at v2.6.16 356 lines 9.7 kB view raw
1/* 2 * include/asm-v850/bitops.h -- Bit operations 3 * 4 * Copyright (C) 2001,02,03,04,05 NEC Electronics Corporation 5 * Copyright (C) 2001,02,03,04,05 Miles Bader <miles@gnu.org> 6 * Copyright (C) 1992 Linus Torvalds. 7 * 8 * This file is subject to the terms and conditions of the GNU General 9 * Public License. See the file COPYING in the main directory of this 10 * archive for more details. 11 */ 12 13#ifndef __V850_BITOPS_H__ 14#define __V850_BITOPS_H__ 15 16 17#include <linux/config.h> 18#include <linux/compiler.h> /* unlikely */ 19#include <asm/byteorder.h> /* swab32 */ 20#include <asm/system.h> /* interrupt enable/disable */ 21 22 23#ifdef __KERNEL__ 24 25/* 26 * The __ functions are not atomic 27 */ 28 29/* 30 * ffz = Find First Zero in word. Undefined if no zero exists, 31 * so code should check against ~0UL first.. 32 */ 33static inline unsigned long ffz (unsigned long word) 34{ 35 unsigned long result = 0; 36 37 while (word & 1) { 38 result++; 39 word >>= 1; 40 } 41 return result; 42} 43 44 45/* In the following constant-bit-op macros, a "g" constraint is used when 46 we really need an integer ("i" constraint). This is to avoid 47 warnings/errors from the compiler in the case where the associated 48 operand _isn't_ an integer, and shouldn't produce bogus assembly because 49 use of that form is protected by a guard statement that checks for 50 constants, and should otherwise be removed by the optimizer. This 51 _usually_ works -- however, __builtin_constant_p returns true for a 52 variable with a known constant value too, and unfortunately gcc will 53 happily put the variable in a register and use the register for the "g" 54 constraint'd asm operand. To avoid the latter problem, we add a 55 constant offset to the operand and subtract it back in the asm code; 56 forcing gcc to do arithmetic on the value is usually enough to get it 57 to use a real constant value. This is horrible, and ultimately 58 unreliable too, but it seems to work for now (hopefully gcc will offer 59 us more control in the future, so we can do a better job). */ 60 61#define __const_bit_op(op, nr, addr) \ 62 ({ __asm__ (op " (%0 - 0x123), %1" \ 63 :: "g" (((nr) & 0x7) + 0x123), \ 64 "m" (*((char *)(addr) + ((nr) >> 3))) \ 65 : "memory"); }) 66#define __var_bit_op(op, nr, addr) \ 67 ({ int __nr = (nr); \ 68 __asm__ (op " %0, [%1]" \ 69 :: "r" (__nr & 0x7), \ 70 "r" ((char *)(addr) + (__nr >> 3)) \ 71 : "memory"); }) 72#define __bit_op(op, nr, addr) \ 73 ((__builtin_constant_p (nr) && (unsigned)(nr) <= 0x7FFFF) \ 74 ? __const_bit_op (op, nr, addr) \ 75 : __var_bit_op (op, nr, addr)) 76 77#define __set_bit(nr, addr) __bit_op ("set1", nr, addr) 78#define __clear_bit(nr, addr) __bit_op ("clr1", nr, addr) 79#define __change_bit(nr, addr) __bit_op ("not1", nr, addr) 80 81/* The bit instructions used by `non-atomic' variants are actually atomic. */ 82#define set_bit __set_bit 83#define clear_bit __clear_bit 84#define change_bit __change_bit 85 86 87#define __const_tns_bit_op(op, nr, addr) \ 88 ({ int __tns_res; \ 89 __asm__ __volatile__ ( \ 90 "tst1 (%1 - 0x123), %2; setf nz, %0; " op " (%1 - 0x123), %2" \ 91 : "=&r" (__tns_res) \ 92 : "g" (((nr) & 0x7) + 0x123), \ 93 "m" (*((char *)(addr) + ((nr) >> 3))) \ 94 : "memory"); \ 95 __tns_res; \ 96 }) 97#define __var_tns_bit_op(op, nr, addr) \ 98 ({ int __nr = (nr); \ 99 int __tns_res; \ 100 __asm__ __volatile__ ( \ 101 "tst1 %1, [%2]; setf nz, %0; " op " %1, [%2]" \ 102 : "=&r" (__tns_res) \ 103 : "r" (__nr & 0x7), \ 104 "r" ((char *)(addr) + (__nr >> 3)) \ 105 : "memory"); \ 106 __tns_res; \ 107 }) 108#define __tns_bit_op(op, nr, addr) \ 109 ((__builtin_constant_p (nr) && (unsigned)(nr) <= 0x7FFFF) \ 110 ? __const_tns_bit_op (op, nr, addr) \ 111 : __var_tns_bit_op (op, nr, addr)) 112#define __tns_atomic_bit_op(op, nr, addr) \ 113 ({ int __tns_atomic_res, __tns_atomic_flags; \ 114 local_irq_save (__tns_atomic_flags); \ 115 __tns_atomic_res = __tns_bit_op (op, nr, addr); \ 116 local_irq_restore (__tns_atomic_flags); \ 117 __tns_atomic_res; \ 118 }) 119 120#define __test_and_set_bit(nr, addr) __tns_bit_op ("set1", nr, addr) 121#define test_and_set_bit(nr, addr) __tns_atomic_bit_op ("set1", nr, addr) 122 123#define __test_and_clear_bit(nr, addr) __tns_bit_op ("clr1", nr, addr) 124#define test_and_clear_bit(nr, addr) __tns_atomic_bit_op ("clr1", nr, addr) 125 126#define __test_and_change_bit(nr, addr) __tns_bit_op ("not1", nr, addr) 127#define test_and_change_bit(nr, addr) __tns_atomic_bit_op ("not1", nr, addr) 128 129 130#define __const_test_bit(nr, addr) \ 131 ({ int __test_bit_res; \ 132 __asm__ __volatile__ ("tst1 (%1 - 0x123), %2; setf nz, %0" \ 133 : "=r" (__test_bit_res) \ 134 : "g" (((nr) & 0x7) + 0x123), \ 135 "m" (*((const char *)(addr) + ((nr) >> 3)))); \ 136 __test_bit_res; \ 137 }) 138static inline int __test_bit (int nr, const void *addr) 139{ 140 int res; 141 __asm__ __volatile__ ("tst1 %1, [%2]; setf nz, %0" 142 : "=r" (res) 143 : "r" (nr & 0x7), "r" (addr + (nr >> 3))); 144 return res; 145} 146#define test_bit(nr,addr) \ 147 ((__builtin_constant_p (nr) && (unsigned)(nr) <= 0x7FFFF) \ 148 ? __const_test_bit ((nr), (addr)) \ 149 : __test_bit ((nr), (addr))) 150 151 152/* clear_bit doesn't provide any barrier for the compiler. */ 153#define smp_mb__before_clear_bit() barrier () 154#define smp_mb__after_clear_bit() barrier () 155 156 157#define find_first_zero_bit(addr, size) \ 158 find_next_zero_bit ((addr), (size), 0) 159 160static inline int find_next_zero_bit(const void *addr, int size, int offset) 161{ 162 unsigned long *p = ((unsigned long *) addr) + (offset >> 5); 163 unsigned long result = offset & ~31UL; 164 unsigned long tmp; 165 166 if (offset >= size) 167 return size; 168 size -= result; 169 offset &= 31UL; 170 if (offset) { 171 tmp = * (p++); 172 tmp |= ~0UL >> (32-offset); 173 if (size < 32) 174 goto found_first; 175 if (~tmp) 176 goto found_middle; 177 size -= 32; 178 result += 32; 179 } 180 while (size & ~31UL) { 181 if (~ (tmp = * (p++))) 182 goto found_middle; 183 result += 32; 184 size -= 32; 185 } 186 if (!size) 187 return result; 188 tmp = *p; 189 190 found_first: 191 tmp |= ~0UL << size; 192 found_middle: 193 return result + ffz (tmp); 194} 195 196 197/* This is the same as generic_ffs, but we can't use that because it's 198 inline and the #include order mucks things up. */ 199static inline int generic_ffs_for_find_next_bit(int x) 200{ 201 int r = 1; 202 203 if (!x) 204 return 0; 205 if (!(x & 0xffff)) { 206 x >>= 16; 207 r += 16; 208 } 209 if (!(x & 0xff)) { 210 x >>= 8; 211 r += 8; 212 } 213 if (!(x & 0xf)) { 214 x >>= 4; 215 r += 4; 216 } 217 if (!(x & 3)) { 218 x >>= 2; 219 r += 2; 220 } 221 if (!(x & 1)) { 222 x >>= 1; 223 r += 1; 224 } 225 return r; 226} 227 228/* 229 * Find next one bit in a bitmap reasonably efficiently. 230 */ 231static __inline__ unsigned long find_next_bit(const unsigned long *addr, 232 unsigned long size, unsigned long offset) 233{ 234 unsigned int *p = ((unsigned int *) addr) + (offset >> 5); 235 unsigned int result = offset & ~31UL; 236 unsigned int tmp; 237 238 if (offset >= size) 239 return size; 240 size -= result; 241 offset &= 31UL; 242 if (offset) { 243 tmp = *p++; 244 tmp &= ~0UL << offset; 245 if (size < 32) 246 goto found_first; 247 if (tmp) 248 goto found_middle; 249 size -= 32; 250 result += 32; 251 } 252 while (size >= 32) { 253 if ((tmp = *p++) != 0) 254 goto found_middle; 255 result += 32; 256 size -= 32; 257 } 258 if (!size) 259 return result; 260 tmp = *p; 261 262found_first: 263 tmp &= ~0UL >> (32 - size); 264 if (tmp == 0UL) /* Are any bits set? */ 265 return result + size; /* Nope. */ 266found_middle: 267 return result + generic_ffs_for_find_next_bit(tmp); 268} 269 270/* 271 * find_first_bit - find the first set bit in a memory region 272 */ 273#define find_first_bit(addr, size) \ 274 find_next_bit((addr), (size), 0) 275 276 277#define ffs(x) generic_ffs (x) 278#define fls(x) generic_fls (x) 279#define fls64(x) generic_fls64(x) 280#define __ffs(x) ffs(x) 281 282 283/* 284 * This is just `generic_ffs' from <linux/bitops.h>, except that it assumes 285 * that at least one bit is set, and returns the real index of the bit 286 * (rather than the bit index + 1, like ffs does). 287 */ 288static inline int sched_ffs(int x) 289{ 290 int r = 0; 291 292 if (!(x & 0xffff)) { 293 x >>= 16; 294 r += 16; 295 } 296 if (!(x & 0xff)) { 297 x >>= 8; 298 r += 8; 299 } 300 if (!(x & 0xf)) { 301 x >>= 4; 302 r += 4; 303 } 304 if (!(x & 3)) { 305 x >>= 2; 306 r += 2; 307 } 308 if (!(x & 1)) { 309 x >>= 1; 310 r += 1; 311 } 312 return r; 313} 314 315/* 316 * Every architecture must define this function. It's the fastest 317 * way of searching a 140-bit bitmap where the first 100 bits are 318 * unlikely to be set. It's guaranteed that at least one of the 140 319 * bits is set. 320 */ 321static inline int sched_find_first_bit(unsigned long *b) 322{ 323 unsigned offs = 0; 324 while (! *b) { 325 b++; 326 offs += 32; 327 } 328 return sched_ffs (*b) + offs; 329} 330 331/* 332 * hweightN: returns the hamming weight (i.e. the number 333 * of bits set) of a N-bit word 334 */ 335#define hweight32(x) generic_hweight32 (x) 336#define hweight16(x) generic_hweight16 (x) 337#define hweight8(x) generic_hweight8 (x) 338 339#define ext2_set_bit test_and_set_bit 340#define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) 341#define ext2_clear_bit test_and_clear_bit 342#define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) 343#define ext2_test_bit test_bit 344#define ext2_find_first_zero_bit find_first_zero_bit 345#define ext2_find_next_zero_bit find_next_zero_bit 346 347/* Bitmap functions for the minix filesystem. */ 348#define minix_test_and_set_bit test_and_set_bit 349#define minix_set_bit set_bit 350#define minix_test_and_clear_bit test_and_clear_bit 351#define minix_test_bit test_bit 352#define minix_find_first_zero_bit find_first_zero_bit 353 354#endif /* __KERNEL__ */ 355 356#endif /* __V850_BITOPS_H__ */