at v2.6.16-rc2 876 lines 24 kB view raw
1/* 2 * mm/rmap.c - physical to virtual reverse mappings 3 * 4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br> 5 * Released under the General Public License (GPL). 6 * 7 * Simple, low overhead reverse mapping scheme. 8 * Please try to keep this thing as modular as possible. 9 * 10 * Provides methods for unmapping each kind of mapped page: 11 * the anon methods track anonymous pages, and 12 * the file methods track pages belonging to an inode. 13 * 14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001 15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 18 */ 19 20/* 21 * Lock ordering in mm: 22 * 23 * inode->i_mutex (while writing or truncating, not reading or faulting) 24 * inode->i_alloc_sem 25 * 26 * When a page fault occurs in writing from user to file, down_read 27 * of mmap_sem nests within i_mutex; in sys_msync, i_mutex nests within 28 * down_read of mmap_sem; i_mutex and down_write of mmap_sem are never 29 * taken together; in truncation, i_mutex is taken outermost. 30 * 31 * mm->mmap_sem 32 * page->flags PG_locked (lock_page) 33 * mapping->i_mmap_lock 34 * anon_vma->lock 35 * mm->page_table_lock or pte_lock 36 * zone->lru_lock (in mark_page_accessed, isolate_lru_page) 37 * swap_lock (in swap_duplicate, swap_info_get) 38 * mmlist_lock (in mmput, drain_mmlist and others) 39 * mapping->private_lock (in __set_page_dirty_buffers) 40 * inode_lock (in set_page_dirty's __mark_inode_dirty) 41 * sb_lock (within inode_lock in fs/fs-writeback.c) 42 * mapping->tree_lock (widely used, in set_page_dirty, 43 * in arch-dependent flush_dcache_mmap_lock, 44 * within inode_lock in __sync_single_inode) 45 */ 46 47#include <linux/mm.h> 48#include <linux/pagemap.h> 49#include <linux/swap.h> 50#include <linux/swapops.h> 51#include <linux/slab.h> 52#include <linux/init.h> 53#include <linux/rmap.h> 54#include <linux/rcupdate.h> 55#include <linux/module.h> 56 57#include <asm/tlbflush.h> 58 59//#define RMAP_DEBUG /* can be enabled only for debugging */ 60 61kmem_cache_t *anon_vma_cachep; 62 63static inline void validate_anon_vma(struct vm_area_struct *find_vma) 64{ 65#ifdef RMAP_DEBUG 66 struct anon_vma *anon_vma = find_vma->anon_vma; 67 struct vm_area_struct *vma; 68 unsigned int mapcount = 0; 69 int found = 0; 70 71 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 72 mapcount++; 73 BUG_ON(mapcount > 100000); 74 if (vma == find_vma) 75 found = 1; 76 } 77 BUG_ON(!found); 78#endif 79} 80 81/* This must be called under the mmap_sem. */ 82int anon_vma_prepare(struct vm_area_struct *vma) 83{ 84 struct anon_vma *anon_vma = vma->anon_vma; 85 86 might_sleep(); 87 if (unlikely(!anon_vma)) { 88 struct mm_struct *mm = vma->vm_mm; 89 struct anon_vma *allocated, *locked; 90 91 anon_vma = find_mergeable_anon_vma(vma); 92 if (anon_vma) { 93 allocated = NULL; 94 locked = anon_vma; 95 spin_lock(&locked->lock); 96 } else { 97 anon_vma = anon_vma_alloc(); 98 if (unlikely(!anon_vma)) 99 return -ENOMEM; 100 allocated = anon_vma; 101 locked = NULL; 102 } 103 104 /* page_table_lock to protect against threads */ 105 spin_lock(&mm->page_table_lock); 106 if (likely(!vma->anon_vma)) { 107 vma->anon_vma = anon_vma; 108 list_add(&vma->anon_vma_node, &anon_vma->head); 109 allocated = NULL; 110 } 111 spin_unlock(&mm->page_table_lock); 112 113 if (locked) 114 spin_unlock(&locked->lock); 115 if (unlikely(allocated)) 116 anon_vma_free(allocated); 117 } 118 return 0; 119} 120 121void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) 122{ 123 BUG_ON(vma->anon_vma != next->anon_vma); 124 list_del(&next->anon_vma_node); 125} 126 127void __anon_vma_link(struct vm_area_struct *vma) 128{ 129 struct anon_vma *anon_vma = vma->anon_vma; 130 131 if (anon_vma) { 132 list_add(&vma->anon_vma_node, &anon_vma->head); 133 validate_anon_vma(vma); 134 } 135} 136 137void anon_vma_link(struct vm_area_struct *vma) 138{ 139 struct anon_vma *anon_vma = vma->anon_vma; 140 141 if (anon_vma) { 142 spin_lock(&anon_vma->lock); 143 list_add(&vma->anon_vma_node, &anon_vma->head); 144 validate_anon_vma(vma); 145 spin_unlock(&anon_vma->lock); 146 } 147} 148 149void anon_vma_unlink(struct vm_area_struct *vma) 150{ 151 struct anon_vma *anon_vma = vma->anon_vma; 152 int empty; 153 154 if (!anon_vma) 155 return; 156 157 spin_lock(&anon_vma->lock); 158 validate_anon_vma(vma); 159 list_del(&vma->anon_vma_node); 160 161 /* We must garbage collect the anon_vma if it's empty */ 162 empty = list_empty(&anon_vma->head); 163 spin_unlock(&anon_vma->lock); 164 165 if (empty) 166 anon_vma_free(anon_vma); 167} 168 169static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) 170{ 171 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == 172 SLAB_CTOR_CONSTRUCTOR) { 173 struct anon_vma *anon_vma = data; 174 175 spin_lock_init(&anon_vma->lock); 176 INIT_LIST_HEAD(&anon_vma->head); 177 } 178} 179 180void __init anon_vma_init(void) 181{ 182 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), 183 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); 184} 185 186/* 187 * Getting a lock on a stable anon_vma from a page off the LRU is 188 * tricky: page_lock_anon_vma rely on RCU to guard against the races. 189 */ 190static struct anon_vma *page_lock_anon_vma(struct page *page) 191{ 192 struct anon_vma *anon_vma = NULL; 193 unsigned long anon_mapping; 194 195 rcu_read_lock(); 196 anon_mapping = (unsigned long) page->mapping; 197 if (!(anon_mapping & PAGE_MAPPING_ANON)) 198 goto out; 199 if (!page_mapped(page)) 200 goto out; 201 202 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); 203 spin_lock(&anon_vma->lock); 204out: 205 rcu_read_unlock(); 206 return anon_vma; 207} 208 209#ifdef CONFIG_MIGRATION 210/* 211 * Remove an anonymous page from swap replacing the swap pte's 212 * through real pte's pointing to valid pages and then releasing 213 * the page from the swap cache. 214 * 215 * Must hold page lock on page. 216 */ 217void remove_from_swap(struct page *page) 218{ 219 struct anon_vma *anon_vma; 220 struct vm_area_struct *vma; 221 222 if (!PageAnon(page) || !PageSwapCache(page)) 223 return; 224 225 anon_vma = page_lock_anon_vma(page); 226 if (!anon_vma) 227 return; 228 229 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) 230 remove_vma_swap(vma, page); 231 232 spin_unlock(&anon_vma->lock); 233 234 delete_from_swap_cache(page); 235} 236EXPORT_SYMBOL(remove_from_swap); 237#endif 238 239/* 240 * At what user virtual address is page expected in vma? 241 */ 242static inline unsigned long 243vma_address(struct page *page, struct vm_area_struct *vma) 244{ 245 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 246 unsigned long address; 247 248 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 249 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 250 /* page should be within any vma from prio_tree_next */ 251 BUG_ON(!PageAnon(page)); 252 return -EFAULT; 253 } 254 return address; 255} 256 257/* 258 * At what user virtual address is page expected in vma? checking that the 259 * page matches the vma: currently only used on anon pages, by unuse_vma; 260 */ 261unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) 262{ 263 if (PageAnon(page)) { 264 if ((void *)vma->anon_vma != 265 (void *)page->mapping - PAGE_MAPPING_ANON) 266 return -EFAULT; 267 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { 268 if (!vma->vm_file || 269 vma->vm_file->f_mapping != page->mapping) 270 return -EFAULT; 271 } else 272 return -EFAULT; 273 return vma_address(page, vma); 274} 275 276/* 277 * Check that @page is mapped at @address into @mm. 278 * 279 * On success returns with pte mapped and locked. 280 */ 281pte_t *page_check_address(struct page *page, struct mm_struct *mm, 282 unsigned long address, spinlock_t **ptlp) 283{ 284 pgd_t *pgd; 285 pud_t *pud; 286 pmd_t *pmd; 287 pte_t *pte; 288 spinlock_t *ptl; 289 290 pgd = pgd_offset(mm, address); 291 if (!pgd_present(*pgd)) 292 return NULL; 293 294 pud = pud_offset(pgd, address); 295 if (!pud_present(*pud)) 296 return NULL; 297 298 pmd = pmd_offset(pud, address); 299 if (!pmd_present(*pmd)) 300 return NULL; 301 302 pte = pte_offset_map(pmd, address); 303 /* Make a quick check before getting the lock */ 304 if (!pte_present(*pte)) { 305 pte_unmap(pte); 306 return NULL; 307 } 308 309 ptl = pte_lockptr(mm, pmd); 310 spin_lock(ptl); 311 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) { 312 *ptlp = ptl; 313 return pte; 314 } 315 pte_unmap_unlock(pte, ptl); 316 return NULL; 317} 318 319/* 320 * Subfunctions of page_referenced: page_referenced_one called 321 * repeatedly from either page_referenced_anon or page_referenced_file. 322 */ 323static int page_referenced_one(struct page *page, 324 struct vm_area_struct *vma, unsigned int *mapcount) 325{ 326 struct mm_struct *mm = vma->vm_mm; 327 unsigned long address; 328 pte_t *pte; 329 spinlock_t *ptl; 330 int referenced = 0; 331 332 address = vma_address(page, vma); 333 if (address == -EFAULT) 334 goto out; 335 336 pte = page_check_address(page, mm, address, &ptl); 337 if (!pte) 338 goto out; 339 340 if (ptep_clear_flush_young(vma, address, pte)) 341 referenced++; 342 343 /* Pretend the page is referenced if the task has the 344 swap token and is in the middle of a page fault. */ 345 if (mm != current->mm && has_swap_token(mm) && 346 rwsem_is_locked(&mm->mmap_sem)) 347 referenced++; 348 349 (*mapcount)--; 350 pte_unmap_unlock(pte, ptl); 351out: 352 return referenced; 353} 354 355static int page_referenced_anon(struct page *page) 356{ 357 unsigned int mapcount; 358 struct anon_vma *anon_vma; 359 struct vm_area_struct *vma; 360 int referenced = 0; 361 362 anon_vma = page_lock_anon_vma(page); 363 if (!anon_vma) 364 return referenced; 365 366 mapcount = page_mapcount(page); 367 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 368 referenced += page_referenced_one(page, vma, &mapcount); 369 if (!mapcount) 370 break; 371 } 372 spin_unlock(&anon_vma->lock); 373 return referenced; 374} 375 376/** 377 * page_referenced_file - referenced check for object-based rmap 378 * @page: the page we're checking references on. 379 * 380 * For an object-based mapped page, find all the places it is mapped and 381 * check/clear the referenced flag. This is done by following the page->mapping 382 * pointer, then walking the chain of vmas it holds. It returns the number 383 * of references it found. 384 * 385 * This function is only called from page_referenced for object-based pages. 386 */ 387static int page_referenced_file(struct page *page) 388{ 389 unsigned int mapcount; 390 struct address_space *mapping = page->mapping; 391 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 392 struct vm_area_struct *vma; 393 struct prio_tree_iter iter; 394 int referenced = 0; 395 396 /* 397 * The caller's checks on page->mapping and !PageAnon have made 398 * sure that this is a file page: the check for page->mapping 399 * excludes the case just before it gets set on an anon page. 400 */ 401 BUG_ON(PageAnon(page)); 402 403 /* 404 * The page lock not only makes sure that page->mapping cannot 405 * suddenly be NULLified by truncation, it makes sure that the 406 * structure at mapping cannot be freed and reused yet, 407 * so we can safely take mapping->i_mmap_lock. 408 */ 409 BUG_ON(!PageLocked(page)); 410 411 spin_lock(&mapping->i_mmap_lock); 412 413 /* 414 * i_mmap_lock does not stabilize mapcount at all, but mapcount 415 * is more likely to be accurate if we note it after spinning. 416 */ 417 mapcount = page_mapcount(page); 418 419 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 420 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) 421 == (VM_LOCKED|VM_MAYSHARE)) { 422 referenced++; 423 break; 424 } 425 referenced += page_referenced_one(page, vma, &mapcount); 426 if (!mapcount) 427 break; 428 } 429 430 spin_unlock(&mapping->i_mmap_lock); 431 return referenced; 432} 433 434/** 435 * page_referenced - test if the page was referenced 436 * @page: the page to test 437 * @is_locked: caller holds lock on the page 438 * 439 * Quick test_and_clear_referenced for all mappings to a page, 440 * returns the number of ptes which referenced the page. 441 */ 442int page_referenced(struct page *page, int is_locked) 443{ 444 int referenced = 0; 445 446 if (page_test_and_clear_young(page)) 447 referenced++; 448 449 if (TestClearPageReferenced(page)) 450 referenced++; 451 452 if (page_mapped(page) && page->mapping) { 453 if (PageAnon(page)) 454 referenced += page_referenced_anon(page); 455 else if (is_locked) 456 referenced += page_referenced_file(page); 457 else if (TestSetPageLocked(page)) 458 referenced++; 459 else { 460 if (page->mapping) 461 referenced += page_referenced_file(page); 462 unlock_page(page); 463 } 464 } 465 return referenced; 466} 467 468/** 469 * page_set_anon_rmap - setup new anonymous rmap 470 * @page: the page to add the mapping to 471 * @vma: the vm area in which the mapping is added 472 * @address: the user virtual address mapped 473 */ 474static void __page_set_anon_rmap(struct page *page, 475 struct vm_area_struct *vma, unsigned long address) 476{ 477 struct anon_vma *anon_vma = vma->anon_vma; 478 479 BUG_ON(!anon_vma); 480 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; 481 page->mapping = (struct address_space *) anon_vma; 482 483 page->index = linear_page_index(vma, address); 484 485 /* 486 * nr_mapped state can be updated without turning off 487 * interrupts because it is not modified via interrupt. 488 */ 489 __inc_page_state(nr_mapped); 490} 491 492/** 493 * page_add_anon_rmap - add pte mapping to an anonymous page 494 * @page: the page to add the mapping to 495 * @vma: the vm area in which the mapping is added 496 * @address: the user virtual address mapped 497 * 498 * The caller needs to hold the pte lock. 499 */ 500void page_add_anon_rmap(struct page *page, 501 struct vm_area_struct *vma, unsigned long address) 502{ 503 if (atomic_inc_and_test(&page->_mapcount)) 504 __page_set_anon_rmap(page, vma, address); 505 /* else checking page index and mapping is racy */ 506} 507 508/* 509 * page_add_new_anon_rmap - add pte mapping to a new anonymous page 510 * @page: the page to add the mapping to 511 * @vma: the vm area in which the mapping is added 512 * @address: the user virtual address mapped 513 * 514 * Same as page_add_anon_rmap but must only be called on *new* pages. 515 * This means the inc-and-test can be bypassed. 516 */ 517void page_add_new_anon_rmap(struct page *page, 518 struct vm_area_struct *vma, unsigned long address) 519{ 520 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */ 521 __page_set_anon_rmap(page, vma, address); 522} 523 524/** 525 * page_add_file_rmap - add pte mapping to a file page 526 * @page: the page to add the mapping to 527 * 528 * The caller needs to hold the pte lock. 529 */ 530void page_add_file_rmap(struct page *page) 531{ 532 BUG_ON(PageAnon(page)); 533 BUG_ON(!pfn_valid(page_to_pfn(page))); 534 535 if (atomic_inc_and_test(&page->_mapcount)) 536 __inc_page_state(nr_mapped); 537} 538 539/** 540 * page_remove_rmap - take down pte mapping from a page 541 * @page: page to remove mapping from 542 * 543 * The caller needs to hold the pte lock. 544 */ 545void page_remove_rmap(struct page *page) 546{ 547 if (atomic_add_negative(-1, &page->_mapcount)) { 548 if (page_mapcount(page) < 0) { 549 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page)); 550 printk (KERN_EMERG " page->flags = %lx\n", page->flags); 551 printk (KERN_EMERG " page->count = %x\n", page_count(page)); 552 printk (KERN_EMERG " page->mapping = %p\n", page->mapping); 553 } 554 555 BUG_ON(page_mapcount(page) < 0); 556 /* 557 * It would be tidy to reset the PageAnon mapping here, 558 * but that might overwrite a racing page_add_anon_rmap 559 * which increments mapcount after us but sets mapping 560 * before us: so leave the reset to free_hot_cold_page, 561 * and remember that it's only reliable while mapped. 562 * Leaving it set also helps swapoff to reinstate ptes 563 * faster for those pages still in swapcache. 564 */ 565 if (page_test_and_clear_dirty(page)) 566 set_page_dirty(page); 567 __dec_page_state(nr_mapped); 568 } 569} 570 571/* 572 * Subfunctions of try_to_unmap: try_to_unmap_one called 573 * repeatedly from either try_to_unmap_anon or try_to_unmap_file. 574 */ 575static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma, 576 int ignore_refs) 577{ 578 struct mm_struct *mm = vma->vm_mm; 579 unsigned long address; 580 pte_t *pte; 581 pte_t pteval; 582 spinlock_t *ptl; 583 int ret = SWAP_AGAIN; 584 585 address = vma_address(page, vma); 586 if (address == -EFAULT) 587 goto out; 588 589 pte = page_check_address(page, mm, address, &ptl); 590 if (!pte) 591 goto out; 592 593 /* 594 * If the page is mlock()d, we cannot swap it out. 595 * If it's recently referenced (perhaps page_referenced 596 * skipped over this mm) then we should reactivate it. 597 */ 598 if ((vma->vm_flags & VM_LOCKED) || 599 (ptep_clear_flush_young(vma, address, pte) 600 && !ignore_refs)) { 601 ret = SWAP_FAIL; 602 goto out_unmap; 603 } 604 605 /* Nuke the page table entry. */ 606 flush_cache_page(vma, address, page_to_pfn(page)); 607 pteval = ptep_clear_flush(vma, address, pte); 608 609 /* Move the dirty bit to the physical page now the pte is gone. */ 610 if (pte_dirty(pteval)) 611 set_page_dirty(page); 612 613 /* Update high watermark before we lower rss */ 614 update_hiwater_rss(mm); 615 616 if (PageAnon(page)) { 617 swp_entry_t entry = { .val = page_private(page) }; 618 /* 619 * Store the swap location in the pte. 620 * See handle_pte_fault() ... 621 */ 622 BUG_ON(!PageSwapCache(page)); 623 swap_duplicate(entry); 624 if (list_empty(&mm->mmlist)) { 625 spin_lock(&mmlist_lock); 626 if (list_empty(&mm->mmlist)) 627 list_add(&mm->mmlist, &init_mm.mmlist); 628 spin_unlock(&mmlist_lock); 629 } 630 set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); 631 BUG_ON(pte_file(*pte)); 632 dec_mm_counter(mm, anon_rss); 633 } else 634 dec_mm_counter(mm, file_rss); 635 636 page_remove_rmap(page); 637 page_cache_release(page); 638 639out_unmap: 640 pte_unmap_unlock(pte, ptl); 641out: 642 return ret; 643} 644 645/* 646 * objrmap doesn't work for nonlinear VMAs because the assumption that 647 * offset-into-file correlates with offset-into-virtual-addresses does not hold. 648 * Consequently, given a particular page and its ->index, we cannot locate the 649 * ptes which are mapping that page without an exhaustive linear search. 650 * 651 * So what this code does is a mini "virtual scan" of each nonlinear VMA which 652 * maps the file to which the target page belongs. The ->vm_private_data field 653 * holds the current cursor into that scan. Successive searches will circulate 654 * around the vma's virtual address space. 655 * 656 * So as more replacement pressure is applied to the pages in a nonlinear VMA, 657 * more scanning pressure is placed against them as well. Eventually pages 658 * will become fully unmapped and are eligible for eviction. 659 * 660 * For very sparsely populated VMAs this is a little inefficient - chances are 661 * there there won't be many ptes located within the scan cluster. In this case 662 * maybe we could scan further - to the end of the pte page, perhaps. 663 */ 664#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE) 665#define CLUSTER_MASK (~(CLUSTER_SIZE - 1)) 666 667static void try_to_unmap_cluster(unsigned long cursor, 668 unsigned int *mapcount, struct vm_area_struct *vma) 669{ 670 struct mm_struct *mm = vma->vm_mm; 671 pgd_t *pgd; 672 pud_t *pud; 673 pmd_t *pmd; 674 pte_t *pte; 675 pte_t pteval; 676 spinlock_t *ptl; 677 struct page *page; 678 unsigned long address; 679 unsigned long end; 680 681 address = (vma->vm_start + cursor) & CLUSTER_MASK; 682 end = address + CLUSTER_SIZE; 683 if (address < vma->vm_start) 684 address = vma->vm_start; 685 if (end > vma->vm_end) 686 end = vma->vm_end; 687 688 pgd = pgd_offset(mm, address); 689 if (!pgd_present(*pgd)) 690 return; 691 692 pud = pud_offset(pgd, address); 693 if (!pud_present(*pud)) 694 return; 695 696 pmd = pmd_offset(pud, address); 697 if (!pmd_present(*pmd)) 698 return; 699 700 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 701 702 /* Update high watermark before we lower rss */ 703 update_hiwater_rss(mm); 704 705 for (; address < end; pte++, address += PAGE_SIZE) { 706 if (!pte_present(*pte)) 707 continue; 708 page = vm_normal_page(vma, address, *pte); 709 BUG_ON(!page || PageAnon(page)); 710 711 if (ptep_clear_flush_young(vma, address, pte)) 712 continue; 713 714 /* Nuke the page table entry. */ 715 flush_cache_page(vma, address, pte_pfn(*pte)); 716 pteval = ptep_clear_flush(vma, address, pte); 717 718 /* If nonlinear, store the file page offset in the pte. */ 719 if (page->index != linear_page_index(vma, address)) 720 set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); 721 722 /* Move the dirty bit to the physical page now the pte is gone. */ 723 if (pte_dirty(pteval)) 724 set_page_dirty(page); 725 726 page_remove_rmap(page); 727 page_cache_release(page); 728 dec_mm_counter(mm, file_rss); 729 (*mapcount)--; 730 } 731 pte_unmap_unlock(pte - 1, ptl); 732} 733 734static int try_to_unmap_anon(struct page *page, int ignore_refs) 735{ 736 struct anon_vma *anon_vma; 737 struct vm_area_struct *vma; 738 int ret = SWAP_AGAIN; 739 740 anon_vma = page_lock_anon_vma(page); 741 if (!anon_vma) 742 return ret; 743 744 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { 745 ret = try_to_unmap_one(page, vma, ignore_refs); 746 if (ret == SWAP_FAIL || !page_mapped(page)) 747 break; 748 } 749 spin_unlock(&anon_vma->lock); 750 return ret; 751} 752 753/** 754 * try_to_unmap_file - unmap file page using the object-based rmap method 755 * @page: the page to unmap 756 * 757 * Find all the mappings of a page using the mapping pointer and the vma chains 758 * contained in the address_space struct it points to. 759 * 760 * This function is only called from try_to_unmap for object-based pages. 761 */ 762static int try_to_unmap_file(struct page *page, int ignore_refs) 763{ 764 struct address_space *mapping = page->mapping; 765 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 766 struct vm_area_struct *vma; 767 struct prio_tree_iter iter; 768 int ret = SWAP_AGAIN; 769 unsigned long cursor; 770 unsigned long max_nl_cursor = 0; 771 unsigned long max_nl_size = 0; 772 unsigned int mapcount; 773 774 spin_lock(&mapping->i_mmap_lock); 775 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { 776 ret = try_to_unmap_one(page, vma, ignore_refs); 777 if (ret == SWAP_FAIL || !page_mapped(page)) 778 goto out; 779 } 780 781 if (list_empty(&mapping->i_mmap_nonlinear)) 782 goto out; 783 784 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 785 shared.vm_set.list) { 786 if (vma->vm_flags & VM_LOCKED) 787 continue; 788 cursor = (unsigned long) vma->vm_private_data; 789 if (cursor > max_nl_cursor) 790 max_nl_cursor = cursor; 791 cursor = vma->vm_end - vma->vm_start; 792 if (cursor > max_nl_size) 793 max_nl_size = cursor; 794 } 795 796 if (max_nl_size == 0) { /* any nonlinears locked or reserved */ 797 ret = SWAP_FAIL; 798 goto out; 799 } 800 801 /* 802 * We don't try to search for this page in the nonlinear vmas, 803 * and page_referenced wouldn't have found it anyway. Instead 804 * just walk the nonlinear vmas trying to age and unmap some. 805 * The mapcount of the page we came in with is irrelevant, 806 * but even so use it as a guide to how hard we should try? 807 */ 808 mapcount = page_mapcount(page); 809 if (!mapcount) 810 goto out; 811 cond_resched_lock(&mapping->i_mmap_lock); 812 813 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; 814 if (max_nl_cursor == 0) 815 max_nl_cursor = CLUSTER_SIZE; 816 817 do { 818 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, 819 shared.vm_set.list) { 820 if (vma->vm_flags & VM_LOCKED) 821 continue; 822 cursor = (unsigned long) vma->vm_private_data; 823 while ( cursor < max_nl_cursor && 824 cursor < vma->vm_end - vma->vm_start) { 825 try_to_unmap_cluster(cursor, &mapcount, vma); 826 cursor += CLUSTER_SIZE; 827 vma->vm_private_data = (void *) cursor; 828 if ((int)mapcount <= 0) 829 goto out; 830 } 831 vma->vm_private_data = (void *) max_nl_cursor; 832 } 833 cond_resched_lock(&mapping->i_mmap_lock); 834 max_nl_cursor += CLUSTER_SIZE; 835 } while (max_nl_cursor <= max_nl_size); 836 837 /* 838 * Don't loop forever (perhaps all the remaining pages are 839 * in locked vmas). Reset cursor on all unreserved nonlinear 840 * vmas, now forgetting on which ones it had fallen behind. 841 */ 842 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 843 vma->vm_private_data = NULL; 844out: 845 spin_unlock(&mapping->i_mmap_lock); 846 return ret; 847} 848 849/** 850 * try_to_unmap - try to remove all page table mappings to a page 851 * @page: the page to get unmapped 852 * 853 * Tries to remove all the page table entries which are mapping this 854 * page, used in the pageout path. Caller must hold the page lock. 855 * Return values are: 856 * 857 * SWAP_SUCCESS - we succeeded in removing all mappings 858 * SWAP_AGAIN - we missed a mapping, try again later 859 * SWAP_FAIL - the page is unswappable 860 */ 861int try_to_unmap(struct page *page, int ignore_refs) 862{ 863 int ret; 864 865 BUG_ON(!PageLocked(page)); 866 867 if (PageAnon(page)) 868 ret = try_to_unmap_anon(page, ignore_refs); 869 else 870 ret = try_to_unmap_file(page, ignore_refs); 871 872 if (!page_mapped(page)) 873 ret = SWAP_SUCCESS; 874 return ret; 875} 876