at v2.6.16 814 lines 25 kB view raw
1/* 2 * include/asm-s390/pgtable.h 3 * 4 * S390 version 5 * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation 6 * Author(s): Hartmut Penner (hp@de.ibm.com) 7 * Ulrich Weigand (weigand@de.ibm.com) 8 * Martin Schwidefsky (schwidefsky@de.ibm.com) 9 * 10 * Derived from "include/asm-i386/pgtable.h" 11 */ 12 13#ifndef _ASM_S390_PGTABLE_H 14#define _ASM_S390_PGTABLE_H 15 16#include <asm-generic/4level-fixup.h> 17 18/* 19 * The Linux memory management assumes a three-level page table setup. For 20 * s390 31 bit we "fold" the mid level into the top-level page table, so 21 * that we physically have the same two-level page table as the s390 mmu 22 * expects in 31 bit mode. For s390 64 bit we use three of the five levels 23 * the hardware provides (region first and region second tables are not 24 * used). 25 * 26 * The "pgd_xxx()" functions are trivial for a folded two-level 27 * setup: the pgd is never bad, and a pmd always exists (as it's folded 28 * into the pgd entry) 29 * 30 * This file contains the functions and defines necessary to modify and use 31 * the S390 page table tree. 32 */ 33#ifndef __ASSEMBLY__ 34#include <asm/bug.h> 35#include <asm/processor.h> 36#include <linux/threads.h> 37 38struct vm_area_struct; /* forward declaration (include/linux/mm.h) */ 39struct mm_struct; 40 41extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096))); 42extern void paging_init(void); 43 44/* 45 * The S390 doesn't have any external MMU info: the kernel page 46 * tables contain all the necessary information. 47 */ 48#define update_mmu_cache(vma, address, pte) do { } while (0) 49 50/* 51 * ZERO_PAGE is a global shared page that is always zero: used 52 * for zero-mapped memory areas etc.. 53 */ 54extern char empty_zero_page[PAGE_SIZE]; 55#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 56#endif /* !__ASSEMBLY__ */ 57 58/* 59 * PMD_SHIFT determines the size of the area a second-level page 60 * table can map 61 * PGDIR_SHIFT determines what a third-level page table entry can map 62 */ 63#ifndef __s390x__ 64# define PMD_SHIFT 22 65# define PGDIR_SHIFT 22 66#else /* __s390x__ */ 67# define PMD_SHIFT 21 68# define PGDIR_SHIFT 31 69#endif /* __s390x__ */ 70 71#define PMD_SIZE (1UL << PMD_SHIFT) 72#define PMD_MASK (~(PMD_SIZE-1)) 73#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 74#define PGDIR_MASK (~(PGDIR_SIZE-1)) 75 76/* 77 * entries per page directory level: the S390 is two-level, so 78 * we don't really have any PMD directory physically. 79 * for S390 segment-table entries are combined to one PGD 80 * that leads to 1024 pte per pgd 81 */ 82#ifndef __s390x__ 83# define PTRS_PER_PTE 1024 84# define PTRS_PER_PMD 1 85# define PTRS_PER_PGD 512 86#else /* __s390x__ */ 87# define PTRS_PER_PTE 512 88# define PTRS_PER_PMD 1024 89# define PTRS_PER_PGD 2048 90#endif /* __s390x__ */ 91 92/* 93 * pgd entries used up by user/kernel: 94 */ 95#ifndef __s390x__ 96# define USER_PTRS_PER_PGD 512 97# define USER_PGD_PTRS 512 98# define KERNEL_PGD_PTRS 512 99#else /* __s390x__ */ 100# define USER_PTRS_PER_PGD 2048 101# define USER_PGD_PTRS 2048 102# define KERNEL_PGD_PTRS 2048 103#endif /* __s390x__ */ 104 105#define FIRST_USER_ADDRESS 0 106 107#define pte_ERROR(e) \ 108 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e)) 109#define pmd_ERROR(e) \ 110 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e)) 111#define pgd_ERROR(e) \ 112 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e)) 113 114#ifndef __ASSEMBLY__ 115/* 116 * Just any arbitrary offset to the start of the vmalloc VM area: the 117 * current 8MB value just means that there will be a 8MB "hole" after the 118 * physical memory until the kernel virtual memory starts. That means that 119 * any out-of-bounds memory accesses will hopefully be caught. 120 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 121 * area for the same reason. ;) 122 */ 123#define VMALLOC_OFFSET (8*1024*1024) 124#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) \ 125 & ~(VMALLOC_OFFSET-1)) 126#ifndef __s390x__ 127# define VMALLOC_END (0x7fffffffL) 128#else /* __s390x__ */ 129# define VMALLOC_END (0x40000000000L) 130#endif /* __s390x__ */ 131 132 133/* 134 * A 31 bit pagetable entry of S390 has following format: 135 * | PFRA | | OS | 136 * 0 0IP0 137 * 00000000001111111111222222222233 138 * 01234567890123456789012345678901 139 * 140 * I Page-Invalid Bit: Page is not available for address-translation 141 * P Page-Protection Bit: Store access not possible for page 142 * 143 * A 31 bit segmenttable entry of S390 has following format: 144 * | P-table origin | |PTL 145 * 0 IC 146 * 00000000001111111111222222222233 147 * 01234567890123456789012345678901 148 * 149 * I Segment-Invalid Bit: Segment is not available for address-translation 150 * C Common-Segment Bit: Segment is not private (PoP 3-30) 151 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256) 152 * 153 * The 31 bit segmenttable origin of S390 has following format: 154 * 155 * |S-table origin | | STL | 156 * X **GPS 157 * 00000000001111111111222222222233 158 * 01234567890123456789012345678901 159 * 160 * X Space-Switch event: 161 * G Segment-Invalid Bit: * 162 * P Private-Space Bit: Segment is not private (PoP 3-30) 163 * S Storage-Alteration: 164 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048) 165 * 166 * A 64 bit pagetable entry of S390 has following format: 167 * | PFRA |0IP0| OS | 168 * 0000000000111111111122222222223333333333444444444455555555556666 169 * 0123456789012345678901234567890123456789012345678901234567890123 170 * 171 * I Page-Invalid Bit: Page is not available for address-translation 172 * P Page-Protection Bit: Store access not possible for page 173 * 174 * A 64 bit segmenttable entry of S390 has following format: 175 * | P-table origin | TT 176 * 0000000000111111111122222222223333333333444444444455555555556666 177 * 0123456789012345678901234567890123456789012345678901234567890123 178 * 179 * I Segment-Invalid Bit: Segment is not available for address-translation 180 * C Common-Segment Bit: Segment is not private (PoP 3-30) 181 * P Page-Protection Bit: Store access not possible for page 182 * TT Type 00 183 * 184 * A 64 bit region table entry of S390 has following format: 185 * | S-table origin | TF TTTL 186 * 0000000000111111111122222222223333333333444444444455555555556666 187 * 0123456789012345678901234567890123456789012345678901234567890123 188 * 189 * I Segment-Invalid Bit: Segment is not available for address-translation 190 * TT Type 01 191 * TF 192 * TL Table lenght 193 * 194 * The 64 bit regiontable origin of S390 has following format: 195 * | region table origon | DTTL 196 * 0000000000111111111122222222223333333333444444444455555555556666 197 * 0123456789012345678901234567890123456789012345678901234567890123 198 * 199 * X Space-Switch event: 200 * G Segment-Invalid Bit: 201 * P Private-Space Bit: 202 * S Storage-Alteration: 203 * R Real space 204 * TL Table-Length: 205 * 206 * A storage key has the following format: 207 * | ACC |F|R|C|0| 208 * 0 3 4 5 6 7 209 * ACC: access key 210 * F : fetch protection bit 211 * R : referenced bit 212 * C : changed bit 213 */ 214 215/* Hardware bits in the page table entry */ 216#define _PAGE_RO 0x200 /* HW read-only */ 217#define _PAGE_INVALID 0x400 /* HW invalid */ 218 219/* Mask and four different kinds of invalid pages. */ 220#define _PAGE_INVALID_MASK 0x601 221#define _PAGE_INVALID_EMPTY 0x400 222#define _PAGE_INVALID_NONE 0x401 223#define _PAGE_INVALID_SWAP 0x600 224#define _PAGE_INVALID_FILE 0x601 225 226#ifndef __s390x__ 227 228/* Bits in the segment table entry */ 229#define _PAGE_TABLE_LEN 0xf /* only full page-tables */ 230#define _PAGE_TABLE_COM 0x10 /* common page-table */ 231#define _PAGE_TABLE_INV 0x20 /* invalid page-table */ 232#define _SEG_PRESENT 0x001 /* Software (overlap with PTL) */ 233 234/* Bits int the storage key */ 235#define _PAGE_CHANGED 0x02 /* HW changed bit */ 236#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 237 238#define _USER_SEG_TABLE_LEN 0x7f /* user-segment-table up to 2 GB */ 239#define _KERNEL_SEG_TABLE_LEN 0x7f /* kernel-segment-table up to 2 GB */ 240 241/* 242 * User and Kernel pagetables are identical 243 */ 244#define _PAGE_TABLE _PAGE_TABLE_LEN 245#define _KERNPG_TABLE _PAGE_TABLE_LEN 246 247/* 248 * The Kernel segment-tables includes the User segment-table 249 */ 250 251#define _SEGMENT_TABLE (_USER_SEG_TABLE_LEN|0x80000000|0x100) 252#define _KERNSEG_TABLE _KERNEL_SEG_TABLE_LEN 253 254#define USER_STD_MASK 0x00000080UL 255 256#else /* __s390x__ */ 257 258/* Bits in the segment table entry */ 259#define _PMD_ENTRY_INV 0x20 /* invalid segment table entry */ 260#define _PMD_ENTRY 0x00 261 262/* Bits in the region third table entry */ 263#define _PGD_ENTRY_INV 0x20 /* invalid region table entry */ 264#define _PGD_ENTRY 0x07 265 266/* 267 * User and kernel page directory 268 */ 269#define _REGION_THIRD 0x4 270#define _REGION_THIRD_LEN 0x3 271#define _REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN|0x40|0x100) 272#define _KERN_REGION_TABLE (_REGION_THIRD|_REGION_THIRD_LEN) 273 274#define USER_STD_MASK 0x0000000000000080UL 275 276/* Bits in the storage key */ 277#define _PAGE_CHANGED 0x02 /* HW changed bit */ 278#define _PAGE_REFERENCED 0x04 /* HW referenced bit */ 279 280#endif /* __s390x__ */ 281 282/* 283 * No mapping available 284 */ 285#define PAGE_NONE_SHARED __pgprot(_PAGE_INVALID_NONE) 286#define PAGE_NONE_PRIVATE __pgprot(_PAGE_INVALID_NONE) 287#define PAGE_RO_SHARED __pgprot(_PAGE_RO) 288#define PAGE_RO_PRIVATE __pgprot(_PAGE_RO) 289#define PAGE_COPY __pgprot(_PAGE_RO) 290#define PAGE_SHARED __pgprot(0) 291#define PAGE_KERNEL __pgprot(0) 292 293/* 294 * The S390 can't do page protection for execute, and considers that the 295 * same are read. Also, write permissions imply read permissions. This is 296 * the closest we can get.. 297 */ 298 /*xwr*/ 299#define __P000 PAGE_NONE_PRIVATE 300#define __P001 PAGE_RO_PRIVATE 301#define __P010 PAGE_COPY 302#define __P011 PAGE_COPY 303#define __P100 PAGE_RO_PRIVATE 304#define __P101 PAGE_RO_PRIVATE 305#define __P110 PAGE_COPY 306#define __P111 PAGE_COPY 307 308#define __S000 PAGE_NONE_SHARED 309#define __S001 PAGE_RO_SHARED 310#define __S010 PAGE_SHARED 311#define __S011 PAGE_SHARED 312#define __S100 PAGE_RO_SHARED 313#define __S101 PAGE_RO_SHARED 314#define __S110 PAGE_SHARED 315#define __S111 PAGE_SHARED 316 317/* 318 * Certain architectures need to do special things when PTEs 319 * within a page table are directly modified. Thus, the following 320 * hook is made available. 321 */ 322static inline void set_pte(pte_t *pteptr, pte_t pteval) 323{ 324 *pteptr = pteval; 325} 326#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 327 328/* 329 * pgd/pmd/pte query functions 330 */ 331#ifndef __s390x__ 332 333static inline int pgd_present(pgd_t pgd) { return 1; } 334static inline int pgd_none(pgd_t pgd) { return 0; } 335static inline int pgd_bad(pgd_t pgd) { return 0; } 336 337static inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _SEG_PRESENT; } 338static inline int pmd_none(pmd_t pmd) { return pmd_val(pmd) & _PAGE_TABLE_INV; } 339static inline int pmd_bad(pmd_t pmd) 340{ 341 return (pmd_val(pmd) & (~PAGE_MASK & ~_PAGE_TABLE_INV)) != _PAGE_TABLE; 342} 343 344#else /* __s390x__ */ 345 346static inline int pgd_present(pgd_t pgd) 347{ 348 return (pgd_val(pgd) & ~PAGE_MASK) == _PGD_ENTRY; 349} 350 351static inline int pgd_none(pgd_t pgd) 352{ 353 return pgd_val(pgd) & _PGD_ENTRY_INV; 354} 355 356static inline int pgd_bad(pgd_t pgd) 357{ 358 return (pgd_val(pgd) & (~PAGE_MASK & ~_PGD_ENTRY_INV)) != _PGD_ENTRY; 359} 360 361static inline int pmd_present(pmd_t pmd) 362{ 363 return (pmd_val(pmd) & ~PAGE_MASK) == _PMD_ENTRY; 364} 365 366static inline int pmd_none(pmd_t pmd) 367{ 368 return pmd_val(pmd) & _PMD_ENTRY_INV; 369} 370 371static inline int pmd_bad(pmd_t pmd) 372{ 373 return (pmd_val(pmd) & (~PAGE_MASK & ~_PMD_ENTRY_INV)) != _PMD_ENTRY; 374} 375 376#endif /* __s390x__ */ 377 378static inline int pte_none(pte_t pte) 379{ 380 return (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_EMPTY; 381} 382 383static inline int pte_present(pte_t pte) 384{ 385 return !(pte_val(pte) & _PAGE_INVALID) || 386 (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_NONE; 387} 388 389static inline int pte_file(pte_t pte) 390{ 391 return (pte_val(pte) & _PAGE_INVALID_MASK) == _PAGE_INVALID_FILE; 392} 393 394#define pte_same(a,b) (pte_val(a) == pte_val(b)) 395 396/* 397 * query functions pte_write/pte_dirty/pte_young only work if 398 * pte_present() is true. Undefined behaviour if not.. 399 */ 400static inline int pte_write(pte_t pte) 401{ 402 return (pte_val(pte) & _PAGE_RO) == 0; 403} 404 405static inline int pte_dirty(pte_t pte) 406{ 407 /* A pte is neither clean nor dirty on s/390. The dirty bit 408 * is in the storage key. See page_test_and_clear_dirty for 409 * details. 410 */ 411 return 0; 412} 413 414static inline int pte_young(pte_t pte) 415{ 416 /* A pte is neither young nor old on s/390. The young bit 417 * is in the storage key. See page_test_and_clear_young for 418 * details. 419 */ 420 return 0; 421} 422 423static inline int pte_read(pte_t pte) 424{ 425 /* All pages are readable since we don't use the fetch 426 * protection bit in the storage key. 427 */ 428 return 1; 429} 430 431/* 432 * pgd/pmd/pte modification functions 433 */ 434 435#ifndef __s390x__ 436 437static inline void pgd_clear(pgd_t * pgdp) { } 438 439static inline void pmd_clear(pmd_t * pmdp) 440{ 441 pmd_val(pmdp[0]) = _PAGE_TABLE_INV; 442 pmd_val(pmdp[1]) = _PAGE_TABLE_INV; 443 pmd_val(pmdp[2]) = _PAGE_TABLE_INV; 444 pmd_val(pmdp[3]) = _PAGE_TABLE_INV; 445} 446 447#else /* __s390x__ */ 448 449static inline void pgd_clear(pgd_t * pgdp) 450{ 451 pgd_val(*pgdp) = _PGD_ENTRY_INV | _PGD_ENTRY; 452} 453 454static inline void pmd_clear(pmd_t * pmdp) 455{ 456 pmd_val(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; 457 pmd_val1(*pmdp) = _PMD_ENTRY_INV | _PMD_ENTRY; 458} 459 460#endif /* __s390x__ */ 461 462static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 463{ 464 pte_val(*ptep) = _PAGE_INVALID_EMPTY; 465} 466 467/* 468 * The following pte modification functions only work if 469 * pte_present() is true. Undefined behaviour if not.. 470 */ 471static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 472{ 473 pte_val(pte) &= PAGE_MASK; 474 pte_val(pte) |= pgprot_val(newprot); 475 return pte; 476} 477 478static inline pte_t pte_wrprotect(pte_t pte) 479{ 480 /* Do not clobber _PAGE_INVALID_NONE pages! */ 481 if (!(pte_val(pte) & _PAGE_INVALID)) 482 pte_val(pte) |= _PAGE_RO; 483 return pte; 484} 485 486static inline pte_t pte_mkwrite(pte_t pte) 487{ 488 pte_val(pte) &= ~_PAGE_RO; 489 return pte; 490} 491 492static inline pte_t pte_mkclean(pte_t pte) 493{ 494 /* The only user of pte_mkclean is the fork() code. 495 We must *not* clear the *physical* page dirty bit 496 just because fork() wants to clear the dirty bit in 497 *one* of the page's mappings. So we just do nothing. */ 498 return pte; 499} 500 501static inline pte_t pte_mkdirty(pte_t pte) 502{ 503 /* We do not explicitly set the dirty bit because the 504 * sske instruction is slow. It is faster to let the 505 * next instruction set the dirty bit. 506 */ 507 return pte; 508} 509 510static inline pte_t pte_mkold(pte_t pte) 511{ 512 /* S/390 doesn't keep its dirty/referenced bit in the pte. 513 * There is no point in clearing the real referenced bit. 514 */ 515 return pte; 516} 517 518static inline pte_t pte_mkyoung(pte_t pte) 519{ 520 /* S/390 doesn't keep its dirty/referenced bit in the pte. 521 * There is no point in setting the real referenced bit. 522 */ 523 return pte; 524} 525 526static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 527{ 528 return 0; 529} 530 531static inline int 532ptep_clear_flush_young(struct vm_area_struct *vma, 533 unsigned long address, pte_t *ptep) 534{ 535 /* No need to flush TLB; bits are in storage key */ 536 return ptep_test_and_clear_young(vma, address, ptep); 537} 538 539static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 540{ 541 return 0; 542} 543 544static inline int 545ptep_clear_flush_dirty(struct vm_area_struct *vma, 546 unsigned long address, pte_t *ptep) 547{ 548 /* No need to flush TLB; bits are in storage key */ 549 return ptep_test_and_clear_dirty(vma, address, ptep); 550} 551 552static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 553{ 554 pte_t pte = *ptep; 555 pte_clear(mm, addr, ptep); 556 return pte; 557} 558 559static inline pte_t 560ptep_clear_flush(struct vm_area_struct *vma, 561 unsigned long address, pte_t *ptep) 562{ 563 pte_t pte = *ptep; 564#ifndef __s390x__ 565 if (!(pte_val(pte) & _PAGE_INVALID)) { 566 /* S390 has 1mb segments, we are emulating 4MB segments */ 567 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00); 568 __asm__ __volatile__ ("ipte %2,%3" 569 : "=m" (*ptep) : "m" (*ptep), 570 "a" (pto), "a" (address) ); 571 } 572#else /* __s390x__ */ 573 if (!(pte_val(pte) & _PAGE_INVALID)) 574 __asm__ __volatile__ ("ipte %2,%3" 575 : "=m" (*ptep) : "m" (*ptep), 576 "a" (ptep), "a" (address) ); 577#endif /* __s390x__ */ 578 pte_val(*ptep) = _PAGE_INVALID_EMPTY; 579 return pte; 580} 581 582static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 583{ 584 pte_t old_pte = *ptep; 585 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 586} 587 588static inline void 589ptep_establish(struct vm_area_struct *vma, 590 unsigned long address, pte_t *ptep, 591 pte_t entry) 592{ 593 ptep_clear_flush(vma, address, ptep); 594 set_pte(ptep, entry); 595} 596 597#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ 598 ptep_establish(__vma, __address, __ptep, __entry) 599 600/* 601 * Test and clear dirty bit in storage key. 602 * We can't clear the changed bit atomically. This is a potential 603 * race against modification of the referenced bit. This function 604 * should therefore only be called if it is not mapped in any 605 * address space. 606 */ 607#define page_test_and_clear_dirty(_page) \ 608({ \ 609 struct page *__page = (_page); \ 610 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \ 611 int __skey = page_get_storage_key(__physpage); \ 612 if (__skey & _PAGE_CHANGED) \ 613 page_set_storage_key(__physpage, __skey & ~_PAGE_CHANGED);\ 614 (__skey & _PAGE_CHANGED); \ 615}) 616 617/* 618 * Test and clear referenced bit in storage key. 619 */ 620#define page_test_and_clear_young(page) \ 621({ \ 622 struct page *__page = (page); \ 623 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \ 624 int __ccode; \ 625 asm volatile ("rrbe 0,%1\n\t" \ 626 "ipm %0\n\t" \ 627 "srl %0,28\n\t" \ 628 : "=d" (__ccode) : "a" (__physpage) : "cc" ); \ 629 (__ccode & 2); \ 630}) 631 632/* 633 * Conversion functions: convert a page and protection to a page entry, 634 * and a page entry and page directory to the page they refer to. 635 */ 636static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 637{ 638 pte_t __pte; 639 pte_val(__pte) = physpage + pgprot_val(pgprot); 640 return __pte; 641} 642 643#define mk_pte(pg, pgprot) \ 644({ \ 645 struct page *__page = (pg); \ 646 pgprot_t __pgprot = (pgprot); \ 647 unsigned long __physpage = __pa((__page-mem_map) << PAGE_SHIFT); \ 648 pte_t __pte = mk_pte_phys(__physpage, __pgprot); \ 649 __pte; \ 650}) 651 652#define pfn_pte(pfn, pgprot) \ 653({ \ 654 pgprot_t __pgprot = (pgprot); \ 655 unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \ 656 pte_t __pte = mk_pte_phys(__physpage, __pgprot); \ 657 __pte; \ 658}) 659 660#define SetPageUptodate(_page) \ 661 do { \ 662 struct page *__page = (_page); \ 663 if (!test_and_set_bit(PG_uptodate, &__page->flags)) \ 664 page_test_and_clear_dirty(_page); \ 665 } while (0) 666 667#ifdef __s390x__ 668 669#define pfn_pmd(pfn, pgprot) \ 670({ \ 671 pgprot_t __pgprot = (pgprot); \ 672 unsigned long __physpage = __pa((pfn) << PAGE_SHIFT); \ 673 pmd_t __pmd = __pmd(__physpage + pgprot_val(__pgprot)); \ 674 __pmd; \ 675}) 676 677#endif /* __s390x__ */ 678 679#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 680#define pte_page(x) pfn_to_page(pte_pfn(x)) 681 682#define pmd_page_kernel(pmd) (pmd_val(pmd) & PAGE_MASK) 683 684#define pmd_page(pmd) (mem_map+(pmd_val(pmd) >> PAGE_SHIFT)) 685 686#define pgd_page_kernel(pgd) (pgd_val(pgd) & PAGE_MASK) 687 688/* to find an entry in a page-table-directory */ 689#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 690#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 691 692/* to find an entry in a kernel page-table-directory */ 693#define pgd_offset_k(address) pgd_offset(&init_mm, address) 694 695#ifndef __s390x__ 696 697/* Find an entry in the second-level page table.. */ 698static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 699{ 700 return (pmd_t *) dir; 701} 702 703#else /* __s390x__ */ 704 705/* Find an entry in the second-level page table.. */ 706#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 707#define pmd_offset(dir,addr) \ 708 ((pmd_t *) pgd_page_kernel(*(dir)) + pmd_index(addr)) 709 710#endif /* __s390x__ */ 711 712/* Find an entry in the third-level page table.. */ 713#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1)) 714#define pte_offset_kernel(pmd, address) \ 715 ((pte_t *) pmd_page_kernel(*(pmd)) + pte_index(address)) 716#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address) 717#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address) 718#define pte_unmap(pte) do { } while (0) 719#define pte_unmap_nested(pte) do { } while (0) 720 721/* 722 * 31 bit swap entry format: 723 * A page-table entry has some bits we have to treat in a special way. 724 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification 725 * exception will occur instead of a page translation exception. The 726 * specifiation exception has the bad habit not to store necessary 727 * information in the lowcore. 728 * Bit 21 and bit 22 are the page invalid bit and the page protection 729 * bit. We set both to indicate a swapped page. 730 * Bit 30 and 31 are used to distinguish the different page types. For 731 * a swapped page these bits need to be zero. 732 * This leaves the bits 1-19 and bits 24-29 to store type and offset. 733 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19 734 * plus 24 for the offset. 735 * 0| offset |0110|o|type |00| 736 * 0 0000000001111111111 2222 2 22222 33 737 * 0 1234567890123456789 0123 4 56789 01 738 * 739 * 64 bit swap entry format: 740 * A page-table entry has some bits we have to treat in a special way. 741 * Bits 52 and bit 55 have to be zero, otherwise an specification 742 * exception will occur instead of a page translation exception. The 743 * specifiation exception has the bad habit not to store necessary 744 * information in the lowcore. 745 * Bit 53 and bit 54 are the page invalid bit and the page protection 746 * bit. We set both to indicate a swapped page. 747 * Bit 62 and 63 are used to distinguish the different page types. For 748 * a swapped page these bits need to be zero. 749 * This leaves the bits 0-51 and bits 56-61 to store type and offset. 750 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51 751 * plus 56 for the offset. 752 * | offset |0110|o|type |00| 753 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66 754 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23 755 */ 756#ifndef __s390x__ 757#define __SWP_OFFSET_MASK (~0UL >> 12) 758#else 759#define __SWP_OFFSET_MASK (~0UL >> 11) 760#endif 761static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 762{ 763 pte_t pte; 764 offset &= __SWP_OFFSET_MASK; 765 pte_val(pte) = _PAGE_INVALID_SWAP | ((type & 0x1f) << 2) | 766 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11); 767 return pte; 768} 769 770#define __swp_type(entry) (((entry).val >> 2) & 0x1f) 771#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1)) 772#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) }) 773 774#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 775#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 776 777#ifndef __s390x__ 778# define PTE_FILE_MAX_BITS 26 779#else /* __s390x__ */ 780# define PTE_FILE_MAX_BITS 59 781#endif /* __s390x__ */ 782 783#define pte_to_pgoff(__pte) \ 784 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f)) 785 786#define pgoff_to_pte(__off) \ 787 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \ 788 | _PAGE_INVALID_FILE }) 789 790#endif /* !__ASSEMBLY__ */ 791 792#define kern_addr_valid(addr) (1) 793 794/* 795 * No page table caches to initialise 796 */ 797#define pgtable_cache_init() do { } while (0) 798 799#define __HAVE_ARCH_PTEP_ESTABLISH 800#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 801#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 802#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 803#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 804#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH 805#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 806#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 807#define __HAVE_ARCH_PTEP_SET_WRPROTECT 808#define __HAVE_ARCH_PTE_SAME 809#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY 810#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG 811#include <asm-generic/pgtable.h> 812 813#endif /* _S390_PAGE_H */ 814