at v2.6.16-rc2 477 lines 10 kB view raw
1#ifndef __ASM_SH_BITOPS_H 2#define __ASM_SH_BITOPS_H 3 4#ifdef __KERNEL__ 5#include <asm/system.h> 6/* For __swab32 */ 7#include <asm/byteorder.h> 8 9static __inline__ void set_bit(int nr, volatile void * addr) 10{ 11 int mask; 12 volatile unsigned int *a = addr; 13 unsigned long flags; 14 15 a += nr >> 5; 16 mask = 1 << (nr & 0x1f); 17 local_irq_save(flags); 18 *a |= mask; 19 local_irq_restore(flags); 20} 21 22static __inline__ void __set_bit(int nr, volatile void * addr) 23{ 24 int mask; 25 volatile unsigned int *a = addr; 26 27 a += nr >> 5; 28 mask = 1 << (nr & 0x1f); 29 *a |= mask; 30} 31 32/* 33 * clear_bit() doesn't provide any barrier for the compiler. 34 */ 35#define smp_mb__before_clear_bit() barrier() 36#define smp_mb__after_clear_bit() barrier() 37static __inline__ void clear_bit(int nr, volatile void * addr) 38{ 39 int mask; 40 volatile unsigned int *a = addr; 41 unsigned long flags; 42 43 a += nr >> 5; 44 mask = 1 << (nr & 0x1f); 45 local_irq_save(flags); 46 *a &= ~mask; 47 local_irq_restore(flags); 48} 49 50static __inline__ void __clear_bit(int nr, volatile void * addr) 51{ 52 int mask; 53 volatile unsigned int *a = addr; 54 55 a += nr >> 5; 56 mask = 1 << (nr & 0x1f); 57 *a &= ~mask; 58} 59 60static __inline__ void change_bit(int nr, volatile void * addr) 61{ 62 int mask; 63 volatile unsigned int *a = addr; 64 unsigned long flags; 65 66 a += nr >> 5; 67 mask = 1 << (nr & 0x1f); 68 local_irq_save(flags); 69 *a ^= mask; 70 local_irq_restore(flags); 71} 72 73static __inline__ void __change_bit(int nr, volatile void * addr) 74{ 75 int mask; 76 volatile unsigned int *a = addr; 77 78 a += nr >> 5; 79 mask = 1 << (nr & 0x1f); 80 *a ^= mask; 81} 82 83static __inline__ int test_and_set_bit(int nr, volatile void * addr) 84{ 85 int mask, retval; 86 volatile unsigned int *a = addr; 87 unsigned long flags; 88 89 a += nr >> 5; 90 mask = 1 << (nr & 0x1f); 91 local_irq_save(flags); 92 retval = (mask & *a) != 0; 93 *a |= mask; 94 local_irq_restore(flags); 95 96 return retval; 97} 98 99static __inline__ int __test_and_set_bit(int nr, volatile void * addr) 100{ 101 int mask, retval; 102 volatile unsigned int *a = addr; 103 104 a += nr >> 5; 105 mask = 1 << (nr & 0x1f); 106 retval = (mask & *a) != 0; 107 *a |= mask; 108 109 return retval; 110} 111 112static __inline__ int test_and_clear_bit(int nr, volatile void * addr) 113{ 114 int mask, retval; 115 volatile unsigned int *a = addr; 116 unsigned long flags; 117 118 a += nr >> 5; 119 mask = 1 << (nr & 0x1f); 120 local_irq_save(flags); 121 retval = (mask & *a) != 0; 122 *a &= ~mask; 123 local_irq_restore(flags); 124 125 return retval; 126} 127 128static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) 129{ 130 int mask, retval; 131 volatile unsigned int *a = addr; 132 133 a += nr >> 5; 134 mask = 1 << (nr & 0x1f); 135 retval = (mask & *a) != 0; 136 *a &= ~mask; 137 138 return retval; 139} 140 141static __inline__ int test_and_change_bit(int nr, volatile void * addr) 142{ 143 int mask, retval; 144 volatile unsigned int *a = addr; 145 unsigned long flags; 146 147 a += nr >> 5; 148 mask = 1 << (nr & 0x1f); 149 local_irq_save(flags); 150 retval = (mask & *a) != 0; 151 *a ^= mask; 152 local_irq_restore(flags); 153 154 return retval; 155} 156 157static __inline__ int __test_and_change_bit(int nr, volatile void * addr) 158{ 159 int mask, retval; 160 volatile unsigned int *a = addr; 161 162 a += nr >> 5; 163 mask = 1 << (nr & 0x1f); 164 retval = (mask & *a) != 0; 165 *a ^= mask; 166 167 return retval; 168} 169 170static __inline__ int test_bit(int nr, const volatile void *addr) 171{ 172 return 1UL & (((const volatile unsigned int *) addr)[nr >> 5] >> (nr & 31)); 173} 174 175static __inline__ unsigned long ffz(unsigned long word) 176{ 177 unsigned long result; 178 179 __asm__("1:\n\t" 180 "shlr %1\n\t" 181 "bt/s 1b\n\t" 182 " add #1, %0" 183 : "=r" (result), "=r" (word) 184 : "0" (~0L), "1" (word) 185 : "t"); 186 return result; 187} 188 189/** 190 * __ffs - find first bit in word. 191 * @word: The word to search 192 * 193 * Undefined if no bit exists, so code should check against 0 first. 194 */ 195static __inline__ unsigned long __ffs(unsigned long word) 196{ 197 unsigned long result; 198 199 __asm__("1:\n\t" 200 "shlr %1\n\t" 201 "bf/s 1b\n\t" 202 " add #1, %0" 203 : "=r" (result), "=r" (word) 204 : "0" (~0L), "1" (word) 205 : "t"); 206 return result; 207} 208 209/** 210 * find_next_bit - find the next set bit in a memory region 211 * @addr: The address to base the search on 212 * @offset: The bitnumber to start searching at 213 * @size: The maximum size to search 214 */ 215static __inline__ unsigned long find_next_bit(const unsigned long *addr, 216 unsigned long size, unsigned long offset) 217{ 218 unsigned int *p = ((unsigned int *) addr) + (offset >> 5); 219 unsigned int result = offset & ~31UL; 220 unsigned int tmp; 221 222 if (offset >= size) 223 return size; 224 size -= result; 225 offset &= 31UL; 226 if (offset) { 227 tmp = *p++; 228 tmp &= ~0UL << offset; 229 if (size < 32) 230 goto found_first; 231 if (tmp) 232 goto found_middle; 233 size -= 32; 234 result += 32; 235 } 236 while (size >= 32) { 237 if ((tmp = *p++) != 0) 238 goto found_middle; 239 result += 32; 240 size -= 32; 241 } 242 if (!size) 243 return result; 244 tmp = *p; 245 246found_first: 247 tmp &= ~0UL >> (32 - size); 248 if (tmp == 0UL) /* Are any bits set? */ 249 return result + size; /* Nope. */ 250found_middle: 251 return result + __ffs(tmp); 252} 253 254/** 255 * find_first_bit - find the first set bit in a memory region 256 * @addr: The address to start the search at 257 * @size: The maximum size to search 258 * 259 * Returns the bit-number of the first set bit, not the number of the byte 260 * containing a bit. 261 */ 262#define find_first_bit(addr, size) \ 263 find_next_bit((addr), (size), 0) 264 265static __inline__ int find_next_zero_bit(const unsigned long *addr, int size, int offset) 266{ 267 const unsigned long *p = ((unsigned long *) addr) + (offset >> 5); 268 unsigned long result = offset & ~31UL; 269 unsigned long tmp; 270 271 if (offset >= size) 272 return size; 273 size -= result; 274 offset &= 31UL; 275 if (offset) { 276 tmp = *(p++); 277 tmp |= ~0UL >> (32-offset); 278 if (size < 32) 279 goto found_first; 280 if (~tmp) 281 goto found_middle; 282 size -= 32; 283 result += 32; 284 } 285 while (size & ~31UL) { 286 if (~(tmp = *(p++))) 287 goto found_middle; 288 result += 32; 289 size -= 32; 290 } 291 if (!size) 292 return result; 293 tmp = *p; 294 295found_first: 296 tmp |= ~0UL << size; 297found_middle: 298 return result + ffz(tmp); 299} 300 301#define find_first_zero_bit(addr, size) \ 302 find_next_zero_bit((addr), (size), 0) 303 304/* 305 * ffs: find first bit set. This is defined the same way as 306 * the libc and compiler builtin ffs routines, therefore 307 * differs in spirit from the above ffz (man ffs). 308 */ 309 310#define ffs(x) generic_ffs(x) 311 312/* 313 * hweightN: returns the hamming weight (i.e. the number 314 * of bits set) of a N-bit word 315 */ 316 317#define hweight32(x) generic_hweight32(x) 318#define hweight16(x) generic_hweight16(x) 319#define hweight8(x) generic_hweight8(x) 320 321/* 322 * Every architecture must define this function. It's the fastest 323 * way of searching a 140-bit bitmap where the first 100 bits are 324 * unlikely to be set. It's guaranteed that at least one of the 140 325 * bits is cleared. 326 */ 327 328static inline int sched_find_first_bit(const unsigned long *b) 329{ 330 if (unlikely(b[0])) 331 return __ffs(b[0]); 332 if (unlikely(b[1])) 333 return __ffs(b[1]) + 32; 334 if (unlikely(b[2])) 335 return __ffs(b[2]) + 64; 336 if (b[3]) 337 return __ffs(b[3]) + 96; 338 return __ffs(b[4]) + 128; 339} 340 341#ifdef __LITTLE_ENDIAN__ 342#define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) 343#define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) 344#define ext2_test_bit(nr, addr) test_bit((nr), (addr)) 345#define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) 346#define ext2_find_next_zero_bit(addr, size, offset) \ 347 find_next_zero_bit((unsigned long *)(addr), (size), (offset)) 348#else 349static __inline__ int ext2_set_bit(int nr, volatile void * addr) 350{ 351 int mask, retval; 352 unsigned long flags; 353 volatile unsigned char *ADDR = (unsigned char *) addr; 354 355 ADDR += nr >> 3; 356 mask = 1 << (nr & 0x07); 357 local_irq_save(flags); 358 retval = (mask & *ADDR) != 0; 359 *ADDR |= mask; 360 local_irq_restore(flags); 361 return retval; 362} 363 364static __inline__ int ext2_clear_bit(int nr, volatile void * addr) 365{ 366 int mask, retval; 367 unsigned long flags; 368 volatile unsigned char *ADDR = (unsigned char *) addr; 369 370 ADDR += nr >> 3; 371 mask = 1 << (nr & 0x07); 372 local_irq_save(flags); 373 retval = (mask & *ADDR) != 0; 374 *ADDR &= ~mask; 375 local_irq_restore(flags); 376 return retval; 377} 378 379static __inline__ int ext2_test_bit(int nr, const volatile void * addr) 380{ 381 int mask; 382 const volatile unsigned char *ADDR = (const unsigned char *) addr; 383 384 ADDR += nr >> 3; 385 mask = 1 << (nr & 0x07); 386 return ((mask & *ADDR) != 0); 387} 388 389#define ext2_find_first_zero_bit(addr, size) \ 390 ext2_find_next_zero_bit((addr), (size), 0) 391 392static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) 393{ 394 unsigned long *p = ((unsigned long *) addr) + (offset >> 5); 395 unsigned long result = offset & ~31UL; 396 unsigned long tmp; 397 398 if (offset >= size) 399 return size; 400 size -= result; 401 offset &= 31UL; 402 if(offset) { 403 /* We hold the little endian value in tmp, but then the 404 * shift is illegal. So we could keep a big endian value 405 * in tmp, like this: 406 * 407 * tmp = __swab32(*(p++)); 408 * tmp |= ~0UL >> (32-offset); 409 * 410 * but this would decrease preformance, so we change the 411 * shift: 412 */ 413 tmp = *(p++); 414 tmp |= __swab32(~0UL >> (32-offset)); 415 if(size < 32) 416 goto found_first; 417 if(~tmp) 418 goto found_middle; 419 size -= 32; 420 result += 32; 421 } 422 while(size & ~31UL) { 423 if(~(tmp = *(p++))) 424 goto found_middle; 425 result += 32; 426 size -= 32; 427 } 428 if(!size) 429 return result; 430 tmp = *p; 431 432found_first: 433 /* tmp is little endian, so we would have to swab the shift, 434 * see above. But then we have to swab tmp below for ffz, so 435 * we might as well do this here. 436 */ 437 return result + ffz(__swab32(tmp) | (~0UL << size)); 438found_middle: 439 return result + ffz(__swab32(tmp)); 440} 441#endif 442 443#define ext2_set_bit_atomic(lock, nr, addr) \ 444 ({ \ 445 int ret; \ 446 spin_lock(lock); \ 447 ret = ext2_set_bit((nr), (addr)); \ 448 spin_unlock(lock); \ 449 ret; \ 450 }) 451 452#define ext2_clear_bit_atomic(lock, nr, addr) \ 453 ({ \ 454 int ret; \ 455 spin_lock(lock); \ 456 ret = ext2_clear_bit((nr), (addr)); \ 457 spin_unlock(lock); \ 458 ret; \ 459 }) 460 461/* Bitmap functions for the minix filesystem. */ 462#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) 463#define minix_set_bit(nr,addr) set_bit(nr,addr) 464#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) 465#define minix_test_bit(nr,addr) test_bit(nr,addr) 466#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) 467 468/* 469 * fls: find last bit set. 470 */ 471 472#define fls(x) generic_fls(x) 473#define fls64(x) generic_fls64(x) 474 475#endif /* __KERNEL__ */ 476 477#endif /* __ASM_SH_BITOPS_H */