at v2.6.16 19 kB view raw
1#ifndef __ASM_SH64_PGTABLE_H 2#define __ASM_SH64_PGTABLE_H 3 4#include <asm-generic/4level-fixup.h> 5 6/* 7 * This file is subject to the terms and conditions of the GNU General Public 8 * License. See the file "COPYING" in the main directory of this archive 9 * for more details. 10 * 11 * include/asm-sh64/pgtable.h 12 * 13 * Copyright (C) 2000, 2001 Paolo Alberelli 14 * Copyright (C) 2003, 2004 Paul Mundt 15 * Copyright (C) 2003, 2004 Richard Curnow 16 * 17 * This file contains the functions and defines necessary to modify and use 18 * the SuperH page table tree. 19 */ 20 21#ifndef __ASSEMBLY__ 22#include <asm/processor.h> 23#include <asm/page.h> 24#include <linux/threads.h> 25#include <linux/config.h> 26 27struct vm_area_struct; 28 29extern void paging_init(void); 30 31/* We provide our own get_unmapped_area to avoid cache synonym issue */ 32#define HAVE_ARCH_UNMAPPED_AREA 33 34/* 35 * Basically we have the same two-level (which is the logical three level 36 * Linux page table layout folded) page tables as the i386. 37 */ 38 39/* 40 * ZERO_PAGE is a global shared page that is always zero: used 41 * for zero-mapped memory areas etc.. 42 */ 43extern unsigned char empty_zero_page[PAGE_SIZE]; 44#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page)) 45 46#endif /* !__ASSEMBLY__ */ 47 48/* 49 * NEFF and NPHYS related defines. 50 * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103 51 * implement 32 bits effective and 32 bits physical. But future implementations may 52 * extend beyond this. 53 */ 54#define NEFF 32 55#define NEFF_SIGN (1LL << (NEFF - 1)) 56#define NEFF_MASK (-1LL << NEFF) 57 58#define NPHYS 32 59#define NPHYS_SIGN (1LL << (NPHYS - 1)) 60#define NPHYS_MASK (-1LL << NPHYS) 61 62/* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond 63 that 3-level would be appropriate. */ 64#if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 65/* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */ 66#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) 67#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ 68#define PTE_SHIFT PAGE_SHIFT 69#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) 70 71/* top level: PMD. */ 72#define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS) 73#define PGD_BITS (NEFF - PGDIR_SHIFT) 74#define PTRS_PER_PGD (1<<PGD_BITS) 75 76/* middle level: PMD. This doesn't do anything for the 2-level case. */ 77#define PTRS_PER_PMD (1) 78 79#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 80#define PGDIR_MASK (~(PGDIR_SIZE-1)) 81#define PMD_SHIFT PGDIR_SHIFT 82#define PMD_SIZE PGDIR_SIZE 83#define PMD_MASK PGDIR_MASK 84 85#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 86/* 87 * three-level asymmetric paging structure: PGD is top level. 88 * The asymmetry comes from 32-bit pointers and 64-bit PTEs. 89 */ 90/* bottom level: PTE. It's 9 bits = 512 pointers */ 91#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) 92#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ 93#define PTE_SHIFT PAGE_SHIFT 94#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) 95 96/* middle level: PMD. It's 10 bits = 1024 pointers */ 97#define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *)) 98#define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */ 99#define PMD_SHIFT (PTE_SHIFT + PTE_BITS) 100#define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE) 101 102/* top level: PMD. It's 1 bit = 2 pointers */ 103#define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS) 104#define PGD_BITS (NEFF - PGDIR_SHIFT) 105#define PTRS_PER_PGD (1<<PGD_BITS) 106 107#define PMD_SIZE (1UL << PMD_SHIFT) 108#define PMD_MASK (~(PMD_SIZE-1)) 109#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 110#define PGDIR_MASK (~(PGDIR_SIZE-1)) 111 112#else 113#error "No defined number of page table levels" 114#endif 115 116/* 117 * Error outputs. 118 */ 119#define pte_ERROR(e) \ 120 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) 121#define pmd_ERROR(e) \ 122 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 123#define pgd_ERROR(e) \ 124 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 125 126/* 127 * Table setting routines. Used within arch/mm only. 128 */ 129#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval) 130#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 131 132static __inline__ void set_pte(pte_t *pteptr, pte_t pteval) 133{ 134 unsigned long long x = ((unsigned long long) pteval.pte); 135 unsigned long long *xp = (unsigned long long *) pteptr; 136 /* 137 * Sign-extend based on NPHYS. 138 */ 139 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x; 140} 141#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 142 143static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep) 144{ 145 pmd_val(*pmdp) = (unsigned long) ptep; 146} 147 148/* 149 * PGD defines. Top level. 150 */ 151 152/* To find an entry in a generic PGD. */ 153#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 154#define __pgd_offset(address) pgd_index(address) 155#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 156 157/* To find an entry in a kernel PGD. */ 158#define pgd_offset_k(address) pgd_offset(&init_mm, address) 159 160/* 161 * PGD level access routines. 162 * 163 * Note1: 164 * There's no need to use physical addresses since the tree walk is all 165 * in performed in software, until the PTE translation. 166 * 167 * Note 2: 168 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad, 169 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain 170 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must 171 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and 172 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a 173 * bad pgd that must be notified via printk(). 174 * 175 */ 176#define _PGD_EMPTY 0x0 177 178#if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 179static inline int pgd_none(pgd_t pgd) { return 0; } 180static inline int pgd_bad(pgd_t pgd) { return 0; } 181#define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0) 182#define pgd_clear(xx) do { } while(0) 183 184#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 185#define pgd_present(pgd_entry) (1) 186#define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY) 187/* TODO: Think later about what a useful definition of 'bad' would be now. */ 188#define pgd_bad(pgd_entry) (0) 189#define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY))) 190 191#endif 192 193 194#define pgd_page(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK)) 195 196/* 197 * PMD defines. Middle level. 198 */ 199 200/* PGD to PMD dereferencing */ 201#if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 202static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 203{ 204 return (pmd_t *) dir; 205} 206#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 207#define __pmd_offset(address) \ 208 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 209#define pmd_offset(dir, addr) \ 210 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr))) 211#endif 212 213/* 214 * PMD level access routines. Same notes as above. 215 */ 216#define _PMD_EMPTY 0x0 217/* Either the PMD is empty or present, it's not paged out */ 218#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT) 219#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY))) 220#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY) 221#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 222 223#define pmd_page_kernel(pmd_entry) \ 224 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK)) 225 226#define pmd_page(pmd) \ 227 (virt_to_page(pmd_val(pmd))) 228 229/* PMD to PTE dereferencing */ 230#define pte_index(address) \ 231 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 232 233#define pte_offset_kernel(dir, addr) \ 234 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr))) 235 236#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 237#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr) 238#define pte_unmap(pte) do { } while (0) 239#define pte_unmap_nested(pte) do { } while (0) 240 241/* Round it up ! */ 242#define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE) 243#define FIRST_USER_ADDRESS 0 244 245#ifndef __ASSEMBLY__ 246#define VMALLOC_END 0xff000000 247#define VMALLOC_START 0xf0000000 248#define VMALLOC_VMADDR(x) ((unsigned long)(x)) 249 250#define IOBASE_VADDR 0xff000000 251#define IOBASE_END 0xffffffff 252 253/* 254 * PTEL coherent flags. 255 * See Chapter 17 ST50 CPU Core Volume 1, Architecture. 256 */ 257/* The bits that are required in the SH-5 TLB are placed in the h/w-defined 258 positions, to avoid expensive bit shuffling on every refill. The remaining 259 bits are used for s/w purposes and masked out on each refill. 260 261 Note, the PTE slots are used to hold data of type swp_entry_t when a page is 262 swapped out. Only the _PAGE_PRESENT flag is significant when the page is 263 swapped out, and it must be placed so that it doesn't overlap either the 264 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type 265 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This 266 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit 267 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split 268 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */ 269#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */ 270#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */ 271#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */ 272#define _PAGE_PRESENT 0x004 /* software: page referenced */ 273#define _PAGE_FILE 0x004 /* software: only when !present */ 274#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */ 275#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */ 276#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */ 277#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */ 278#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */ 279#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */ 280#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */ 281#define _PAGE_DIRTY 0x400 /* software: page accessed in write */ 282#define _PAGE_ACCESSED 0x800 /* software: page referenced */ 283 284/* Mask which drops software flags */ 285#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL 286 287/* 288 * HugeTLB support 289 */ 290#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K) 291#define _PAGE_SZHUGE (_PAGE_SIZE0) 292#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB) 293#define _PAGE_SZHUGE (_PAGE_SIZE1) 294#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB) 295#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1) 296#endif 297 298/* 299 * Default flags for a Kernel page. 300 * This is fundametally also SHARED because the main use of this define 301 * (other than for PGD/PMD entries) is for the VMALLOC pool which is 302 * contextless. 303 * 304 * _PAGE_EXECUTE is required for modules 305 * 306 */ 307#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 308 _PAGE_EXECUTE | \ 309 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \ 310 _PAGE_SHARED) 311 312/* Default flags for a User page */ 313#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER) 314 315#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 316 317#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED) 318#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 319 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \ 320 _PAGE_SHARED) 321/* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default 322 * protection mode for the stack. */ 323#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ 324 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE) 325#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ 326 _PAGE_ACCESSED | _PAGE_USER) 327#define PAGE_KERNEL __pgprot(_KERNPG_TABLE) 328 329 330/* 331 * In ST50 we have full permissions (Read/Write/Execute/Shared). 332 * Just match'em all. These are for mmap(), therefore all at least 333 * User/Cachable/Present/Accessed. No point in making Fault on Write. 334 */ 335#define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED) 336 /* sxwr */ 337#define __P000 __pgprot(__MMAP_COMMON) 338#define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ) 339#define __P010 __pgprot(__MMAP_COMMON) 340#define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ) 341#define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) 342#define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) 343#define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) 344#define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) 345 346#define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED) 347#define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ) 348#define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE) 349#define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE) 350#define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE) 351#define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ) 352#define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE) 353#define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE) 354 355/* Make it a device mapping for maximum safety (e.g. for mapping device 356 registers into user-space via /dev/map). */ 357#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE) 358#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE) 359 360/* 361 * Handling allocation failures during page table setup. 362 */ 363extern void __handle_bad_pmd_kernel(pmd_t * pmd); 364#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x) 365 366/* 367 * PTE level access routines. 368 * 369 * Note1: 370 * It's the tree walk leaf. This is physical address to be stored. 371 * 372 * Note 2: 373 * Regarding the choice of _PTE_EMPTY: 374 375 We must choose a bit pattern that cannot be valid, whether or not the page 376 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped 377 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is 378 left for us to select. If we force bit[7]==0 when swapped out, we could use 379 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if 380 we force bit[7]==1 when swapped out, we can use all zeroes to indicate 381 empty. This is convenient, because the page tables get cleared to zero 382 when they are allocated. 383 384 */ 385#define _PTE_EMPTY 0x0 386#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 387#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY))) 388#define pte_none(x) (pte_val(x) == _PTE_EMPTY) 389 390/* 391 * Some definitions to translate between mem_map, PTEs, and page 392 * addresses: 393 */ 394 395/* 396 * Given a PTE, return the index of the mem_map[] entry corresponding 397 * to the page frame the PTE. Get the absolute physical address, make 398 * a relative physical address and translate it to an index. 399 */ 400#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \ 401 __MEMORY_START) >> PAGE_SHIFT) 402 403/* 404 * Given a PTE, return the "struct page *". 405 */ 406#define pte_page(x) (mem_map + pte_pagenr(x)) 407 408/* 409 * Return number of (down rounded) MB corresponding to x pages. 410 */ 411#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) 412 413 414/* 415 * The following have defined behavior only work if pte_present() is true. 416 */ 417static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } 418static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; } 419static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; } 420static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; } 421static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 422static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; } 423 424static inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; } 425static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; } 426static inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; } 427static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } 428static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } 429 430static inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; } 431static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; } 432static inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; } 433static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } 434static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } 435static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; } 436 437 438/* 439 * Conversion functions: convert a page and protection to a page entry. 440 * 441 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) 442 */ 443#define mk_pte(page,pgprot) \ 444({ \ 445 pte_t __pte; \ 446 \ 447 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \ 448 __MEMORY_START | pgprot_val((pgprot)))); \ 449 __pte; \ 450}) 451 452/* 453 * This takes a (absolute) physical page address that is used 454 * by the remapping functions 455 */ 456#define mk_pte_phys(physpage, pgprot) \ 457({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; }) 458 459static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 460{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } 461 462typedef pte_t *pte_addr_t; 463#define pgtable_cache_init() do { } while (0) 464 465extern void update_mmu_cache(struct vm_area_struct * vma, 466 unsigned long address, pte_t pte); 467 468/* Encode and decode a swap entry */ 469#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c)) 470#define __swp_offset(x) ((x).val >> 8) 471#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) }) 472#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 473#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 474 475/* Encode and decode a nonlinear file mapping entry */ 476#define PTE_FILE_MAX_BITS 29 477#define pte_to_pgoff(pte) (pte_val(pte)) 478#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE }) 479 480/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 481#define PageSkip(page) (0) 482#define kern_addr_valid(addr) (1) 483 484#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 485 remap_pfn_range(vma, vaddr, pfn, size, prot) 486 487#define MK_IOSPACE_PFN(space, pfn) (pfn) 488#define GET_IOSPACE(pfn) 0 489#define GET_PFN(pfn) (pfn) 490 491#endif /* !__ASSEMBLY__ */ 492 493/* 494 * No page table caches to initialise 495 */ 496#define pgtable_cache_init() do { } while (0) 497 498#define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT) 499#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 500#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 501 502extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 503 504#include <asm-generic/pgtable.h> 505 506#endif /* __ASM_SH64_PGTABLE_H */