at v2.6.16-rc2 2726 lines 68 kB view raw
1/* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17#include <linux/config.h> 18#include <linux/stddef.h> 19#include <linux/mm.h> 20#include <linux/swap.h> 21#include <linux/interrupt.h> 22#include <linux/pagemap.h> 23#include <linux/bootmem.h> 24#include <linux/compiler.h> 25#include <linux/kernel.h> 26#include <linux/module.h> 27#include <linux/suspend.h> 28#include <linux/pagevec.h> 29#include <linux/blkdev.h> 30#include <linux/slab.h> 31#include <linux/notifier.h> 32#include <linux/topology.h> 33#include <linux/sysctl.h> 34#include <linux/cpu.h> 35#include <linux/cpuset.h> 36#include <linux/memory_hotplug.h> 37#include <linux/nodemask.h> 38#include <linux/vmalloc.h> 39#include <linux/mempolicy.h> 40 41#include <asm/tlbflush.h> 42#include "internal.h" 43 44/* 45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 46 * initializer cleaner 47 */ 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 49EXPORT_SYMBOL(node_online_map); 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 51EXPORT_SYMBOL(node_possible_map); 52struct pglist_data *pgdat_list __read_mostly; 53unsigned long totalram_pages __read_mostly; 54unsigned long totalhigh_pages __read_mostly; 55long nr_swap_pages; 56int percpu_pagelist_fraction; 57 58static void fastcall free_hot_cold_page(struct page *page, int cold); 59 60/* 61 * results with 256, 32 in the lowmem_reserve sysctl: 62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 63 * 1G machine -> (16M dma, 784M normal, 224M high) 64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 67 * 68 * TBD: should special case ZONE_DMA32 machines here - in those we normally 69 * don't need any ZONE_NORMAL reservation 70 */ 71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 72 73EXPORT_SYMBOL(totalram_pages); 74 75/* 76 * Used by page_zone() to look up the address of the struct zone whose 77 * id is encoded in the upper bits of page->flags 78 */ 79struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 80EXPORT_SYMBOL(zone_table); 81 82static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 83int min_free_kbytes = 1024; 84 85unsigned long __initdata nr_kernel_pages; 86unsigned long __initdata nr_all_pages; 87 88#ifdef CONFIG_DEBUG_VM 89static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 90{ 91 int ret = 0; 92 unsigned seq; 93 unsigned long pfn = page_to_pfn(page); 94 95 do { 96 seq = zone_span_seqbegin(zone); 97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 98 ret = 1; 99 else if (pfn < zone->zone_start_pfn) 100 ret = 1; 101 } while (zone_span_seqretry(zone, seq)); 102 103 return ret; 104} 105 106static int page_is_consistent(struct zone *zone, struct page *page) 107{ 108#ifdef CONFIG_HOLES_IN_ZONE 109 if (!pfn_valid(page_to_pfn(page))) 110 return 0; 111#endif 112 if (zone != page_zone(page)) 113 return 0; 114 115 return 1; 116} 117/* 118 * Temporary debugging check for pages not lying within a given zone. 119 */ 120static int bad_range(struct zone *zone, struct page *page) 121{ 122 if (page_outside_zone_boundaries(zone, page)) 123 return 1; 124 if (!page_is_consistent(zone, page)) 125 return 1; 126 127 return 0; 128} 129 130#else 131static inline int bad_range(struct zone *zone, struct page *page) 132{ 133 return 0; 134} 135#endif 136 137static void bad_page(struct page *page) 138{ 139 printk(KERN_EMERG "Bad page state in process '%s'\n" 140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 142 KERN_EMERG "Backtrace:\n", 143 current->comm, page, (int)(2*sizeof(unsigned long)), 144 (unsigned long)page->flags, page->mapping, 145 page_mapcount(page), page_count(page)); 146 dump_stack(); 147 page->flags &= ~(1 << PG_lru | 148 1 << PG_private | 149 1 << PG_locked | 150 1 << PG_active | 151 1 << PG_dirty | 152 1 << PG_reclaim | 153 1 << PG_slab | 154 1 << PG_swapcache | 155 1 << PG_writeback ); 156 set_page_count(page, 0); 157 reset_page_mapcount(page); 158 page->mapping = NULL; 159 add_taint(TAINT_BAD_PAGE); 160} 161 162/* 163 * Higher-order pages are called "compound pages". They are structured thusly: 164 * 165 * The first PAGE_SIZE page is called the "head page". 166 * 167 * The remaining PAGE_SIZE pages are called "tail pages". 168 * 169 * All pages have PG_compound set. All pages have their ->private pointing at 170 * the head page (even the head page has this). 171 * 172 * The first tail page's ->mapping, if non-zero, holds the address of the 173 * compound page's put_page() function. 174 * 175 * The order of the allocation is stored in the first tail page's ->index 176 * This is only for debug at present. This usage means that zero-order pages 177 * may not be compound. 178 */ 179static void prep_compound_page(struct page *page, unsigned long order) 180{ 181 int i; 182 int nr_pages = 1 << order; 183 184 page[1].mapping = NULL; 185 page[1].index = order; 186 for (i = 0; i < nr_pages; i++) { 187 struct page *p = page + i; 188 189 SetPageCompound(p); 190 set_page_private(p, (unsigned long)page); 191 } 192} 193 194static void destroy_compound_page(struct page *page, unsigned long order) 195{ 196 int i; 197 int nr_pages = 1 << order; 198 199 if (unlikely(page[1].index != order)) 200 bad_page(page); 201 202 for (i = 0; i < nr_pages; i++) { 203 struct page *p = page + i; 204 205 if (unlikely(!PageCompound(p) | 206 (page_private(p) != (unsigned long)page))) 207 bad_page(page); 208 ClearPageCompound(p); 209 } 210} 211 212/* 213 * function for dealing with page's order in buddy system. 214 * zone->lock is already acquired when we use these. 215 * So, we don't need atomic page->flags operations here. 216 */ 217static inline unsigned long page_order(struct page *page) { 218 return page_private(page); 219} 220 221static inline void set_page_order(struct page *page, int order) { 222 set_page_private(page, order); 223 __SetPagePrivate(page); 224} 225 226static inline void rmv_page_order(struct page *page) 227{ 228 __ClearPagePrivate(page); 229 set_page_private(page, 0); 230} 231 232/* 233 * Locate the struct page for both the matching buddy in our 234 * pair (buddy1) and the combined O(n+1) page they form (page). 235 * 236 * 1) Any buddy B1 will have an order O twin B2 which satisfies 237 * the following equation: 238 * B2 = B1 ^ (1 << O) 239 * For example, if the starting buddy (buddy2) is #8 its order 240 * 1 buddy is #10: 241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 242 * 243 * 2) Any buddy B will have an order O+1 parent P which 244 * satisfies the following equation: 245 * P = B & ~(1 << O) 246 * 247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 248 */ 249static inline struct page * 250__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 251{ 252 unsigned long buddy_idx = page_idx ^ (1 << order); 253 254 return page + (buddy_idx - page_idx); 255} 256 257static inline unsigned long 258__find_combined_index(unsigned long page_idx, unsigned int order) 259{ 260 return (page_idx & ~(1 << order)); 261} 262 263/* 264 * This function checks whether a page is free && is the buddy 265 * we can do coalesce a page and its buddy if 266 * (a) the buddy is not in a hole && 267 * (b) the buddy is free && 268 * (c) the buddy is on the buddy system && 269 * (d) a page and its buddy have the same order. 270 * for recording page's order, we use page_private(page) and PG_private. 271 * 272 */ 273static inline int page_is_buddy(struct page *page, int order) 274{ 275#ifdef CONFIG_HOLES_IN_ZONE 276 if (!pfn_valid(page_to_pfn(page))) 277 return 0; 278#endif 279 280 if (PagePrivate(page) && 281 (page_order(page) == order) && 282 page_count(page) == 0) 283 return 1; 284 return 0; 285} 286 287/* 288 * Freeing function for a buddy system allocator. 289 * 290 * The concept of a buddy system is to maintain direct-mapped table 291 * (containing bit values) for memory blocks of various "orders". 292 * The bottom level table contains the map for the smallest allocatable 293 * units of memory (here, pages), and each level above it describes 294 * pairs of units from the levels below, hence, "buddies". 295 * At a high level, all that happens here is marking the table entry 296 * at the bottom level available, and propagating the changes upward 297 * as necessary, plus some accounting needed to play nicely with other 298 * parts of the VM system. 299 * At each level, we keep a list of pages, which are heads of continuous 300 * free pages of length of (1 << order) and marked with PG_Private.Page's 301 * order is recorded in page_private(page) field. 302 * So when we are allocating or freeing one, we can derive the state of the 303 * other. That is, if we allocate a small block, and both were 304 * free, the remainder of the region must be split into blocks. 305 * If a block is freed, and its buddy is also free, then this 306 * triggers coalescing into a block of larger size. 307 * 308 * -- wli 309 */ 310 311static inline void __free_one_page(struct page *page, 312 struct zone *zone, unsigned int order) 313{ 314 unsigned long page_idx; 315 int order_size = 1 << order; 316 317 if (unlikely(PageCompound(page))) 318 destroy_compound_page(page, order); 319 320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 321 322 BUG_ON(page_idx & (order_size - 1)); 323 BUG_ON(bad_range(zone, page)); 324 325 zone->free_pages += order_size; 326 while (order < MAX_ORDER-1) { 327 unsigned long combined_idx; 328 struct free_area *area; 329 struct page *buddy; 330 331 buddy = __page_find_buddy(page, page_idx, order); 332 if (!page_is_buddy(buddy, order)) 333 break; /* Move the buddy up one level. */ 334 335 list_del(&buddy->lru); 336 area = zone->free_area + order; 337 area->nr_free--; 338 rmv_page_order(buddy); 339 combined_idx = __find_combined_index(page_idx, order); 340 page = page + (combined_idx - page_idx); 341 page_idx = combined_idx; 342 order++; 343 } 344 set_page_order(page, order); 345 list_add(&page->lru, &zone->free_area[order].free_list); 346 zone->free_area[order].nr_free++; 347} 348 349static inline int free_pages_check(struct page *page) 350{ 351 if (unlikely(page_mapcount(page) | 352 (page->mapping != NULL) | 353 (page_count(page) != 0) | 354 (page->flags & ( 355 1 << PG_lru | 356 1 << PG_private | 357 1 << PG_locked | 358 1 << PG_active | 359 1 << PG_reclaim | 360 1 << PG_slab | 361 1 << PG_swapcache | 362 1 << PG_writeback | 363 1 << PG_reserved )))) 364 bad_page(page); 365 if (PageDirty(page)) 366 __ClearPageDirty(page); 367 /* 368 * For now, we report if PG_reserved was found set, but do not 369 * clear it, and do not free the page. But we shall soon need 370 * to do more, for when the ZERO_PAGE count wraps negative. 371 */ 372 return PageReserved(page); 373} 374 375/* 376 * Frees a list of pages. 377 * Assumes all pages on list are in same zone, and of same order. 378 * count is the number of pages to free. 379 * 380 * If the zone was previously in an "all pages pinned" state then look to 381 * see if this freeing clears that state. 382 * 383 * And clear the zone's pages_scanned counter, to hold off the "all pages are 384 * pinned" detection logic. 385 */ 386static void free_pages_bulk(struct zone *zone, int count, 387 struct list_head *list, int order) 388{ 389 spin_lock(&zone->lock); 390 zone->all_unreclaimable = 0; 391 zone->pages_scanned = 0; 392 while (count--) { 393 struct page *page; 394 395 BUG_ON(list_empty(list)); 396 page = list_entry(list->prev, struct page, lru); 397 /* have to delete it as __free_one_page list manipulates */ 398 list_del(&page->lru); 399 __free_one_page(page, zone, order); 400 } 401 spin_unlock(&zone->lock); 402} 403 404static void free_one_page(struct zone *zone, struct page *page, int order) 405{ 406 LIST_HEAD(list); 407 list_add(&page->lru, &list); 408 free_pages_bulk(zone, 1, &list, order); 409} 410 411static void __free_pages_ok(struct page *page, unsigned int order) 412{ 413 unsigned long flags; 414 int i; 415 int reserved = 0; 416 417 arch_free_page(page, order); 418 if (!PageHighMem(page)) 419 mutex_debug_check_no_locks_freed(page_address(page), 420 PAGE_SIZE<<order); 421 422#ifndef CONFIG_MMU 423 for (i = 1 ; i < (1 << order) ; ++i) 424 __put_page(page + i); 425#endif 426 427 for (i = 0 ; i < (1 << order) ; ++i) 428 reserved += free_pages_check(page + i); 429 if (reserved) 430 return; 431 432 kernel_map_pages(page, 1 << order, 0); 433 local_irq_save(flags); 434 __mod_page_state(pgfree, 1 << order); 435 free_one_page(page_zone(page), page, order); 436 local_irq_restore(flags); 437} 438 439/* 440 * permit the bootmem allocator to evade page validation on high-order frees 441 */ 442void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 443{ 444 if (order == 0) { 445 __ClearPageReserved(page); 446 set_page_count(page, 0); 447 448 free_hot_cold_page(page, 0); 449 } else { 450 LIST_HEAD(list); 451 int loop; 452 453 for (loop = 0; loop < BITS_PER_LONG; loop++) { 454 struct page *p = &page[loop]; 455 456 if (loop + 16 < BITS_PER_LONG) 457 prefetchw(p + 16); 458 __ClearPageReserved(p); 459 set_page_count(p, 0); 460 } 461 462 arch_free_page(page, order); 463 464 mod_page_state(pgfree, 1 << order); 465 466 list_add(&page->lru, &list); 467 kernel_map_pages(page, 1 << order, 0); 468 free_pages_bulk(page_zone(page), 1, &list, order); 469 } 470} 471 472 473/* 474 * The order of subdivision here is critical for the IO subsystem. 475 * Please do not alter this order without good reasons and regression 476 * testing. Specifically, as large blocks of memory are subdivided, 477 * the order in which smaller blocks are delivered depends on the order 478 * they're subdivided in this function. This is the primary factor 479 * influencing the order in which pages are delivered to the IO 480 * subsystem according to empirical testing, and this is also justified 481 * by considering the behavior of a buddy system containing a single 482 * large block of memory acted on by a series of small allocations. 483 * This behavior is a critical factor in sglist merging's success. 484 * 485 * -- wli 486 */ 487static inline void expand(struct zone *zone, struct page *page, 488 int low, int high, struct free_area *area) 489{ 490 unsigned long size = 1 << high; 491 492 while (high > low) { 493 area--; 494 high--; 495 size >>= 1; 496 BUG_ON(bad_range(zone, &page[size])); 497 list_add(&page[size].lru, &area->free_list); 498 area->nr_free++; 499 set_page_order(&page[size], high); 500 } 501} 502 503/* 504 * This page is about to be returned from the page allocator 505 */ 506static int prep_new_page(struct page *page, int order) 507{ 508 if (unlikely(page_mapcount(page) | 509 (page->mapping != NULL) | 510 (page_count(page) != 0) | 511 (page->flags & ( 512 1 << PG_lru | 513 1 << PG_private | 514 1 << PG_locked | 515 1 << PG_active | 516 1 << PG_dirty | 517 1 << PG_reclaim | 518 1 << PG_slab | 519 1 << PG_swapcache | 520 1 << PG_writeback | 521 1 << PG_reserved )))) 522 bad_page(page); 523 524 /* 525 * For now, we report if PG_reserved was found set, but do not 526 * clear it, and do not allocate the page: as a safety net. 527 */ 528 if (PageReserved(page)) 529 return 1; 530 531 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 532 1 << PG_referenced | 1 << PG_arch_1 | 533 1 << PG_checked | 1 << PG_mappedtodisk); 534 set_page_private(page, 0); 535 set_page_refs(page, order); 536 kernel_map_pages(page, 1 << order, 1); 537 return 0; 538} 539 540/* 541 * Do the hard work of removing an element from the buddy allocator. 542 * Call me with the zone->lock already held. 543 */ 544static struct page *__rmqueue(struct zone *zone, unsigned int order) 545{ 546 struct free_area * area; 547 unsigned int current_order; 548 struct page *page; 549 550 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 551 area = zone->free_area + current_order; 552 if (list_empty(&area->free_list)) 553 continue; 554 555 page = list_entry(area->free_list.next, struct page, lru); 556 list_del(&page->lru); 557 rmv_page_order(page); 558 area->nr_free--; 559 zone->free_pages -= 1UL << order; 560 expand(zone, page, order, current_order, area); 561 return page; 562 } 563 564 return NULL; 565} 566 567/* 568 * Obtain a specified number of elements from the buddy allocator, all under 569 * a single hold of the lock, for efficiency. Add them to the supplied list. 570 * Returns the number of new pages which were placed at *list. 571 */ 572static int rmqueue_bulk(struct zone *zone, unsigned int order, 573 unsigned long count, struct list_head *list) 574{ 575 int i; 576 577 spin_lock(&zone->lock); 578 for (i = 0; i < count; ++i) { 579 struct page *page = __rmqueue(zone, order); 580 if (unlikely(page == NULL)) 581 break; 582 list_add_tail(&page->lru, list); 583 } 584 spin_unlock(&zone->lock); 585 return i; 586} 587 588#ifdef CONFIG_NUMA 589/* Called from the slab reaper to drain remote pagesets */ 590void drain_remote_pages(void) 591{ 592 struct zone *zone; 593 int i; 594 unsigned long flags; 595 596 local_irq_save(flags); 597 for_each_zone(zone) { 598 struct per_cpu_pageset *pset; 599 600 /* Do not drain local pagesets */ 601 if (zone->zone_pgdat->node_id == numa_node_id()) 602 continue; 603 604 pset = zone_pcp(zone, smp_processor_id()); 605 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 606 struct per_cpu_pages *pcp; 607 608 pcp = &pset->pcp[i]; 609 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 610 pcp->count = 0; 611 } 612 } 613 local_irq_restore(flags); 614} 615#endif 616 617#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 618static void __drain_pages(unsigned int cpu) 619{ 620 unsigned long flags; 621 struct zone *zone; 622 int i; 623 624 for_each_zone(zone) { 625 struct per_cpu_pageset *pset; 626 627 pset = zone_pcp(zone, cpu); 628 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 629 struct per_cpu_pages *pcp; 630 631 pcp = &pset->pcp[i]; 632 local_irq_save(flags); 633 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 634 pcp->count = 0; 635 local_irq_restore(flags); 636 } 637 } 638} 639#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 640 641#ifdef CONFIG_PM 642 643void mark_free_pages(struct zone *zone) 644{ 645 unsigned long zone_pfn, flags; 646 int order; 647 struct list_head *curr; 648 649 if (!zone->spanned_pages) 650 return; 651 652 spin_lock_irqsave(&zone->lock, flags); 653 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 654 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 655 656 for (order = MAX_ORDER - 1; order >= 0; --order) 657 list_for_each(curr, &zone->free_area[order].free_list) { 658 unsigned long start_pfn, i; 659 660 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 661 662 for (i=0; i < (1<<order); i++) 663 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 664 } 665 spin_unlock_irqrestore(&zone->lock, flags); 666} 667 668/* 669 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 670 */ 671void drain_local_pages(void) 672{ 673 unsigned long flags; 674 675 local_irq_save(flags); 676 __drain_pages(smp_processor_id()); 677 local_irq_restore(flags); 678} 679#endif /* CONFIG_PM */ 680 681static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 682{ 683#ifdef CONFIG_NUMA 684 pg_data_t *pg = z->zone_pgdat; 685 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 686 struct per_cpu_pageset *p; 687 688 p = zone_pcp(z, cpu); 689 if (pg == orig) { 690 p->numa_hit++; 691 } else { 692 p->numa_miss++; 693 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 694 } 695 if (pg == NODE_DATA(numa_node_id())) 696 p->local_node++; 697 else 698 p->other_node++; 699#endif 700} 701 702/* 703 * Free a 0-order page 704 */ 705static void fastcall free_hot_cold_page(struct page *page, int cold) 706{ 707 struct zone *zone = page_zone(page); 708 struct per_cpu_pages *pcp; 709 unsigned long flags; 710 711 arch_free_page(page, 0); 712 713 if (PageAnon(page)) 714 page->mapping = NULL; 715 if (free_pages_check(page)) 716 return; 717 718 kernel_map_pages(page, 1, 0); 719 720 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 721 local_irq_save(flags); 722 __inc_page_state(pgfree); 723 list_add(&page->lru, &pcp->list); 724 pcp->count++; 725 if (pcp->count >= pcp->high) { 726 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 727 pcp->count -= pcp->batch; 728 } 729 local_irq_restore(flags); 730 put_cpu(); 731} 732 733void fastcall free_hot_page(struct page *page) 734{ 735 free_hot_cold_page(page, 0); 736} 737 738void fastcall free_cold_page(struct page *page) 739{ 740 free_hot_cold_page(page, 1); 741} 742 743static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 744{ 745 int i; 746 747 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 748 for(i = 0; i < (1 << order); i++) 749 clear_highpage(page + i); 750} 751 752/* 753 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 754 * we cheat by calling it from here, in the order > 0 path. Saves a branch 755 * or two. 756 */ 757static struct page *buffered_rmqueue(struct zonelist *zonelist, 758 struct zone *zone, int order, gfp_t gfp_flags) 759{ 760 unsigned long flags; 761 struct page *page; 762 int cold = !!(gfp_flags & __GFP_COLD); 763 int cpu; 764 765again: 766 cpu = get_cpu(); 767 if (likely(order == 0)) { 768 struct per_cpu_pages *pcp; 769 770 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 771 local_irq_save(flags); 772 if (!pcp->count) { 773 pcp->count += rmqueue_bulk(zone, 0, 774 pcp->batch, &pcp->list); 775 if (unlikely(!pcp->count)) 776 goto failed; 777 } 778 page = list_entry(pcp->list.next, struct page, lru); 779 list_del(&page->lru); 780 pcp->count--; 781 } else { 782 spin_lock_irqsave(&zone->lock, flags); 783 page = __rmqueue(zone, order); 784 spin_unlock(&zone->lock); 785 if (!page) 786 goto failed; 787 } 788 789 __mod_page_state_zone(zone, pgalloc, 1 << order); 790 zone_statistics(zonelist, zone, cpu); 791 local_irq_restore(flags); 792 put_cpu(); 793 794 BUG_ON(bad_range(zone, page)); 795 if (prep_new_page(page, order)) 796 goto again; 797 798 if (gfp_flags & __GFP_ZERO) 799 prep_zero_page(page, order, gfp_flags); 800 801 if (order && (gfp_flags & __GFP_COMP)) 802 prep_compound_page(page, order); 803 return page; 804 805failed: 806 local_irq_restore(flags); 807 put_cpu(); 808 return NULL; 809} 810 811#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 812#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 813#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 814#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 815#define ALLOC_HARDER 0x10 /* try to alloc harder */ 816#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 817#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 818 819/* 820 * Return 1 if free pages are above 'mark'. This takes into account the order 821 * of the allocation. 822 */ 823int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 824 int classzone_idx, int alloc_flags) 825{ 826 /* free_pages my go negative - that's OK */ 827 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 828 int o; 829 830 if (alloc_flags & ALLOC_HIGH) 831 min -= min / 2; 832 if (alloc_flags & ALLOC_HARDER) 833 min -= min / 4; 834 835 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 836 return 0; 837 for (o = 0; o < order; o++) { 838 /* At the next order, this order's pages become unavailable */ 839 free_pages -= z->free_area[o].nr_free << o; 840 841 /* Require fewer higher order pages to be free */ 842 min >>= 1; 843 844 if (free_pages <= min) 845 return 0; 846 } 847 return 1; 848} 849 850/* 851 * get_page_from_freeliest goes through the zonelist trying to allocate 852 * a page. 853 */ 854static struct page * 855get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 856 struct zonelist *zonelist, int alloc_flags) 857{ 858 struct zone **z = zonelist->zones; 859 struct page *page = NULL; 860 int classzone_idx = zone_idx(*z); 861 862 /* 863 * Go through the zonelist once, looking for a zone with enough free. 864 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 865 */ 866 do { 867 if ((alloc_flags & ALLOC_CPUSET) && 868 !cpuset_zone_allowed(*z, gfp_mask)) 869 continue; 870 871 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 872 unsigned long mark; 873 if (alloc_flags & ALLOC_WMARK_MIN) 874 mark = (*z)->pages_min; 875 else if (alloc_flags & ALLOC_WMARK_LOW) 876 mark = (*z)->pages_low; 877 else 878 mark = (*z)->pages_high; 879 if (!zone_watermark_ok(*z, order, mark, 880 classzone_idx, alloc_flags)) 881 if (!zone_reclaim_mode || 882 !zone_reclaim(*z, gfp_mask, order)) 883 continue; 884 } 885 886 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 887 if (page) { 888 break; 889 } 890 } while (*(++z) != NULL); 891 return page; 892} 893 894/* 895 * This is the 'heart' of the zoned buddy allocator. 896 */ 897struct page * fastcall 898__alloc_pages(gfp_t gfp_mask, unsigned int order, 899 struct zonelist *zonelist) 900{ 901 const gfp_t wait = gfp_mask & __GFP_WAIT; 902 struct zone **z; 903 struct page *page; 904 struct reclaim_state reclaim_state; 905 struct task_struct *p = current; 906 int do_retry; 907 int alloc_flags; 908 int did_some_progress; 909 910 might_sleep_if(wait); 911 912restart: 913 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 914 915 if (unlikely(*z == NULL)) { 916 /* Should this ever happen?? */ 917 return NULL; 918 } 919 920 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 921 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 922 if (page) 923 goto got_pg; 924 925 do { 926 wakeup_kswapd(*z, order); 927 } while (*(++z)); 928 929 /* 930 * OK, we're below the kswapd watermark and have kicked background 931 * reclaim. Now things get more complex, so set up alloc_flags according 932 * to how we want to proceed. 933 * 934 * The caller may dip into page reserves a bit more if the caller 935 * cannot run direct reclaim, or if the caller has realtime scheduling 936 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 937 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 938 */ 939 alloc_flags = ALLOC_WMARK_MIN; 940 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 941 alloc_flags |= ALLOC_HARDER; 942 if (gfp_mask & __GFP_HIGH) 943 alloc_flags |= ALLOC_HIGH; 944 alloc_flags |= ALLOC_CPUSET; 945 946 /* 947 * Go through the zonelist again. Let __GFP_HIGH and allocations 948 * coming from realtime tasks go deeper into reserves. 949 * 950 * This is the last chance, in general, before the goto nopage. 951 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 952 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 953 */ 954 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 955 if (page) 956 goto got_pg; 957 958 /* This allocation should allow future memory freeing. */ 959 960 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 961 && !in_interrupt()) { 962 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 963nofail_alloc: 964 /* go through the zonelist yet again, ignoring mins */ 965 page = get_page_from_freelist(gfp_mask, order, 966 zonelist, ALLOC_NO_WATERMARKS); 967 if (page) 968 goto got_pg; 969 if (gfp_mask & __GFP_NOFAIL) { 970 blk_congestion_wait(WRITE, HZ/50); 971 goto nofail_alloc; 972 } 973 } 974 goto nopage; 975 } 976 977 /* Atomic allocations - we can't balance anything */ 978 if (!wait) 979 goto nopage; 980 981rebalance: 982 cond_resched(); 983 984 /* We now go into synchronous reclaim */ 985 cpuset_memory_pressure_bump(); 986 p->flags |= PF_MEMALLOC; 987 reclaim_state.reclaimed_slab = 0; 988 p->reclaim_state = &reclaim_state; 989 990 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 991 992 p->reclaim_state = NULL; 993 p->flags &= ~PF_MEMALLOC; 994 995 cond_resched(); 996 997 if (likely(did_some_progress)) { 998 page = get_page_from_freelist(gfp_mask, order, 999 zonelist, alloc_flags); 1000 if (page) 1001 goto got_pg; 1002 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1003 /* 1004 * Go through the zonelist yet one more time, keep 1005 * very high watermark here, this is only to catch 1006 * a parallel oom killing, we must fail if we're still 1007 * under heavy pressure. 1008 */ 1009 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1010 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1011 if (page) 1012 goto got_pg; 1013 1014 out_of_memory(gfp_mask, order); 1015 goto restart; 1016 } 1017 1018 /* 1019 * Don't let big-order allocations loop unless the caller explicitly 1020 * requests that. Wait for some write requests to complete then retry. 1021 * 1022 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1023 * <= 3, but that may not be true in other implementations. 1024 */ 1025 do_retry = 0; 1026 if (!(gfp_mask & __GFP_NORETRY)) { 1027 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1028 do_retry = 1; 1029 if (gfp_mask & __GFP_NOFAIL) 1030 do_retry = 1; 1031 } 1032 if (do_retry) { 1033 blk_congestion_wait(WRITE, HZ/50); 1034 goto rebalance; 1035 } 1036 1037nopage: 1038 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1039 printk(KERN_WARNING "%s: page allocation failure." 1040 " order:%d, mode:0x%x\n", 1041 p->comm, order, gfp_mask); 1042 dump_stack(); 1043 show_mem(); 1044 } 1045got_pg: 1046 return page; 1047} 1048 1049EXPORT_SYMBOL(__alloc_pages); 1050 1051/* 1052 * Common helper functions. 1053 */ 1054fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1055{ 1056 struct page * page; 1057 page = alloc_pages(gfp_mask, order); 1058 if (!page) 1059 return 0; 1060 return (unsigned long) page_address(page); 1061} 1062 1063EXPORT_SYMBOL(__get_free_pages); 1064 1065fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1066{ 1067 struct page * page; 1068 1069 /* 1070 * get_zeroed_page() returns a 32-bit address, which cannot represent 1071 * a highmem page 1072 */ 1073 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1074 1075 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1076 if (page) 1077 return (unsigned long) page_address(page); 1078 return 0; 1079} 1080 1081EXPORT_SYMBOL(get_zeroed_page); 1082 1083void __pagevec_free(struct pagevec *pvec) 1084{ 1085 int i = pagevec_count(pvec); 1086 1087 while (--i >= 0) 1088 free_hot_cold_page(pvec->pages[i], pvec->cold); 1089} 1090 1091fastcall void __free_pages(struct page *page, unsigned int order) 1092{ 1093 if (put_page_testzero(page)) { 1094 if (order == 0) 1095 free_hot_page(page); 1096 else 1097 __free_pages_ok(page, order); 1098 } 1099} 1100 1101EXPORT_SYMBOL(__free_pages); 1102 1103fastcall void free_pages(unsigned long addr, unsigned int order) 1104{ 1105 if (addr != 0) { 1106 BUG_ON(!virt_addr_valid((void *)addr)); 1107 __free_pages(virt_to_page((void *)addr), order); 1108 } 1109} 1110 1111EXPORT_SYMBOL(free_pages); 1112 1113/* 1114 * Total amount of free (allocatable) RAM: 1115 */ 1116unsigned int nr_free_pages(void) 1117{ 1118 unsigned int sum = 0; 1119 struct zone *zone; 1120 1121 for_each_zone(zone) 1122 sum += zone->free_pages; 1123 1124 return sum; 1125} 1126 1127EXPORT_SYMBOL(nr_free_pages); 1128 1129#ifdef CONFIG_NUMA 1130unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1131{ 1132 unsigned int i, sum = 0; 1133 1134 for (i = 0; i < MAX_NR_ZONES; i++) 1135 sum += pgdat->node_zones[i].free_pages; 1136 1137 return sum; 1138} 1139#endif 1140 1141static unsigned int nr_free_zone_pages(int offset) 1142{ 1143 /* Just pick one node, since fallback list is circular */ 1144 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1145 unsigned int sum = 0; 1146 1147 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1148 struct zone **zonep = zonelist->zones; 1149 struct zone *zone; 1150 1151 for (zone = *zonep++; zone; zone = *zonep++) { 1152 unsigned long size = zone->present_pages; 1153 unsigned long high = zone->pages_high; 1154 if (size > high) 1155 sum += size - high; 1156 } 1157 1158 return sum; 1159} 1160 1161/* 1162 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1163 */ 1164unsigned int nr_free_buffer_pages(void) 1165{ 1166 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1167} 1168 1169/* 1170 * Amount of free RAM allocatable within all zones 1171 */ 1172unsigned int nr_free_pagecache_pages(void) 1173{ 1174 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1175} 1176 1177#ifdef CONFIG_HIGHMEM 1178unsigned int nr_free_highpages (void) 1179{ 1180 pg_data_t *pgdat; 1181 unsigned int pages = 0; 1182 1183 for_each_pgdat(pgdat) 1184 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1185 1186 return pages; 1187} 1188#endif 1189 1190#ifdef CONFIG_NUMA 1191static void show_node(struct zone *zone) 1192{ 1193 printk("Node %d ", zone->zone_pgdat->node_id); 1194} 1195#else 1196#define show_node(zone) do { } while (0) 1197#endif 1198 1199/* 1200 * Accumulate the page_state information across all CPUs. 1201 * The result is unavoidably approximate - it can change 1202 * during and after execution of this function. 1203 */ 1204static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1205 1206atomic_t nr_pagecache = ATOMIC_INIT(0); 1207EXPORT_SYMBOL(nr_pagecache); 1208#ifdef CONFIG_SMP 1209DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1210#endif 1211 1212static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1213{ 1214 int cpu = 0; 1215 1216 memset(ret, 0, sizeof(*ret)); 1217 cpus_and(*cpumask, *cpumask, cpu_online_map); 1218 1219 cpu = first_cpu(*cpumask); 1220 while (cpu < NR_CPUS) { 1221 unsigned long *in, *out, off; 1222 1223 in = (unsigned long *)&per_cpu(page_states, cpu); 1224 1225 cpu = next_cpu(cpu, *cpumask); 1226 1227 if (cpu < NR_CPUS) 1228 prefetch(&per_cpu(page_states, cpu)); 1229 1230 out = (unsigned long *)ret; 1231 for (off = 0; off < nr; off++) 1232 *out++ += *in++; 1233 } 1234} 1235 1236void get_page_state_node(struct page_state *ret, int node) 1237{ 1238 int nr; 1239 cpumask_t mask = node_to_cpumask(node); 1240 1241 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1242 nr /= sizeof(unsigned long); 1243 1244 __get_page_state(ret, nr+1, &mask); 1245} 1246 1247void get_page_state(struct page_state *ret) 1248{ 1249 int nr; 1250 cpumask_t mask = CPU_MASK_ALL; 1251 1252 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1253 nr /= sizeof(unsigned long); 1254 1255 __get_page_state(ret, nr + 1, &mask); 1256} 1257 1258void get_full_page_state(struct page_state *ret) 1259{ 1260 cpumask_t mask = CPU_MASK_ALL; 1261 1262 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1263} 1264 1265unsigned long read_page_state_offset(unsigned long offset) 1266{ 1267 unsigned long ret = 0; 1268 int cpu; 1269 1270 for_each_online_cpu(cpu) { 1271 unsigned long in; 1272 1273 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1274 ret += *((unsigned long *)in); 1275 } 1276 return ret; 1277} 1278 1279void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1280{ 1281 void *ptr; 1282 1283 ptr = &__get_cpu_var(page_states); 1284 *(unsigned long *)(ptr + offset) += delta; 1285} 1286EXPORT_SYMBOL(__mod_page_state_offset); 1287 1288void mod_page_state_offset(unsigned long offset, unsigned long delta) 1289{ 1290 unsigned long flags; 1291 void *ptr; 1292 1293 local_irq_save(flags); 1294 ptr = &__get_cpu_var(page_states); 1295 *(unsigned long *)(ptr + offset) += delta; 1296 local_irq_restore(flags); 1297} 1298EXPORT_SYMBOL(mod_page_state_offset); 1299 1300void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1301 unsigned long *free, struct pglist_data *pgdat) 1302{ 1303 struct zone *zones = pgdat->node_zones; 1304 int i; 1305 1306 *active = 0; 1307 *inactive = 0; 1308 *free = 0; 1309 for (i = 0; i < MAX_NR_ZONES; i++) { 1310 *active += zones[i].nr_active; 1311 *inactive += zones[i].nr_inactive; 1312 *free += zones[i].free_pages; 1313 } 1314} 1315 1316void get_zone_counts(unsigned long *active, 1317 unsigned long *inactive, unsigned long *free) 1318{ 1319 struct pglist_data *pgdat; 1320 1321 *active = 0; 1322 *inactive = 0; 1323 *free = 0; 1324 for_each_pgdat(pgdat) { 1325 unsigned long l, m, n; 1326 __get_zone_counts(&l, &m, &n, pgdat); 1327 *active += l; 1328 *inactive += m; 1329 *free += n; 1330 } 1331} 1332 1333void si_meminfo(struct sysinfo *val) 1334{ 1335 val->totalram = totalram_pages; 1336 val->sharedram = 0; 1337 val->freeram = nr_free_pages(); 1338 val->bufferram = nr_blockdev_pages(); 1339#ifdef CONFIG_HIGHMEM 1340 val->totalhigh = totalhigh_pages; 1341 val->freehigh = nr_free_highpages(); 1342#else 1343 val->totalhigh = 0; 1344 val->freehigh = 0; 1345#endif 1346 val->mem_unit = PAGE_SIZE; 1347} 1348 1349EXPORT_SYMBOL(si_meminfo); 1350 1351#ifdef CONFIG_NUMA 1352void si_meminfo_node(struct sysinfo *val, int nid) 1353{ 1354 pg_data_t *pgdat = NODE_DATA(nid); 1355 1356 val->totalram = pgdat->node_present_pages; 1357 val->freeram = nr_free_pages_pgdat(pgdat); 1358 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1359 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1360 val->mem_unit = PAGE_SIZE; 1361} 1362#endif 1363 1364#define K(x) ((x) << (PAGE_SHIFT-10)) 1365 1366/* 1367 * Show free area list (used inside shift_scroll-lock stuff) 1368 * We also calculate the percentage fragmentation. We do this by counting the 1369 * memory on each free list with the exception of the first item on the list. 1370 */ 1371void show_free_areas(void) 1372{ 1373 struct page_state ps; 1374 int cpu, temperature; 1375 unsigned long active; 1376 unsigned long inactive; 1377 unsigned long free; 1378 struct zone *zone; 1379 1380 for_each_zone(zone) { 1381 show_node(zone); 1382 printk("%s per-cpu:", zone->name); 1383 1384 if (!populated_zone(zone)) { 1385 printk(" empty\n"); 1386 continue; 1387 } else 1388 printk("\n"); 1389 1390 for_each_online_cpu(cpu) { 1391 struct per_cpu_pageset *pageset; 1392 1393 pageset = zone_pcp(zone, cpu); 1394 1395 for (temperature = 0; temperature < 2; temperature++) 1396 printk("cpu %d %s: high %d, batch %d used:%d\n", 1397 cpu, 1398 temperature ? "cold" : "hot", 1399 pageset->pcp[temperature].high, 1400 pageset->pcp[temperature].batch, 1401 pageset->pcp[temperature].count); 1402 } 1403 } 1404 1405 get_page_state(&ps); 1406 get_zone_counts(&active, &inactive, &free); 1407 1408 printk("Free pages: %11ukB (%ukB HighMem)\n", 1409 K(nr_free_pages()), 1410 K(nr_free_highpages())); 1411 1412 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1413 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1414 active, 1415 inactive, 1416 ps.nr_dirty, 1417 ps.nr_writeback, 1418 ps.nr_unstable, 1419 nr_free_pages(), 1420 ps.nr_slab, 1421 ps.nr_mapped, 1422 ps.nr_page_table_pages); 1423 1424 for_each_zone(zone) { 1425 int i; 1426 1427 show_node(zone); 1428 printk("%s" 1429 " free:%lukB" 1430 " min:%lukB" 1431 " low:%lukB" 1432 " high:%lukB" 1433 " active:%lukB" 1434 " inactive:%lukB" 1435 " present:%lukB" 1436 " pages_scanned:%lu" 1437 " all_unreclaimable? %s" 1438 "\n", 1439 zone->name, 1440 K(zone->free_pages), 1441 K(zone->pages_min), 1442 K(zone->pages_low), 1443 K(zone->pages_high), 1444 K(zone->nr_active), 1445 K(zone->nr_inactive), 1446 K(zone->present_pages), 1447 zone->pages_scanned, 1448 (zone->all_unreclaimable ? "yes" : "no") 1449 ); 1450 printk("lowmem_reserve[]:"); 1451 for (i = 0; i < MAX_NR_ZONES; i++) 1452 printk(" %lu", zone->lowmem_reserve[i]); 1453 printk("\n"); 1454 } 1455 1456 for_each_zone(zone) { 1457 unsigned long nr, flags, order, total = 0; 1458 1459 show_node(zone); 1460 printk("%s: ", zone->name); 1461 if (!populated_zone(zone)) { 1462 printk("empty\n"); 1463 continue; 1464 } 1465 1466 spin_lock_irqsave(&zone->lock, flags); 1467 for (order = 0; order < MAX_ORDER; order++) { 1468 nr = zone->free_area[order].nr_free; 1469 total += nr << order; 1470 printk("%lu*%lukB ", nr, K(1UL) << order); 1471 } 1472 spin_unlock_irqrestore(&zone->lock, flags); 1473 printk("= %lukB\n", K(total)); 1474 } 1475 1476 show_swap_cache_info(); 1477} 1478 1479/* 1480 * Builds allocation fallback zone lists. 1481 * 1482 * Add all populated zones of a node to the zonelist. 1483 */ 1484static int __init build_zonelists_node(pg_data_t *pgdat, 1485 struct zonelist *zonelist, int nr_zones, int zone_type) 1486{ 1487 struct zone *zone; 1488 1489 BUG_ON(zone_type > ZONE_HIGHMEM); 1490 1491 do { 1492 zone = pgdat->node_zones + zone_type; 1493 if (populated_zone(zone)) { 1494#ifndef CONFIG_HIGHMEM 1495 BUG_ON(zone_type > ZONE_NORMAL); 1496#endif 1497 zonelist->zones[nr_zones++] = zone; 1498 check_highest_zone(zone_type); 1499 } 1500 zone_type--; 1501 1502 } while (zone_type >= 0); 1503 return nr_zones; 1504} 1505 1506static inline int highest_zone(int zone_bits) 1507{ 1508 int res = ZONE_NORMAL; 1509 if (zone_bits & (__force int)__GFP_HIGHMEM) 1510 res = ZONE_HIGHMEM; 1511 if (zone_bits & (__force int)__GFP_DMA32) 1512 res = ZONE_DMA32; 1513 if (zone_bits & (__force int)__GFP_DMA) 1514 res = ZONE_DMA; 1515 return res; 1516} 1517 1518#ifdef CONFIG_NUMA 1519#define MAX_NODE_LOAD (num_online_nodes()) 1520static int __initdata node_load[MAX_NUMNODES]; 1521/** 1522 * find_next_best_node - find the next node that should appear in a given node's fallback list 1523 * @node: node whose fallback list we're appending 1524 * @used_node_mask: nodemask_t of already used nodes 1525 * 1526 * We use a number of factors to determine which is the next node that should 1527 * appear on a given node's fallback list. The node should not have appeared 1528 * already in @node's fallback list, and it should be the next closest node 1529 * according to the distance array (which contains arbitrary distance values 1530 * from each node to each node in the system), and should also prefer nodes 1531 * with no CPUs, since presumably they'll have very little allocation pressure 1532 * on them otherwise. 1533 * It returns -1 if no node is found. 1534 */ 1535static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1536{ 1537 int i, n, val; 1538 int min_val = INT_MAX; 1539 int best_node = -1; 1540 1541 for_each_online_node(i) { 1542 cpumask_t tmp; 1543 1544 /* Start from local node */ 1545 n = (node+i) % num_online_nodes(); 1546 1547 /* Don't want a node to appear more than once */ 1548 if (node_isset(n, *used_node_mask)) 1549 continue; 1550 1551 /* Use the local node if we haven't already */ 1552 if (!node_isset(node, *used_node_mask)) { 1553 best_node = node; 1554 break; 1555 } 1556 1557 /* Use the distance array to find the distance */ 1558 val = node_distance(node, n); 1559 1560 /* Give preference to headless and unused nodes */ 1561 tmp = node_to_cpumask(n); 1562 if (!cpus_empty(tmp)) 1563 val += PENALTY_FOR_NODE_WITH_CPUS; 1564 1565 /* Slight preference for less loaded node */ 1566 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1567 val += node_load[n]; 1568 1569 if (val < min_val) { 1570 min_val = val; 1571 best_node = n; 1572 } 1573 } 1574 1575 if (best_node >= 0) 1576 node_set(best_node, *used_node_mask); 1577 1578 return best_node; 1579} 1580 1581static void __init build_zonelists(pg_data_t *pgdat) 1582{ 1583 int i, j, k, node, local_node; 1584 int prev_node, load; 1585 struct zonelist *zonelist; 1586 nodemask_t used_mask; 1587 1588 /* initialize zonelists */ 1589 for (i = 0; i < GFP_ZONETYPES; i++) { 1590 zonelist = pgdat->node_zonelists + i; 1591 zonelist->zones[0] = NULL; 1592 } 1593 1594 /* NUMA-aware ordering of nodes */ 1595 local_node = pgdat->node_id; 1596 load = num_online_nodes(); 1597 prev_node = local_node; 1598 nodes_clear(used_mask); 1599 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1600 int distance = node_distance(local_node, node); 1601 1602 /* 1603 * If another node is sufficiently far away then it is better 1604 * to reclaim pages in a zone before going off node. 1605 */ 1606 if (distance > RECLAIM_DISTANCE) 1607 zone_reclaim_mode = 1; 1608 1609 /* 1610 * We don't want to pressure a particular node. 1611 * So adding penalty to the first node in same 1612 * distance group to make it round-robin. 1613 */ 1614 1615 if (distance != node_distance(local_node, prev_node)) 1616 node_load[node] += load; 1617 prev_node = node; 1618 load--; 1619 for (i = 0; i < GFP_ZONETYPES; i++) { 1620 zonelist = pgdat->node_zonelists + i; 1621 for (j = 0; zonelist->zones[j] != NULL; j++); 1622 1623 k = highest_zone(i); 1624 1625 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1626 zonelist->zones[j] = NULL; 1627 } 1628 } 1629} 1630 1631#else /* CONFIG_NUMA */ 1632 1633static void __init build_zonelists(pg_data_t *pgdat) 1634{ 1635 int i, j, k, node, local_node; 1636 1637 local_node = pgdat->node_id; 1638 for (i = 0; i < GFP_ZONETYPES; i++) { 1639 struct zonelist *zonelist; 1640 1641 zonelist = pgdat->node_zonelists + i; 1642 1643 j = 0; 1644 k = highest_zone(i); 1645 j = build_zonelists_node(pgdat, zonelist, j, k); 1646 /* 1647 * Now we build the zonelist so that it contains the zones 1648 * of all the other nodes. 1649 * We don't want to pressure a particular node, so when 1650 * building the zones for node N, we make sure that the 1651 * zones coming right after the local ones are those from 1652 * node N+1 (modulo N) 1653 */ 1654 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1655 if (!node_online(node)) 1656 continue; 1657 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1658 } 1659 for (node = 0; node < local_node; node++) { 1660 if (!node_online(node)) 1661 continue; 1662 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1663 } 1664 1665 zonelist->zones[j] = NULL; 1666 } 1667} 1668 1669#endif /* CONFIG_NUMA */ 1670 1671void __init build_all_zonelists(void) 1672{ 1673 int i; 1674 1675 for_each_online_node(i) 1676 build_zonelists(NODE_DATA(i)); 1677 printk("Built %i zonelists\n", num_online_nodes()); 1678 cpuset_init_current_mems_allowed(); 1679} 1680 1681/* 1682 * Helper functions to size the waitqueue hash table. 1683 * Essentially these want to choose hash table sizes sufficiently 1684 * large so that collisions trying to wait on pages are rare. 1685 * But in fact, the number of active page waitqueues on typical 1686 * systems is ridiculously low, less than 200. So this is even 1687 * conservative, even though it seems large. 1688 * 1689 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1690 * waitqueues, i.e. the size of the waitq table given the number of pages. 1691 */ 1692#define PAGES_PER_WAITQUEUE 256 1693 1694static inline unsigned long wait_table_size(unsigned long pages) 1695{ 1696 unsigned long size = 1; 1697 1698 pages /= PAGES_PER_WAITQUEUE; 1699 1700 while (size < pages) 1701 size <<= 1; 1702 1703 /* 1704 * Once we have dozens or even hundreds of threads sleeping 1705 * on IO we've got bigger problems than wait queue collision. 1706 * Limit the size of the wait table to a reasonable size. 1707 */ 1708 size = min(size, 4096UL); 1709 1710 return max(size, 4UL); 1711} 1712 1713/* 1714 * This is an integer logarithm so that shifts can be used later 1715 * to extract the more random high bits from the multiplicative 1716 * hash function before the remainder is taken. 1717 */ 1718static inline unsigned long wait_table_bits(unsigned long size) 1719{ 1720 return ffz(~size); 1721} 1722 1723#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1724 1725static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1726 unsigned long *zones_size, unsigned long *zholes_size) 1727{ 1728 unsigned long realtotalpages, totalpages = 0; 1729 int i; 1730 1731 for (i = 0; i < MAX_NR_ZONES; i++) 1732 totalpages += zones_size[i]; 1733 pgdat->node_spanned_pages = totalpages; 1734 1735 realtotalpages = totalpages; 1736 if (zholes_size) 1737 for (i = 0; i < MAX_NR_ZONES; i++) 1738 realtotalpages -= zholes_size[i]; 1739 pgdat->node_present_pages = realtotalpages; 1740 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1741} 1742 1743 1744/* 1745 * Initially all pages are reserved - free ones are freed 1746 * up by free_all_bootmem() once the early boot process is 1747 * done. Non-atomic initialization, single-pass. 1748 */ 1749void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1750 unsigned long start_pfn) 1751{ 1752 struct page *page; 1753 unsigned long end_pfn = start_pfn + size; 1754 unsigned long pfn; 1755 1756 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1757 if (!early_pfn_valid(pfn)) 1758 continue; 1759 page = pfn_to_page(pfn); 1760 set_page_links(page, zone, nid, pfn); 1761 set_page_count(page, 1); 1762 reset_page_mapcount(page); 1763 SetPageReserved(page); 1764 INIT_LIST_HEAD(&page->lru); 1765#ifdef WANT_PAGE_VIRTUAL 1766 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1767 if (!is_highmem_idx(zone)) 1768 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1769#endif 1770 } 1771} 1772 1773void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1774 unsigned long size) 1775{ 1776 int order; 1777 for (order = 0; order < MAX_ORDER ; order++) { 1778 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1779 zone->free_area[order].nr_free = 0; 1780 } 1781} 1782 1783#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1784void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1785 unsigned long size) 1786{ 1787 unsigned long snum = pfn_to_section_nr(pfn); 1788 unsigned long end = pfn_to_section_nr(pfn + size); 1789 1790 if (FLAGS_HAS_NODE) 1791 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1792 else 1793 for (; snum <= end; snum++) 1794 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1795} 1796 1797#ifndef __HAVE_ARCH_MEMMAP_INIT 1798#define memmap_init(size, nid, zone, start_pfn) \ 1799 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1800#endif 1801 1802static int __cpuinit zone_batchsize(struct zone *zone) 1803{ 1804 int batch; 1805 1806 /* 1807 * The per-cpu-pages pools are set to around 1000th of the 1808 * size of the zone. But no more than 1/2 of a meg. 1809 * 1810 * OK, so we don't know how big the cache is. So guess. 1811 */ 1812 batch = zone->present_pages / 1024; 1813 if (batch * PAGE_SIZE > 512 * 1024) 1814 batch = (512 * 1024) / PAGE_SIZE; 1815 batch /= 4; /* We effectively *= 4 below */ 1816 if (batch < 1) 1817 batch = 1; 1818 1819 /* 1820 * Clamp the batch to a 2^n - 1 value. Having a power 1821 * of 2 value was found to be more likely to have 1822 * suboptimal cache aliasing properties in some cases. 1823 * 1824 * For example if 2 tasks are alternately allocating 1825 * batches of pages, one task can end up with a lot 1826 * of pages of one half of the possible page colors 1827 * and the other with pages of the other colors. 1828 */ 1829 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1830 1831 return batch; 1832} 1833 1834inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1835{ 1836 struct per_cpu_pages *pcp; 1837 1838 memset(p, 0, sizeof(*p)); 1839 1840 pcp = &p->pcp[0]; /* hot */ 1841 pcp->count = 0; 1842 pcp->high = 6 * batch; 1843 pcp->batch = max(1UL, 1 * batch); 1844 INIT_LIST_HEAD(&pcp->list); 1845 1846 pcp = &p->pcp[1]; /* cold*/ 1847 pcp->count = 0; 1848 pcp->high = 2 * batch; 1849 pcp->batch = max(1UL, batch/2); 1850 INIT_LIST_HEAD(&pcp->list); 1851} 1852 1853/* 1854 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1855 * to the value high for the pageset p. 1856 */ 1857 1858static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1859 unsigned long high) 1860{ 1861 struct per_cpu_pages *pcp; 1862 1863 pcp = &p->pcp[0]; /* hot list */ 1864 pcp->high = high; 1865 pcp->batch = max(1UL, high/4); 1866 if ((high/4) > (PAGE_SHIFT * 8)) 1867 pcp->batch = PAGE_SHIFT * 8; 1868} 1869 1870 1871#ifdef CONFIG_NUMA 1872/* 1873 * Boot pageset table. One per cpu which is going to be used for all 1874 * zones and all nodes. The parameters will be set in such a way 1875 * that an item put on a list will immediately be handed over to 1876 * the buddy list. This is safe since pageset manipulation is done 1877 * with interrupts disabled. 1878 * 1879 * Some NUMA counter updates may also be caught by the boot pagesets. 1880 * 1881 * The boot_pagesets must be kept even after bootup is complete for 1882 * unused processors and/or zones. They do play a role for bootstrapping 1883 * hotplugged processors. 1884 * 1885 * zoneinfo_show() and maybe other functions do 1886 * not check if the processor is online before following the pageset pointer. 1887 * Other parts of the kernel may not check if the zone is available. 1888 */ 1889static struct per_cpu_pageset 1890 boot_pageset[NR_CPUS]; 1891 1892/* 1893 * Dynamically allocate memory for the 1894 * per cpu pageset array in struct zone. 1895 */ 1896static int __cpuinit process_zones(int cpu) 1897{ 1898 struct zone *zone, *dzone; 1899 1900 for_each_zone(zone) { 1901 1902 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1903 GFP_KERNEL, cpu_to_node(cpu)); 1904 if (!zone_pcp(zone, cpu)) 1905 goto bad; 1906 1907 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1908 1909 if (percpu_pagelist_fraction) 1910 setup_pagelist_highmark(zone_pcp(zone, cpu), 1911 (zone->present_pages / percpu_pagelist_fraction)); 1912 } 1913 1914 return 0; 1915bad: 1916 for_each_zone(dzone) { 1917 if (dzone == zone) 1918 break; 1919 kfree(zone_pcp(dzone, cpu)); 1920 zone_pcp(dzone, cpu) = NULL; 1921 } 1922 return -ENOMEM; 1923} 1924 1925static inline void free_zone_pagesets(int cpu) 1926{ 1927 struct zone *zone; 1928 1929 for_each_zone(zone) { 1930 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1931 1932 zone_pcp(zone, cpu) = NULL; 1933 kfree(pset); 1934 } 1935} 1936 1937static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb, 1938 unsigned long action, 1939 void *hcpu) 1940{ 1941 int cpu = (long)hcpu; 1942 int ret = NOTIFY_OK; 1943 1944 switch (action) { 1945 case CPU_UP_PREPARE: 1946 if (process_zones(cpu)) 1947 ret = NOTIFY_BAD; 1948 break; 1949 case CPU_UP_CANCELED: 1950 case CPU_DEAD: 1951 free_zone_pagesets(cpu); 1952 break; 1953 default: 1954 break; 1955 } 1956 return ret; 1957} 1958 1959static struct notifier_block pageset_notifier = 1960 { &pageset_cpuup_callback, NULL, 0 }; 1961 1962void __init setup_per_cpu_pageset(void) 1963{ 1964 int err; 1965 1966 /* Initialize per_cpu_pageset for cpu 0. 1967 * A cpuup callback will do this for every cpu 1968 * as it comes online 1969 */ 1970 err = process_zones(smp_processor_id()); 1971 BUG_ON(err); 1972 register_cpu_notifier(&pageset_notifier); 1973} 1974 1975#endif 1976 1977static __meminit 1978void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 1979{ 1980 int i; 1981 struct pglist_data *pgdat = zone->zone_pgdat; 1982 1983 /* 1984 * The per-page waitqueue mechanism uses hashed waitqueues 1985 * per zone. 1986 */ 1987 zone->wait_table_size = wait_table_size(zone_size_pages); 1988 zone->wait_table_bits = wait_table_bits(zone->wait_table_size); 1989 zone->wait_table = (wait_queue_head_t *) 1990 alloc_bootmem_node(pgdat, zone->wait_table_size 1991 * sizeof(wait_queue_head_t)); 1992 1993 for(i = 0; i < zone->wait_table_size; ++i) 1994 init_waitqueue_head(zone->wait_table + i); 1995} 1996 1997static __meminit void zone_pcp_init(struct zone *zone) 1998{ 1999 int cpu; 2000 unsigned long batch = zone_batchsize(zone); 2001 2002 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2003#ifdef CONFIG_NUMA 2004 /* Early boot. Slab allocator not functional yet */ 2005 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2006 setup_pageset(&boot_pageset[cpu],0); 2007#else 2008 setup_pageset(zone_pcp(zone,cpu), batch); 2009#endif 2010 } 2011 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2012 zone->name, zone->present_pages, batch); 2013} 2014 2015static __meminit void init_currently_empty_zone(struct zone *zone, 2016 unsigned long zone_start_pfn, unsigned long size) 2017{ 2018 struct pglist_data *pgdat = zone->zone_pgdat; 2019 2020 zone_wait_table_init(zone, size); 2021 pgdat->nr_zones = zone_idx(zone) + 1; 2022 2023 zone->zone_mem_map = pfn_to_page(zone_start_pfn); 2024 zone->zone_start_pfn = zone_start_pfn; 2025 2026 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2027 2028 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2029} 2030 2031/* 2032 * Set up the zone data structures: 2033 * - mark all pages reserved 2034 * - mark all memory queues empty 2035 * - clear the memory bitmaps 2036 */ 2037static void __init free_area_init_core(struct pglist_data *pgdat, 2038 unsigned long *zones_size, unsigned long *zholes_size) 2039{ 2040 unsigned long j; 2041 int nid = pgdat->node_id; 2042 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2043 2044 pgdat_resize_init(pgdat); 2045 pgdat->nr_zones = 0; 2046 init_waitqueue_head(&pgdat->kswapd_wait); 2047 pgdat->kswapd_max_order = 0; 2048 2049 for (j = 0; j < MAX_NR_ZONES; j++) { 2050 struct zone *zone = pgdat->node_zones + j; 2051 unsigned long size, realsize; 2052 2053 realsize = size = zones_size[j]; 2054 if (zholes_size) 2055 realsize -= zholes_size[j]; 2056 2057 if (j < ZONE_HIGHMEM) 2058 nr_kernel_pages += realsize; 2059 nr_all_pages += realsize; 2060 2061 zone->spanned_pages = size; 2062 zone->present_pages = realsize; 2063 zone->name = zone_names[j]; 2064 spin_lock_init(&zone->lock); 2065 spin_lock_init(&zone->lru_lock); 2066 zone_seqlock_init(zone); 2067 zone->zone_pgdat = pgdat; 2068 zone->free_pages = 0; 2069 2070 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2071 2072 zone_pcp_init(zone); 2073 INIT_LIST_HEAD(&zone->active_list); 2074 INIT_LIST_HEAD(&zone->inactive_list); 2075 zone->nr_scan_active = 0; 2076 zone->nr_scan_inactive = 0; 2077 zone->nr_active = 0; 2078 zone->nr_inactive = 0; 2079 atomic_set(&zone->reclaim_in_progress, 0); 2080 if (!size) 2081 continue; 2082 2083 zonetable_add(zone, nid, j, zone_start_pfn, size); 2084 init_currently_empty_zone(zone, zone_start_pfn, size); 2085 zone_start_pfn += size; 2086 } 2087} 2088 2089static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2090{ 2091 /* Skip empty nodes */ 2092 if (!pgdat->node_spanned_pages) 2093 return; 2094 2095#ifdef CONFIG_FLAT_NODE_MEM_MAP 2096 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2097 if (!pgdat->node_mem_map) { 2098 unsigned long size; 2099 struct page *map; 2100 2101 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page); 2102 map = alloc_remap(pgdat->node_id, size); 2103 if (!map) 2104 map = alloc_bootmem_node(pgdat, size); 2105 pgdat->node_mem_map = map; 2106 } 2107#ifdef CONFIG_FLATMEM 2108 /* 2109 * With no DISCONTIG, the global mem_map is just set as node 0's 2110 */ 2111 if (pgdat == NODE_DATA(0)) 2112 mem_map = NODE_DATA(0)->node_mem_map; 2113#endif 2114#endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2115} 2116 2117void __init free_area_init_node(int nid, struct pglist_data *pgdat, 2118 unsigned long *zones_size, unsigned long node_start_pfn, 2119 unsigned long *zholes_size) 2120{ 2121 pgdat->node_id = nid; 2122 pgdat->node_start_pfn = node_start_pfn; 2123 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2124 2125 alloc_node_mem_map(pgdat); 2126 2127 free_area_init_core(pgdat, zones_size, zholes_size); 2128} 2129 2130#ifndef CONFIG_NEED_MULTIPLE_NODES 2131static bootmem_data_t contig_bootmem_data; 2132struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2133 2134EXPORT_SYMBOL(contig_page_data); 2135#endif 2136 2137void __init free_area_init(unsigned long *zones_size) 2138{ 2139 free_area_init_node(0, NODE_DATA(0), zones_size, 2140 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2141} 2142 2143#ifdef CONFIG_PROC_FS 2144 2145#include <linux/seq_file.h> 2146 2147static void *frag_start(struct seq_file *m, loff_t *pos) 2148{ 2149 pg_data_t *pgdat; 2150 loff_t node = *pos; 2151 2152 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next) 2153 --node; 2154 2155 return pgdat; 2156} 2157 2158static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2159{ 2160 pg_data_t *pgdat = (pg_data_t *)arg; 2161 2162 (*pos)++; 2163 return pgdat->pgdat_next; 2164} 2165 2166static void frag_stop(struct seq_file *m, void *arg) 2167{ 2168} 2169 2170/* 2171 * This walks the free areas for each zone. 2172 */ 2173static int frag_show(struct seq_file *m, void *arg) 2174{ 2175 pg_data_t *pgdat = (pg_data_t *)arg; 2176 struct zone *zone; 2177 struct zone *node_zones = pgdat->node_zones; 2178 unsigned long flags; 2179 int order; 2180 2181 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2182 if (!populated_zone(zone)) 2183 continue; 2184 2185 spin_lock_irqsave(&zone->lock, flags); 2186 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2187 for (order = 0; order < MAX_ORDER; ++order) 2188 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2189 spin_unlock_irqrestore(&zone->lock, flags); 2190 seq_putc(m, '\n'); 2191 } 2192 return 0; 2193} 2194 2195struct seq_operations fragmentation_op = { 2196 .start = frag_start, 2197 .next = frag_next, 2198 .stop = frag_stop, 2199 .show = frag_show, 2200}; 2201 2202/* 2203 * Output information about zones in @pgdat. 2204 */ 2205static int zoneinfo_show(struct seq_file *m, void *arg) 2206{ 2207 pg_data_t *pgdat = arg; 2208 struct zone *zone; 2209 struct zone *node_zones = pgdat->node_zones; 2210 unsigned long flags; 2211 2212 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2213 int i; 2214 2215 if (!populated_zone(zone)) 2216 continue; 2217 2218 spin_lock_irqsave(&zone->lock, flags); 2219 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2220 seq_printf(m, 2221 "\n pages free %lu" 2222 "\n min %lu" 2223 "\n low %lu" 2224 "\n high %lu" 2225 "\n active %lu" 2226 "\n inactive %lu" 2227 "\n scanned %lu (a: %lu i: %lu)" 2228 "\n spanned %lu" 2229 "\n present %lu", 2230 zone->free_pages, 2231 zone->pages_min, 2232 zone->pages_low, 2233 zone->pages_high, 2234 zone->nr_active, 2235 zone->nr_inactive, 2236 zone->pages_scanned, 2237 zone->nr_scan_active, zone->nr_scan_inactive, 2238 zone->spanned_pages, 2239 zone->present_pages); 2240 seq_printf(m, 2241 "\n protection: (%lu", 2242 zone->lowmem_reserve[0]); 2243 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2244 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2245 seq_printf(m, 2246 ")" 2247 "\n pagesets"); 2248 for_each_online_cpu(i) { 2249 struct per_cpu_pageset *pageset; 2250 int j; 2251 2252 pageset = zone_pcp(zone, i); 2253 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2254 if (pageset->pcp[j].count) 2255 break; 2256 } 2257 if (j == ARRAY_SIZE(pageset->pcp)) 2258 continue; 2259 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2260 seq_printf(m, 2261 "\n cpu: %i pcp: %i" 2262 "\n count: %i" 2263 "\n high: %i" 2264 "\n batch: %i", 2265 i, j, 2266 pageset->pcp[j].count, 2267 pageset->pcp[j].high, 2268 pageset->pcp[j].batch); 2269 } 2270#ifdef CONFIG_NUMA 2271 seq_printf(m, 2272 "\n numa_hit: %lu" 2273 "\n numa_miss: %lu" 2274 "\n numa_foreign: %lu" 2275 "\n interleave_hit: %lu" 2276 "\n local_node: %lu" 2277 "\n other_node: %lu", 2278 pageset->numa_hit, 2279 pageset->numa_miss, 2280 pageset->numa_foreign, 2281 pageset->interleave_hit, 2282 pageset->local_node, 2283 pageset->other_node); 2284#endif 2285 } 2286 seq_printf(m, 2287 "\n all_unreclaimable: %u" 2288 "\n prev_priority: %i" 2289 "\n temp_priority: %i" 2290 "\n start_pfn: %lu", 2291 zone->all_unreclaimable, 2292 zone->prev_priority, 2293 zone->temp_priority, 2294 zone->zone_start_pfn); 2295 spin_unlock_irqrestore(&zone->lock, flags); 2296 seq_putc(m, '\n'); 2297 } 2298 return 0; 2299} 2300 2301struct seq_operations zoneinfo_op = { 2302 .start = frag_start, /* iterate over all zones. The same as in 2303 * fragmentation. */ 2304 .next = frag_next, 2305 .stop = frag_stop, 2306 .show = zoneinfo_show, 2307}; 2308 2309static char *vmstat_text[] = { 2310 "nr_dirty", 2311 "nr_writeback", 2312 "nr_unstable", 2313 "nr_page_table_pages", 2314 "nr_mapped", 2315 "nr_slab", 2316 2317 "pgpgin", 2318 "pgpgout", 2319 "pswpin", 2320 "pswpout", 2321 2322 "pgalloc_high", 2323 "pgalloc_normal", 2324 "pgalloc_dma32", 2325 "pgalloc_dma", 2326 2327 "pgfree", 2328 "pgactivate", 2329 "pgdeactivate", 2330 2331 "pgfault", 2332 "pgmajfault", 2333 2334 "pgrefill_high", 2335 "pgrefill_normal", 2336 "pgrefill_dma32", 2337 "pgrefill_dma", 2338 2339 "pgsteal_high", 2340 "pgsteal_normal", 2341 "pgsteal_dma32", 2342 "pgsteal_dma", 2343 2344 "pgscan_kswapd_high", 2345 "pgscan_kswapd_normal", 2346 "pgscan_kswapd_dma32", 2347 "pgscan_kswapd_dma", 2348 2349 "pgscan_direct_high", 2350 "pgscan_direct_normal", 2351 "pgscan_direct_dma32", 2352 "pgscan_direct_dma", 2353 2354 "pginodesteal", 2355 "slabs_scanned", 2356 "kswapd_steal", 2357 "kswapd_inodesteal", 2358 "pageoutrun", 2359 "allocstall", 2360 2361 "pgrotated", 2362 "nr_bounce", 2363}; 2364 2365static void *vmstat_start(struct seq_file *m, loff_t *pos) 2366{ 2367 struct page_state *ps; 2368 2369 if (*pos >= ARRAY_SIZE(vmstat_text)) 2370 return NULL; 2371 2372 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2373 m->private = ps; 2374 if (!ps) 2375 return ERR_PTR(-ENOMEM); 2376 get_full_page_state(ps); 2377 ps->pgpgin /= 2; /* sectors -> kbytes */ 2378 ps->pgpgout /= 2; 2379 return (unsigned long *)ps + *pos; 2380} 2381 2382static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2383{ 2384 (*pos)++; 2385 if (*pos >= ARRAY_SIZE(vmstat_text)) 2386 return NULL; 2387 return (unsigned long *)m->private + *pos; 2388} 2389 2390static int vmstat_show(struct seq_file *m, void *arg) 2391{ 2392 unsigned long *l = arg; 2393 unsigned long off = l - (unsigned long *)m->private; 2394 2395 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2396 return 0; 2397} 2398 2399static void vmstat_stop(struct seq_file *m, void *arg) 2400{ 2401 kfree(m->private); 2402 m->private = NULL; 2403} 2404 2405struct seq_operations vmstat_op = { 2406 .start = vmstat_start, 2407 .next = vmstat_next, 2408 .stop = vmstat_stop, 2409 .show = vmstat_show, 2410}; 2411 2412#endif /* CONFIG_PROC_FS */ 2413 2414#ifdef CONFIG_HOTPLUG_CPU 2415static int page_alloc_cpu_notify(struct notifier_block *self, 2416 unsigned long action, void *hcpu) 2417{ 2418 int cpu = (unsigned long)hcpu; 2419 long *count; 2420 unsigned long *src, *dest; 2421 2422 if (action == CPU_DEAD) { 2423 int i; 2424 2425 /* Drain local pagecache count. */ 2426 count = &per_cpu(nr_pagecache_local, cpu); 2427 atomic_add(*count, &nr_pagecache); 2428 *count = 0; 2429 local_irq_disable(); 2430 __drain_pages(cpu); 2431 2432 /* Add dead cpu's page_states to our own. */ 2433 dest = (unsigned long *)&__get_cpu_var(page_states); 2434 src = (unsigned long *)&per_cpu(page_states, cpu); 2435 2436 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2437 i++) { 2438 dest[i] += src[i]; 2439 src[i] = 0; 2440 } 2441 2442 local_irq_enable(); 2443 } 2444 return NOTIFY_OK; 2445} 2446#endif /* CONFIG_HOTPLUG_CPU */ 2447 2448void __init page_alloc_init(void) 2449{ 2450 hotcpu_notifier(page_alloc_cpu_notify, 0); 2451} 2452 2453/* 2454 * setup_per_zone_lowmem_reserve - called whenever 2455 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2456 * has a correct pages reserved value, so an adequate number of 2457 * pages are left in the zone after a successful __alloc_pages(). 2458 */ 2459static void setup_per_zone_lowmem_reserve(void) 2460{ 2461 struct pglist_data *pgdat; 2462 int j, idx; 2463 2464 for_each_pgdat(pgdat) { 2465 for (j = 0; j < MAX_NR_ZONES; j++) { 2466 struct zone *zone = pgdat->node_zones + j; 2467 unsigned long present_pages = zone->present_pages; 2468 2469 zone->lowmem_reserve[j] = 0; 2470 2471 for (idx = j-1; idx >= 0; idx--) { 2472 struct zone *lower_zone; 2473 2474 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2475 sysctl_lowmem_reserve_ratio[idx] = 1; 2476 2477 lower_zone = pgdat->node_zones + idx; 2478 lower_zone->lowmem_reserve[j] = present_pages / 2479 sysctl_lowmem_reserve_ratio[idx]; 2480 present_pages += lower_zone->present_pages; 2481 } 2482 } 2483 } 2484} 2485 2486/* 2487 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2488 * that the pages_{min,low,high} values for each zone are set correctly 2489 * with respect to min_free_kbytes. 2490 */ 2491void setup_per_zone_pages_min(void) 2492{ 2493 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2494 unsigned long lowmem_pages = 0; 2495 struct zone *zone; 2496 unsigned long flags; 2497 2498 /* Calculate total number of !ZONE_HIGHMEM pages */ 2499 for_each_zone(zone) { 2500 if (!is_highmem(zone)) 2501 lowmem_pages += zone->present_pages; 2502 } 2503 2504 for_each_zone(zone) { 2505 unsigned long tmp; 2506 spin_lock_irqsave(&zone->lru_lock, flags); 2507 tmp = (pages_min * zone->present_pages) / lowmem_pages; 2508 if (is_highmem(zone)) { 2509 /* 2510 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2511 * need highmem pages, so cap pages_min to a small 2512 * value here. 2513 * 2514 * The (pages_high-pages_low) and (pages_low-pages_min) 2515 * deltas controls asynch page reclaim, and so should 2516 * not be capped for highmem. 2517 */ 2518 int min_pages; 2519 2520 min_pages = zone->present_pages / 1024; 2521 if (min_pages < SWAP_CLUSTER_MAX) 2522 min_pages = SWAP_CLUSTER_MAX; 2523 if (min_pages > 128) 2524 min_pages = 128; 2525 zone->pages_min = min_pages; 2526 } else { 2527 /* 2528 * If it's a lowmem zone, reserve a number of pages 2529 * proportionate to the zone's size. 2530 */ 2531 zone->pages_min = tmp; 2532 } 2533 2534 zone->pages_low = zone->pages_min + tmp / 4; 2535 zone->pages_high = zone->pages_min + tmp / 2; 2536 spin_unlock_irqrestore(&zone->lru_lock, flags); 2537 } 2538} 2539 2540/* 2541 * Initialise min_free_kbytes. 2542 * 2543 * For small machines we want it small (128k min). For large machines 2544 * we want it large (64MB max). But it is not linear, because network 2545 * bandwidth does not increase linearly with machine size. We use 2546 * 2547 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2548 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2549 * 2550 * which yields 2551 * 2552 * 16MB: 512k 2553 * 32MB: 724k 2554 * 64MB: 1024k 2555 * 128MB: 1448k 2556 * 256MB: 2048k 2557 * 512MB: 2896k 2558 * 1024MB: 4096k 2559 * 2048MB: 5792k 2560 * 4096MB: 8192k 2561 * 8192MB: 11584k 2562 * 16384MB: 16384k 2563 */ 2564static int __init init_per_zone_pages_min(void) 2565{ 2566 unsigned long lowmem_kbytes; 2567 2568 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2569 2570 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2571 if (min_free_kbytes < 128) 2572 min_free_kbytes = 128; 2573 if (min_free_kbytes > 65536) 2574 min_free_kbytes = 65536; 2575 setup_per_zone_pages_min(); 2576 setup_per_zone_lowmem_reserve(); 2577 return 0; 2578} 2579module_init(init_per_zone_pages_min) 2580 2581/* 2582 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2583 * that we can call two helper functions whenever min_free_kbytes 2584 * changes. 2585 */ 2586int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2587 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2588{ 2589 proc_dointvec(table, write, file, buffer, length, ppos); 2590 setup_per_zone_pages_min(); 2591 return 0; 2592} 2593 2594/* 2595 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2596 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2597 * whenever sysctl_lowmem_reserve_ratio changes. 2598 * 2599 * The reserve ratio obviously has absolutely no relation with the 2600 * pages_min watermarks. The lowmem reserve ratio can only make sense 2601 * if in function of the boot time zone sizes. 2602 */ 2603int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2604 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2605{ 2606 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2607 setup_per_zone_lowmem_reserve(); 2608 return 0; 2609} 2610 2611/* 2612 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2613 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2614 * can have before it gets flushed back to buddy allocator. 2615 */ 2616 2617int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2618 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2619{ 2620 struct zone *zone; 2621 unsigned int cpu; 2622 int ret; 2623 2624 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2625 if (!write || (ret == -EINVAL)) 2626 return ret; 2627 for_each_zone(zone) { 2628 for_each_online_cpu(cpu) { 2629 unsigned long high; 2630 high = zone->present_pages / percpu_pagelist_fraction; 2631 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2632 } 2633 } 2634 return 0; 2635} 2636 2637__initdata int hashdist = HASHDIST_DEFAULT; 2638 2639#ifdef CONFIG_NUMA 2640static int __init set_hashdist(char *str) 2641{ 2642 if (!str) 2643 return 0; 2644 hashdist = simple_strtoul(str, &str, 0); 2645 return 1; 2646} 2647__setup("hashdist=", set_hashdist); 2648#endif 2649 2650/* 2651 * allocate a large system hash table from bootmem 2652 * - it is assumed that the hash table must contain an exact power-of-2 2653 * quantity of entries 2654 * - limit is the number of hash buckets, not the total allocation size 2655 */ 2656void *__init alloc_large_system_hash(const char *tablename, 2657 unsigned long bucketsize, 2658 unsigned long numentries, 2659 int scale, 2660 int flags, 2661 unsigned int *_hash_shift, 2662 unsigned int *_hash_mask, 2663 unsigned long limit) 2664{ 2665 unsigned long long max = limit; 2666 unsigned long log2qty, size; 2667 void *table = NULL; 2668 2669 /* allow the kernel cmdline to have a say */ 2670 if (!numentries) { 2671 /* round applicable memory size up to nearest megabyte */ 2672 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2673 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2674 numentries >>= 20 - PAGE_SHIFT; 2675 numentries <<= 20 - PAGE_SHIFT; 2676 2677 /* limit to 1 bucket per 2^scale bytes of low memory */ 2678 if (scale > PAGE_SHIFT) 2679 numentries >>= (scale - PAGE_SHIFT); 2680 else 2681 numentries <<= (PAGE_SHIFT - scale); 2682 } 2683 /* rounded up to nearest power of 2 in size */ 2684 numentries = 1UL << (long_log2(numentries) + 1); 2685 2686 /* limit allocation size to 1/16 total memory by default */ 2687 if (max == 0) { 2688 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2689 do_div(max, bucketsize); 2690 } 2691 2692 if (numentries > max) 2693 numentries = max; 2694 2695 log2qty = long_log2(numentries); 2696 2697 do { 2698 size = bucketsize << log2qty; 2699 if (flags & HASH_EARLY) 2700 table = alloc_bootmem(size); 2701 else if (hashdist) 2702 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2703 else { 2704 unsigned long order; 2705 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2706 ; 2707 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2708 } 2709 } while (!table && size > PAGE_SIZE && --log2qty); 2710 2711 if (!table) 2712 panic("Failed to allocate %s hash table\n", tablename); 2713 2714 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2715 tablename, 2716 (1U << log2qty), 2717 long_log2(size) - PAGE_SHIFT, 2718 size); 2719 2720 if (_hash_shift) 2721 *_hash_shift = log2qty; 2722 if (_hash_mask) 2723 *_hash_mask = (1 << log2qty) - 1; 2724 2725 return table; 2726}