at v2.6.16 8.2 kB view raw
1/* 2 * include/linux/ktime.h 3 * 4 * ktime_t - nanosecond-resolution time format. 5 * 6 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar 8 * 9 * data type definitions, declarations, prototypes and macros. 10 * 11 * Started by: Thomas Gleixner and Ingo Molnar 12 * 13 * Credits: 14 * 15 * Roman Zippel provided the ideas and primary code snippets of 16 * the ktime_t union and further simplifications of the original 17 * code. 18 * 19 * For licencing details see kernel-base/COPYING 20 */ 21#ifndef _LINUX_KTIME_H 22#define _LINUX_KTIME_H 23 24#include <linux/time.h> 25#include <linux/jiffies.h> 26 27/* 28 * ktime_t: 29 * 30 * On 64-bit CPUs a single 64-bit variable is used to store the hrtimers 31 * internal representation of time values in scalar nanoseconds. The 32 * design plays out best on 64-bit CPUs, where most conversions are 33 * NOPs and most arithmetic ktime_t operations are plain arithmetic 34 * operations. 35 * 36 * On 32-bit CPUs an optimized representation of the timespec structure 37 * is used to avoid expensive conversions from and to timespecs. The 38 * endian-aware order of the tv struct members is choosen to allow 39 * mathematical operations on the tv64 member of the union too, which 40 * for certain operations produces better code. 41 * 42 * For architectures with efficient support for 64/32-bit conversions the 43 * plain scalar nanosecond based representation can be selected by the 44 * config switch CONFIG_KTIME_SCALAR. 45 */ 46typedef union { 47 s64 tv64; 48#if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR) 49 struct { 50# ifdef __BIG_ENDIAN 51 s32 sec, nsec; 52# else 53 s32 nsec, sec; 54# endif 55 } tv; 56#endif 57} ktime_t; 58 59#define KTIME_MAX (~((u64)1 << 63)) 60 61/* 62 * ktime_t definitions when using the 64-bit scalar representation: 63 */ 64 65#if (BITS_PER_LONG == 64) || defined(CONFIG_KTIME_SCALAR) 66 67/* Define a ktime_t variable and initialize it to zero: */ 68#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 } 69 70/** 71 * ktime_set - Set a ktime_t variable from a seconds/nanoseconds value 72 * 73 * @secs: seconds to set 74 * @nsecs: nanoseconds to set 75 * 76 * Return the ktime_t representation of the value 77 */ 78static inline ktime_t ktime_set(const long secs, const unsigned long nsecs) 79{ 80 return (ktime_t) { .tv64 = (s64)secs * NSEC_PER_SEC + (s64)nsecs }; 81} 82 83/* Subtract two ktime_t variables. rem = lhs -rhs: */ 84#define ktime_sub(lhs, rhs) \ 85 ({ (ktime_t){ .tv64 = (lhs).tv64 - (rhs).tv64 }; }) 86 87/* Add two ktime_t variables. res = lhs + rhs: */ 88#define ktime_add(lhs, rhs) \ 89 ({ (ktime_t){ .tv64 = (lhs).tv64 + (rhs).tv64 }; }) 90 91/* 92 * Add a ktime_t variable and a scalar nanosecond value. 93 * res = kt + nsval: 94 */ 95#define ktime_add_ns(kt, nsval) \ 96 ({ (ktime_t){ .tv64 = (kt).tv64 + (nsval) }; }) 97 98/* convert a timespec to ktime_t format: */ 99static inline ktime_t timespec_to_ktime(struct timespec ts) 100{ 101 return ktime_set(ts.tv_sec, ts.tv_nsec); 102} 103 104/* convert a timeval to ktime_t format: */ 105static inline ktime_t timeval_to_ktime(struct timeval tv) 106{ 107 return ktime_set(tv.tv_sec, tv.tv_usec * NSEC_PER_USEC); 108} 109 110/* Map the ktime_t to timespec conversion to ns_to_timespec function */ 111#define ktime_to_timespec(kt) ns_to_timespec((kt).tv64) 112 113/* Map the ktime_t to timeval conversion to ns_to_timeval function */ 114#define ktime_to_timeval(kt) ns_to_timeval((kt).tv64) 115 116/* Map the ktime_t to clock_t conversion to the inline in jiffies.h: */ 117#define ktime_to_clock_t(kt) nsec_to_clock_t((kt).tv64) 118 119/* Convert ktime_t to nanoseconds - NOP in the scalar storage format: */ 120#define ktime_to_ns(kt) ((kt).tv64) 121 122#else 123 124/* 125 * Helper macros/inlines to get the ktime_t math right in the timespec 126 * representation. The macros are sometimes ugly - their actual use is 127 * pretty okay-ish, given the circumstances. We do all this for 128 * performance reasons. The pure scalar nsec_t based code was nice and 129 * simple, but created too many 64-bit / 32-bit conversions and divisions. 130 * 131 * Be especially aware that negative values are represented in a way 132 * that the tv.sec field is negative and the tv.nsec field is greater 133 * or equal to zero but less than nanoseconds per second. This is the 134 * same representation which is used by timespecs. 135 * 136 * tv.sec < 0 and 0 >= tv.nsec < NSEC_PER_SEC 137 */ 138 139/* Define a ktime_t variable and initialize it to zero: */ 140#define DEFINE_KTIME(kt) ktime_t kt = { .tv64 = 0 } 141 142/* Set a ktime_t variable to a value in sec/nsec representation: */ 143static inline ktime_t ktime_set(const long secs, const unsigned long nsecs) 144{ 145 return (ktime_t) { .tv = { .sec = secs, .nsec = nsecs } }; 146} 147 148/** 149 * ktime_sub - subtract two ktime_t variables 150 * 151 * @lhs: minuend 152 * @rhs: subtrahend 153 * 154 * Returns the remainder of the substraction 155 */ 156static inline ktime_t ktime_sub(const ktime_t lhs, const ktime_t rhs) 157{ 158 ktime_t res; 159 160 res.tv64 = lhs.tv64 - rhs.tv64; 161 if (res.tv.nsec < 0) 162 res.tv.nsec += NSEC_PER_SEC; 163 164 return res; 165} 166 167/** 168 * ktime_add - add two ktime_t variables 169 * 170 * @add1: addend1 171 * @add2: addend2 172 * 173 * Returns the sum of addend1 and addend2 174 */ 175static inline ktime_t ktime_add(const ktime_t add1, const ktime_t add2) 176{ 177 ktime_t res; 178 179 res.tv64 = add1.tv64 + add2.tv64; 180 /* 181 * performance trick: the (u32) -NSEC gives 0x00000000Fxxxxxxx 182 * so we subtract NSEC_PER_SEC and add 1 to the upper 32 bit. 183 * 184 * it's equivalent to: 185 * tv.nsec -= NSEC_PER_SEC 186 * tv.sec ++; 187 */ 188 if (res.tv.nsec >= NSEC_PER_SEC) 189 res.tv64 += (u32)-NSEC_PER_SEC; 190 191 return res; 192} 193 194/** 195 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable 196 * 197 * @kt: addend 198 * @nsec: the scalar nsec value to add 199 * 200 * Returns the sum of kt and nsec in ktime_t format 201 */ 202extern ktime_t ktime_add_ns(const ktime_t kt, u64 nsec); 203 204/** 205 * timespec_to_ktime - convert a timespec to ktime_t format 206 * 207 * @ts: the timespec variable to convert 208 * 209 * Returns a ktime_t variable with the converted timespec value 210 */ 211static inline ktime_t timespec_to_ktime(const struct timespec ts) 212{ 213 return (ktime_t) { .tv = { .sec = (s32)ts.tv_sec, 214 .nsec = (s32)ts.tv_nsec } }; 215} 216 217/** 218 * timeval_to_ktime - convert a timeval to ktime_t format 219 * 220 * @tv: the timeval variable to convert 221 * 222 * Returns a ktime_t variable with the converted timeval value 223 */ 224static inline ktime_t timeval_to_ktime(const struct timeval tv) 225{ 226 return (ktime_t) { .tv = { .sec = (s32)tv.tv_sec, 227 .nsec = (s32)tv.tv_usec * 1000 } }; 228} 229 230/** 231 * ktime_to_timespec - convert a ktime_t variable to timespec format 232 * 233 * @kt: the ktime_t variable to convert 234 * 235 * Returns the timespec representation of the ktime value 236 */ 237static inline struct timespec ktime_to_timespec(const ktime_t kt) 238{ 239 return (struct timespec) { .tv_sec = (time_t) kt.tv.sec, 240 .tv_nsec = (long) kt.tv.nsec }; 241} 242 243/** 244 * ktime_to_timeval - convert a ktime_t variable to timeval format 245 * 246 * @kt: the ktime_t variable to convert 247 * 248 * Returns the timeval representation of the ktime value 249 */ 250static inline struct timeval ktime_to_timeval(const ktime_t kt) 251{ 252 return (struct timeval) { 253 .tv_sec = (time_t) kt.tv.sec, 254 .tv_usec = (suseconds_t) (kt.tv.nsec / NSEC_PER_USEC) }; 255} 256 257/** 258 * ktime_to_clock_t - convert a ktime_t variable to clock_t format 259 * @kt: the ktime_t variable to convert 260 * 261 * Returns a clock_t variable with the converted value 262 */ 263static inline clock_t ktime_to_clock_t(const ktime_t kt) 264{ 265 return nsec_to_clock_t( (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec); 266} 267 268/** 269 * ktime_to_ns - convert a ktime_t variable to scalar nanoseconds 270 * @kt: the ktime_t variable to convert 271 * 272 * Returns the scalar nanoseconds representation of kt 273 */ 274static inline u64 ktime_to_ns(const ktime_t kt) 275{ 276 return (u64) kt.tv.sec * NSEC_PER_SEC + kt.tv.nsec; 277} 278 279#endif 280 281/* 282 * The resolution of the clocks. The resolution value is returned in 283 * the clock_getres() system call to give application programmers an 284 * idea of the (in)accuracy of timers. Timer values are rounded up to 285 * this resolution values. 286 */ 287#define KTIME_REALTIME_RES (ktime_t){ .tv64 = TICK_NSEC } 288#define KTIME_MONOTONIC_RES (ktime_t){ .tv64 = TICK_NSEC } 289 290/* Get the monotonic time in timespec format: */ 291extern void ktime_get_ts(struct timespec *ts); 292 293/* Get the real (wall-) time in timespec format: */ 294#define ktime_get_real_ts(ts) getnstimeofday(ts) 295 296#endif