at v2.6.16-rc2 471 lines 16 kB view raw
1/* 2 * linux/include/asm-xtensa/page.h 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License version2 as 6 * published by the Free Software Foundation. 7 * 8 * Copyright (C) 2001 - 2005 Tensilica Inc. 9 */ 10 11#ifndef _XTENSA_PGTABLE_H 12#define _XTENSA_PGTABLE_H 13 14#include <asm-generic/pgtable-nopmd.h> 15#include <asm/page.h> 16 17/* Assertions. */ 18 19#ifdef CONFIG_MMU 20 21 22#if (XCHAL_MMU_RINGS < 2) 23# error Linux build assumes at least 2 ring levels. 24#endif 25 26#if (XCHAL_MMU_CA_BITS != 4) 27# error We assume exactly four bits for CA. 28#endif 29 30#if (XCHAL_MMU_SR_BITS != 0) 31# error We have no room for SR bits. 32#endif 33 34/* 35 * Use the first min-wired way for mapping page-table pages. 36 * Page coloring requires a second min-wired way. 37 */ 38 39#if (XCHAL_DTLB_MINWIRED_SETS == 0) 40# error Need a min-wired way for mapping page-table pages 41#endif 42 43#define DTLB_WAY_PGTABLE XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAY) 44 45#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 46# if XCHAL_DTLB_SET(XCHAL_DTLB_MINWIRED_SET0, WAYS) >= 2 47# define DTLB_WAY_DCACHE_ALIAS0 (DTLB_WAY_PGTABLE + 1) 48# define DTLB_WAY_DCACHE_ALIAS1 (DTLB_WAY_PGTABLE + 2) 49# else 50# error Page coloring requires its own wired dtlb way! 51# endif 52#endif 53 54#endif /* CONFIG_MMU */ 55 56/* 57 * We only use two ring levels, user and kernel space. 58 */ 59 60#define USER_RING 1 /* user ring level */ 61#define KERNEL_RING 0 /* kernel ring level */ 62 63/* 64 * The Xtensa architecture port of Linux has a two-level page table system, 65 * i.e. the logical three-level Linux page table layout are folded. 66 * Each task has the following memory page tables: 67 * 68 * PGD table (page directory), ie. 3rd-level page table: 69 * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables 70 * (Architectures that don't have the PMD folded point to the PMD tables) 71 * 72 * The pointer to the PGD table for a given task can be retrieved from 73 * the task structure (struct task_struct*) t, e.g. current(): 74 * (t->mm ? t->mm : t->active_mm)->pgd 75 * 76 * PMD tables (page middle-directory), ie. 2nd-level page tables: 77 * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). 78 * 79 * PTE tables (page table entry), ie. 1st-level page tables: 80 * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE 81 * invalid_pte_table for absent mappings. 82 * 83 * The individual pages are 4 kB big with special pages for the empty_zero_page. 84 */ 85#define PGDIR_SHIFT 22 86#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 87#define PGDIR_MASK (~(PGDIR_SIZE-1)) 88 89/* 90 * Entries per page directory level: we use two-level, so 91 * we don't really have any PMD directory physically. 92 */ 93#define PTRS_PER_PTE 1024 94#define PTRS_PER_PTE_SHIFT 10 95#define PTRS_PER_PMD 1 96#define PTRS_PER_PGD 1024 97#define PGD_ORDER 0 98#define PMD_ORDER 0 99#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 100#define FIRST_USER_ADDRESS XCHAL_SEG_MAPPABLE_VADDR 101#define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) 102 103/* virtual memory area. We keep a distance to other memory regions to be 104 * on the safe side. We also use this area for cache aliasing. 105 */ 106 107// FIXME: virtual memory area must be configuration-dependent 108 109#define VMALLOC_START 0xC0000000 110#define VMALLOC_END 0xC7FF0000 111 112/* Xtensa Linux config PTE layout (when present): 113 * 31-12: PPN 114 * 11-6: Software 115 * 5-4: RING 116 * 3-0: CA 117 * 118 * Similar to the Alpha and MIPS ports, we need to keep track of the ref 119 * and mod bits in software. We have a software "you can read 120 * from this page" bit, and a hardware one which actually lets the 121 * process read from the page. On the same token we have a software 122 * writable bit and the real hardware one which actually lets the 123 * process write to the page. 124 * 125 * See further below for PTE layout for swapped-out pages. 126 */ 127 128#define _PAGE_VALID (1<<0) /* hardware: page is accessible */ 129#define _PAGE_WRENABLE (1<<1) /* hardware: page is writable */ 130 131/* None of these cache modes include MP coherency: */ 132#define _PAGE_NO_CACHE (0<<2) /* bypass, non-speculative */ 133#if XCHAL_DCACHE_IS_WRITEBACK 134# define _PAGE_WRITEBACK (1<<2) /* write back */ 135# define _PAGE_WRITETHRU (2<<2) /* write through */ 136#else 137# define _PAGE_WRITEBACK (1<<2) /* assume write through */ 138# define _PAGE_WRITETHRU (1<<2) 139#endif 140#define _PAGE_NOALLOC (3<<2) /* don't allocate cache,if not cached */ 141#define _CACHE_MASK (3<<2) 142 143#define _PAGE_USER (1<<4) /* user access (ring=1) */ 144#define _PAGE_KERNEL (0<<4) /* kernel access (ring=0) */ 145 146/* Software */ 147#define _PAGE_RW (1<<6) /* software: page writable */ 148#define _PAGE_DIRTY (1<<7) /* software: page dirty */ 149#define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ 150#define _PAGE_FILE (1<<9) /* nonlinear file mapping*/ 151 152#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _CACHE_MASK | _PAGE_DIRTY) 153#define _PAGE_PRESENT ( _PAGE_VALID | _PAGE_WRITEBACK | _PAGE_ACCESSED) 154 155#ifdef CONFIG_MMU 156 157# define PAGE_NONE __pgprot(_PAGE_PRESENT) 158# define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_RW) 159# define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) 160# define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) 161# define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_KERNEL | _PAGE_WRENABLE) 162# define PAGE_INVALID __pgprot(_PAGE_USER) 163 164# if (DCACHE_WAY_SIZE > PAGE_SIZE) 165# define PAGE_DIRECTORY __pgprot(_PAGE_VALID | _PAGE_ACCESSED | _PAGE_KERNEL) 166# else 167# define PAGE_DIRECTORY __pgprot(_PAGE_PRESENT | _PAGE_KERNEL) 168# endif 169 170#else /* no mmu */ 171 172# define PAGE_NONE __pgprot(0) 173# define PAGE_SHARED __pgprot(0) 174# define PAGE_COPY __pgprot(0) 175# define PAGE_READONLY __pgprot(0) 176# define PAGE_KERNEL __pgprot(0) 177 178#endif 179 180/* 181 * On certain configurations of Xtensa MMUs (eg. the initial Linux config), 182 * the MMU can't do page protection for execute, and considers that the same as 183 * read. Also, write permissions may imply read permissions. 184 * What follows is the closest we can get by reasonable means.. 185 * See linux/mm/mmap.c for protection_map[] array that uses these definitions. 186 */ 187#define __P000 PAGE_NONE /* private --- */ 188#define __P001 PAGE_READONLY /* private --r */ 189#define __P010 PAGE_COPY /* private -w- */ 190#define __P011 PAGE_COPY /* private -wr */ 191#define __P100 PAGE_READONLY /* private x-- */ 192#define __P101 PAGE_READONLY /* private x-r */ 193#define __P110 PAGE_COPY /* private xw- */ 194#define __P111 PAGE_COPY /* private xwr */ 195 196#define __S000 PAGE_NONE /* shared --- */ 197#define __S001 PAGE_READONLY /* shared --r */ 198#define __S010 PAGE_SHARED /* shared -w- */ 199#define __S011 PAGE_SHARED /* shared -wr */ 200#define __S100 PAGE_READONLY /* shared x-- */ 201#define __S101 PAGE_READONLY /* shared x-r */ 202#define __S110 PAGE_SHARED /* shared xw- */ 203#define __S111 PAGE_SHARED /* shared xwr */ 204 205#ifndef __ASSEMBLY__ 206 207#define pte_ERROR(e) \ 208 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 209#define pgd_ERROR(e) \ 210 printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 211 212extern unsigned long empty_zero_page[1024]; 213 214#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 215 216extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; 217 218/* 219 * The pmd contains the kernel virtual address of the pte page. 220 */ 221#define pmd_page_kernel(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) 222#define pmd_page(pmd) virt_to_page(pmd_val(pmd)) 223 224/* 225 * The following only work if pte_present() is true. 226 */ 227#define pte_none(pte) (!(pte_val(pte) ^ _PAGE_USER)) 228#define pte_present(pte) (pte_val(pte) & _PAGE_VALID) 229#define pte_clear(mm,addr,ptep) \ 230 do { update_pte(ptep, __pte(_PAGE_USER)); } while(0) 231 232#define pmd_none(pmd) (!pmd_val(pmd)) 233#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) 234#define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) 235#define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) 236 237/* Note: We use the _PAGE_USER bit to indicate write-protect kernel memory */ 238 239static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER; } 240static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } 241static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 242static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 243static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 244static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~(_PAGE_RW | _PAGE_WRENABLE); return pte; } 245static inline pte_t pte_rdprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_USER; return pte; } 246static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } 247static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 248static inline pte_t pte_mkread(pte_t pte) { pte_val(pte) |= _PAGE_USER; return pte; } 249static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } 250static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 251static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_RW; return pte; } 252 253/* 254 * Conversion functions: convert a page and protection to a page entry, 255 * and a page entry and page directory to the page they refer to. 256 */ 257#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 258#define pte_same(a,b) (pte_val(a) == pte_val(b)) 259#define pte_page(x) pfn_to_page(pte_pfn(x)) 260#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 261#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 262 263static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 264{ 265 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 266} 267 268/* 269 * Certain architectures need to do special things when pte's 270 * within a page table are directly modified. Thus, the following 271 * hook is made available. 272 */ 273static inline void update_pte(pte_t *ptep, pte_t pteval) 274{ 275 *ptep = pteval; 276#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 277 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (ptep)); 278#endif 279} 280 281struct mm_struct; 282 283static inline void 284set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) 285{ 286 update_pte(ptep, pteval); 287} 288 289 290static inline void 291set_pmd(pmd_t *pmdp, pmd_t pmdval) 292{ 293 *pmdp = pmdval; 294#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK 295 __asm__ __volatile__ ("memw; dhwb %0, 0; dsync" :: "a" (pmdp)); 296#endif 297} 298 299struct vm_area_struct; 300 301static inline int 302ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, 303 pte_t *ptep) 304{ 305 pte_t pte = *ptep; 306 if (!pte_young(pte)) 307 return 0; 308 update_pte(ptep, pte_mkold(pte)); 309 return 1; 310} 311 312static inline int 313ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, 314 pte_t *ptep) 315{ 316 pte_t pte = *ptep; 317 if (!pte_dirty(pte)) 318 return 0; 319 update_pte(ptep, pte_mkclean(pte)); 320 return 1; 321} 322 323static inline pte_t 324ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 325{ 326 pte_t pte = *ptep; 327 pte_clear(mm, addr, ptep); 328 return pte; 329} 330 331static inline void 332ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 333{ 334 pte_t pte = *ptep; 335 update_pte(ptep, pte_wrprotect(pte)); 336} 337 338/* to find an entry in a kernel page-table-directory */ 339#define pgd_offset_k(address) pgd_offset(&init_mm, address) 340 341/* to find an entry in a page-table-directory */ 342#define pgd_offset(mm,address) ((mm)->pgd + pgd_index(address)) 343 344#define pgd_index(address) ((address) >> PGDIR_SHIFT) 345 346/* Find an entry in the second-level page table.. */ 347#define pmd_offset(dir,address) ((pmd_t*)(dir)) 348 349/* Find an entry in the third-level page table.. */ 350#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 351#define pte_offset_kernel(dir,addr) \ 352 ((pte_t*) pmd_page_kernel(*(dir)) + pte_index(addr)) 353#define pte_offset_map(dir,addr) pte_offset_kernel((dir),(addr)) 354#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir),(addr)) 355 356#define pte_unmap(pte) do { } while (0) 357#define pte_unmap_nested(pte) do { } while (0) 358 359 360/* 361 * Encode and decode a swap entry. 362 * Each PTE in a process VM's page table is either: 363 * "present" -- valid and not swapped out, protection bits are meaningful; 364 * "not present" -- which further subdivides in these two cases: 365 * "none" -- no mapping at all; identified by pte_none(), set by pte_clear( 366 * "swapped out" -- the page is swapped out, and the SWP macros below 367 * are used to store swap file info in the PTE itself. 368 * 369 * In the Xtensa processor MMU, any PTE entries in user space (or anywhere 370 * in virtual memory that can map differently across address spaces) 371 * must have a correct ring value that represents the RASID field that 372 * is changed when switching address spaces. Eg. such PTE entries cannot 373 * be set to ring zero, because that can cause a (global) kernel ASID 374 * entry to be created in the TLBs (even with invalid cache attribute), 375 * potentially causing a multihit exception when going back to another 376 * address space that mapped the same virtual address at another ring. 377 * 378 * SO: we avoid using ring bits (_PAGE_RING_MASK) in "not present" PTEs. 379 * We also avoid using the _PAGE_VALID bit which must be zero for non-present 380 * pages. 381 * 382 * We end up with the following available bits: 1..3 and 7..31. 383 * We don't bother with 1..3 for now (we can use them later if needed), 384 * and chose to allocate 6 bits for SWP_TYPE and the remaining 19 bits 385 * for SWP_OFFSET. At least 5 bits are needed for SWP_TYPE, because it 386 * is currently implemented as an index into swap_info[MAX_SWAPFILES] 387 * and MAX_SWAPFILES is currently defined as 32 in <linux/swap.h>. 388 * However, for some reason all other architectures in the 2.4 kernel 389 * reserve either 6, 7, or 8 bits so I'll not detract from that for now. :) 390 * SWP_OFFSET is an offset into the swap file in page-size units, so 391 * with 4 kB pages, 19 bits supports a maximum swap file size of 2 GB. 392 * 393 * FIXME: 2 GB isn't very big. Other bits can be used to allow 394 * larger swap sizes. In the meantime, it appears relatively easy to get 395 * around the 2 GB limitation by simply using multiple swap files. 396 */ 397 398#define __swp_type(entry) (((entry).val >> 7) & 0x3f) 399#define __swp_offset(entry) ((entry).val >> 13) 400#define __swp_entry(type,offs) ((swp_entry_t) {((type) << 7) | ((offs) << 13)}) 401#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 402#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 403 404#define PTE_FILE_MAX_BITS 29 405#define pte_to_pgoff(pte) (pte_val(pte) >> 3) 406#define pgoff_to_pte(off) ((pte_t) { ((off) << 3) | _PAGE_FILE }) 407 408 409#endif /* !defined (__ASSEMBLY__) */ 410 411 412#ifdef __ASSEMBLY__ 413 414/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), 415 * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), 416 * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) 417 * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) 418 * 419 * Note: We require an additional temporary register which can be the same as 420 * the register that holds the address. 421 * 422 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) 423 * 424 */ 425#define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT 426#define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT 427 428#define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ 429 _PGD_INDEX(tmp, adr); \ 430 addx4 mm, tmp, mm 431 432#define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ 433 srli pmd, pmd, PAGE_SHIFT; \ 434 slli pmd, pmd, PAGE_SHIFT; \ 435 addx4 pmd, tmp, pmd 436 437#else 438 439extern void paging_init(void); 440 441#define kern_addr_valid(addr) (1) 442 443extern void update_mmu_cache(struct vm_area_struct * vma, 444 unsigned long address, pte_t pte); 445 446/* 447 * remap a physical page `pfn' of size `size' with page protection `prot' 448 * into virtual address `from' 449 */ 450#define io_remap_pfn_range(vma,from,pfn,size,prot) \ 451 remap_pfn_range(vma, from, pfn, size, prot) 452 453 454/* No page table caches to init */ 455 456#define pgtable_cache_init() do { } while (0) 457 458typedef pte_t *pte_addr_t; 459 460#endif /* !defined (__ASSEMBLY__) */ 461 462#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 463#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 464#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 465#define __HAVE_ARCH_PTEP_SET_WRPROTECT 466#define __HAVE_ARCH_PTEP_MKDIRTY 467#define __HAVE_ARCH_PTE_SAME 468 469#include <asm-generic/pgtable.h> 470 471#endif /* _XTENSA_PGTABLE_H */