcu_read_lock(). 498 */ 499#define list_for_each_entry_rcu(pos, head, member) \ 500 for (pos = list_entry((head)->next, typeof(*pos), member); \ 501 prefetch(rcu_dereference(pos)->member.next), \ 502 &pos->member != (head); \ 503 pos = list_entry(pos->member.next, typeof(*pos), member)) 504 505 506/** 507 * list_for_each_continue_rcu - iterate over an rcu-protected list 508 * continuing after existing point. 509 * @pos: the &struct list_head to use as a loop counter. 510 * @head: the head for your list. 511 * 512 * This list-traversal primitive may safely run concurrently with 513 * the _rcu list-mutation primitives such as list_add_rcu() 514 * as long as the traversal is guarded by rcu_read_lock(). 515 */ 516#define list_for_each_continue_rcu(pos, head) \ 517 for ((pos) = (pos)->next; \ 518 prefetch(rcu_dereference((pos))->next), (pos) != (head); \ 519 (pos) = (pos)->next) 520 521/* 522 * Double linked lists with a single pointer list head. 523 * Mostly useful for hash tables where the two pointer list head is 524 * too wasteful. 525 * You lose the ability to access the tail in O(1). 526 */ 527 528struct hlist_head { 529 struct hlist_node *first; 530}; 531 532struct hlist_node { 533 struct hlist_node *next, **pprev; 534}; 535 536#define HLIST_HEAD_INIT { .first = NULL } 537#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 538#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 539static inline void INIT_HLIST_NODE(struct hlist_node *h) 540{ 541 h->next = NULL; 542 h->pprev = NULL; 543} 544 545static inline int hlist_unhashed(const struct hlist_node *h) 546{ 547 return !h->pprev; 548} 549 550static inline int hlist_empty(const struct hlist_head *h) 551{ 552 return !h->first; 553} 554 555static inline void __hlist_del(struct hlist_node *n) 556{ 557 struct hlist_node *next = n->next; 558 struct hlist_node **pprev = n->pprev; 559 *pprev = next; 560 if (next) 561 next->pprev = pprev; 562} 563 564static inline void hlist_del(struct hlist_node *n) 565{ 566 __hlist_del(n); 567 n->next = LIST_POISON1; 568 n->pprev = LIST_POISON2; 569} 570 571/** 572 * hlist_del_rcu - deletes entry from hash list without re-initialization 573 * @n: the element to delete from the hash list. 574 * 575 * Note: list_unhashed() on entry does not return true after this, 576 * the entry is in an undefined state. It is useful for RCU based 577 * lockfree traversal. 578 * 579 * In particular, it means that we can not poison the forward 580 * pointers that may still be used for walking the hash list. 581 * 582 * The caller must take whatever precautions are necessary 583 * (such as holding appropriate locks) to avoid racing 584 * with another list-mutation primitive, such as hlist_add_head_rcu() 585 * or hlist_del_rcu(), running on this same list. 586 * However, it is perfectly legal to run concurrently with 587 * the _rcu list-traversal primitives, such as 588 * hlist_for_each_entry(). 589 */ 590static inline void hlist_del_rcu(struct hlist_node *n) 591{ 592 __hlist_del(n); 593 n->pprev = LIST_POISON2; 594} 595 596static inline void hlist_del_init(struct hlist_node *n) 597{ 598 if (n->pprev) { 599 __hlist_del(n); 600 INIT_HLIST_NODE(n); 601 } 602} 603 604/* 605 * hlist_replace_rcu - replace old entry by new one 606 * @old : the element to be replaced 607 * @new : the new element to insert 608 * 609 * The old entry will be replaced with the new entry atomically. 610 */ 611static inline void hlist_replace_rcu(struct hlist_node *old, 612 struct hlist_node *new) 613{ 614 struct hlist_node *next = old->next; 615 616 new->next = next; 617 new->pprev = old->pprev; 618 smp_wmb(); 619 if (next) 620 new->next->pprev = &new->next; 621 *new->pprev = new; 622 old->pprev = LIST_POISON2; 623} 624 625static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 626{ 627 struct hlist_node *first = h->first; 628 n->next = first; 629 if (first) 630 first->pprev = &n->next; 631 h->first = n; 632 n->pprev = &h->first; 633} 634 635 636/** 637 * hlist_add_head_rcu - adds the specified element to the specified hlist, 638 * while permitting racing traversals. 639 * @n: the element to add to the hash list. 640 * @h: the list to add to. 641 * 642 * The caller must take whatever precautions are necessary 643 * (such as holding appropriate locks) to avoid racing 644 * with another list-mutation primitive, such as hlist_add_head_rcu() 645 * or hlist_del_rcu(), running on this same list. 646 * However, it is perfectly legal to run concurrently with 647 * the _rcu list-traversal primitives, such as 648 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 649 * problems on Alpha CPUs. Regardless of the type of CPU, the 650 * list-traversal primitive must be guarded by rcu_read_lock(). 651 */ 652static inline void hlist_add_head_rcu(struct hlist_node *n, 653 struct hlist_head *h) 654{ 655 struct hlist_node *first = h->first; 656 n->next = first; 657 n->pprev = &h->first; 658 smp_wmb(); 659 if (first) 660 first->pprev = &n->next; 661 h->first = n; 662} 663 664/* next must be != NULL */ 665static inline void hlist_add_before(struct hlist_node *n, 666 struct hlist_node *next) 667{ 668 n->pprev = next->pprev; 669 n->next = next; 670 next->pprev = &n->next; 671 *(n->pprev) = n; 672} 673 674static inline void hlist_add_after(struct hlist_node *n, 675 struct hlist_node *next) 676{ 677 next->next = n->next; 678 n->next = next; 679 next->pprev = &n->next; 680 681 if(next->next) 682 next->next->pprev = &next->next; 683} 684 685/** 686 * hlist_add_before_rcu - adds the specified element to the specified hlist 687 * before the specified node while permitting racing traversals. 688 * @n: the new element to add to the hash list. 689 * @next: the existing element to add the new element before. 690 * 691 * The caller must take whatever precautions are necessary 692 * (such as holding appropriate locks) to avoid racing 693 * with another list-mutation primitive, such as hlist_add_head_rcu() 694 * or hlist_del_rcu(), running on this same list. 695 * However, it is perfectly legal to run concurrently with 696 * the _rcu list-traversal primitives, such as 697 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 698 * problems on Alpha CPUs. 699 */ 700static inline void hlist_add_before_rcu(struct hlist_node *n, 701 struct hlist_node *next) 702{ 703 n->pprev = next->pprev; 704 n->next = next; 705 smp_wmb(); 706 next->pprev = &n->next; 707 *(n->pprev) = n; 708} 709 710/** 711 * hlist_add_after_rcu - adds the specified element to the specified hlist 712 * after the specified node while permitting racing traversals. 713 * @prev: the existing element to add the new element after. 714 * @n: the new element to add to the hash list. 715 * 716 * The caller must take whatever precautions are necessary 717 * (such as holding appropriate locks) to avoid racing 718 * with another list-mutation primitive, such as hlist_add_head_rcu() 719 * or hlist_del_rcu(), running on this same list. 720 * However, it is perfectly legal to run concurrently with 721 * the _rcu list-traversal primitives, such as 722 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 723 * problems on Alpha CPUs. 724 */ 725static inline void hlist_add_after_rcu(struct hlist_node *prev, 726 struct hlist_node *n) 727{ 728 n->next = prev->next; 729 n->pprev = &prev->next; 730 smp_wmb(); 731 prev->next = n; 732 if (n->next) 733 n->next->pprev = &n->next; 734} 735 736#define hlist_entry(ptr, type, member) container_of(ptr,type,member) 737 738#define hlist_for_each(pos, head) \ 739 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 740 pos = pos->next) 741 742#define hlist_for_each_safe(pos, n, head) \ 743 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 744 pos = n) 745 746/** 747 * hlist_for_each_entry - iterate over list of given type 748 * @tpos: the type * to use as a loop counter. 749 * @pos: the &struct hlist_node to use as a loop counter. 750 * @head: the head for your list. 751 * @member: the name of the hlist_node within the struct. 752 */ 753#define hlist_for_each_entry(tpos, pos, head, member) \ 754 for (pos = (head)->first; \ 755 pos && ({ prefetch(pos->next); 1;}) && \ 756 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 757 pos = pos->next) 758 759/** 760 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point 761 * @tpos: the type * to use as a loop counter. 762 * @pos: the &struct hlist_node to use as a loop counter. 763 * @member: the name of the hlist_node within the struct. 764 */ 765#define hlist_for_each_entry_continue(tpos, pos, member) \ 766 for (pos = (pos)->next; \ 767 pos && ({ prefetch(pos->next); 1;}) && \ 768 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 769 pos = pos->next) 770 771/** 772 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point 773 * @tpos: the type * to use as a loop counter. 774 * @pos: the &struct hlist_node to use as a loop counter. 775 * @member: the name of the hlist_node within the struct. 776 */ 777#define hlist_for_each_entry_from(tpos, pos, member) \ 778 for (; pos && ({ prefetch(pos->next); 1;}) && \ 779 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 780 pos = pos->next) 781 782/** 783 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 784 * @tpos: the type * to use as a loop counter. 785 * @pos: the &struct hlist_node to use as a loop counter. 786 * @n: another &struct hlist_node to use as temporary storage 787 * @head: the head for your list. 788 * @member: the name of the hlist_node within the struct. 789 */ 790#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 791 for (pos = (head)->first; \ 792 pos && ({ n = pos->next; 1; }) && \ 793 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 794 pos = n) 795 796/** 797 * hlist_for_each_entry_rcu - iterate over rcu list of given type 798 * @tpos: the type * to use as a loop counter. 799 * @pos: the &struct hlist_node to use as a loop counter. 800 * @head: the head for your list. 801 * @member: the name of the hlist_node within the struct. 802 * 803 * This list-traversal primitive may safely run concurrently with 804 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 805 * as long as the traversal is guarded by rcu_read_lock(). 806 */ 807#define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 808 for (pos = (head)->first; \ 809 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \ 810 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 811 pos = pos->next) 812 813#else 814#warning "don't include kernel headers in userspace" 815#endif /* __KERNEL__ */ 816#endif