at v2.6.16-rc2 537 lines 17 kB view raw
1#ifndef _ASM_POWERPC_PGTABLE_H 2#define _ASM_POWERPC_PGTABLE_H 3#ifdef __KERNEL__ 4 5#ifndef CONFIG_PPC64 6#include <asm-ppc/pgtable.h> 7#else 8 9/* 10 * This file contains the functions and defines necessary to modify and use 11 * the ppc64 hashed page table. 12 */ 13 14#ifndef __ASSEMBLY__ 15#include <linux/config.h> 16#include <linux/stddef.h> 17#include <asm/processor.h> /* For TASK_SIZE */ 18#include <asm/mmu.h> 19#include <asm/page.h> 20#include <asm/tlbflush.h> 21struct mm_struct; 22#endif /* __ASSEMBLY__ */ 23 24#ifdef CONFIG_PPC_64K_PAGES 25#include <asm/pgtable-64k.h> 26#else 27#include <asm/pgtable-4k.h> 28#endif 29 30#define FIRST_USER_ADDRESS 0 31 32/* 33 * Size of EA range mapped by our pagetables. 34 */ 35#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ 36 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) 37#define PGTABLE_RANGE (1UL << PGTABLE_EADDR_SIZE) 38 39#if TASK_SIZE_USER64 > PGTABLE_RANGE 40#error TASK_SIZE_USER64 exceeds pagetable range 41#endif 42 43#if TASK_SIZE_USER64 > (1UL << (USER_ESID_BITS + SID_SHIFT)) 44#error TASK_SIZE_USER64 exceeds user VSID range 45#endif 46 47/* 48 * Define the address range of the vmalloc VM area. 49 */ 50#define VMALLOC_START (0xD000000000000000ul) 51#define VMALLOC_SIZE (0x80000000000UL) 52#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) 53 54/* 55 * Define the address range of the imalloc VM area. 56 */ 57#define PHBS_IO_BASE VMALLOC_END 58#define IMALLOC_BASE (PHBS_IO_BASE + 0x80000000ul) /* Reserve 2 gigs for PHBs */ 59#define IMALLOC_END (VMALLOC_START + PGTABLE_RANGE) 60 61/* 62 * Region IDs 63 */ 64#define REGION_SHIFT 60UL 65#define REGION_MASK (0xfUL << REGION_SHIFT) 66#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) 67 68#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) 69#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) 70#define USER_REGION_ID (0UL) 71 72/* 73 * Common bits in a linux-style PTE. These match the bits in the 74 * (hardware-defined) PowerPC PTE as closely as possible. Additional 75 * bits may be defined in pgtable-*.h 76 */ 77#define _PAGE_PRESENT 0x0001 /* software: pte contains a translation */ 78#define _PAGE_USER 0x0002 /* matches one of the PP bits */ 79#define _PAGE_FILE 0x0002 /* (!present only) software: pte holds file offset */ 80#define _PAGE_EXEC 0x0004 /* No execute on POWER4 and newer (we invert) */ 81#define _PAGE_GUARDED 0x0008 82#define _PAGE_COHERENT 0x0010 /* M: enforce memory coherence (SMP systems) */ 83#define _PAGE_NO_CACHE 0x0020 /* I: cache inhibit */ 84#define _PAGE_WRITETHRU 0x0040 /* W: cache write-through */ 85#define _PAGE_DIRTY 0x0080 /* C: page changed */ 86#define _PAGE_ACCESSED 0x0100 /* R: page referenced */ 87#define _PAGE_RW 0x0200 /* software: user write access allowed */ 88#define _PAGE_HASHPTE 0x0400 /* software: pte has an associated HPTE */ 89#define _PAGE_BUSY 0x0800 /* software: PTE & hash are busy */ 90 91#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_COHERENT) 92 93#define _PAGE_WRENABLE (_PAGE_RW | _PAGE_DIRTY) 94 95/* __pgprot defined in asm-powerpc/page.h */ 96#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) 97 98#define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER) 99#define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_USER | _PAGE_EXEC) 100#define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_USER) 101#define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 102#define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_USER) 103#define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC) 104#define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_WRENABLE) 105#define PAGE_KERNEL_CI __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | \ 106 _PAGE_WRENABLE | _PAGE_NO_CACHE | _PAGE_GUARDED) 107#define PAGE_KERNEL_EXEC __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_EXEC) 108 109#define PAGE_AGP __pgprot(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_NO_CACHE) 110#define HAVE_PAGE_AGP 111 112/* PTEIDX nibble */ 113#define _PTEIDX_SECONDARY 0x8 114#define _PTEIDX_GROUP_IX 0x7 115 116 117/* 118 * POWER4 and newer have per page execute protection, older chips can only 119 * do this on a segment (256MB) basis. 120 * 121 * Also, write permissions imply read permissions. 122 * This is the closest we can get.. 123 * 124 * Note due to the way vm flags are laid out, the bits are XWR 125 */ 126#define __P000 PAGE_NONE 127#define __P001 PAGE_READONLY 128#define __P010 PAGE_COPY 129#define __P011 PAGE_COPY 130#define __P100 PAGE_READONLY_X 131#define __P101 PAGE_READONLY_X 132#define __P110 PAGE_COPY_X 133#define __P111 PAGE_COPY_X 134 135#define __S000 PAGE_NONE 136#define __S001 PAGE_READONLY 137#define __S010 PAGE_SHARED 138#define __S011 PAGE_SHARED 139#define __S100 PAGE_READONLY_X 140#define __S101 PAGE_READONLY_X 141#define __S110 PAGE_SHARED_X 142#define __S111 PAGE_SHARED_X 143 144#ifndef __ASSEMBLY__ 145 146/* 147 * ZERO_PAGE is a global shared page that is always zero: used 148 * for zero-mapped memory areas etc.. 149 */ 150extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 151#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 152#endif /* __ASSEMBLY__ */ 153 154#ifdef CONFIG_HUGETLB_PAGE 155 156#define HAVE_ARCH_UNMAPPED_AREA 157#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 158 159#endif 160 161#ifndef __ASSEMBLY__ 162 163/* 164 * Conversion functions: convert a page and protection to a page entry, 165 * and a page entry and page directory to the page they refer to. 166 * 167 * mk_pte takes a (struct page *) as input 168 */ 169#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 170 171static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 172{ 173 pte_t pte; 174 175 176 pte_val(pte) = (pfn << PTE_RPN_SHIFT) | pgprot_val(pgprot); 177 return pte; 178} 179 180#define pte_modify(_pte, newprot) \ 181 (__pte((pte_val(_pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))) 182 183#define pte_none(pte) ((pte_val(pte) & ~_PAGE_HPTEFLAGS) == 0) 184#define pte_present(pte) (pte_val(pte) & _PAGE_PRESENT) 185 186/* pte_clear moved to later in this file */ 187 188#define pte_pfn(x) ((unsigned long)((pte_val(x)>>PTE_RPN_SHIFT))) 189#define pte_page(x) pfn_to_page(pte_pfn(x)) 190 191#define pmd_set(pmdp, pmdval) (pmd_val(*(pmdp)) = (pmdval)) 192#define pmd_none(pmd) (!pmd_val(pmd)) 193#define pmd_bad(pmd) (pmd_val(pmd) == 0) 194#define pmd_present(pmd) (pmd_val(pmd) != 0) 195#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0) 196#define pmd_page_kernel(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) 197#define pmd_page(pmd) virt_to_page(pmd_page_kernel(pmd)) 198 199#define pud_set(pudp, pudval) (pud_val(*(pudp)) = (pudval)) 200#define pud_none(pud) (!pud_val(pud)) 201#define pud_bad(pud) ((pud_val(pud)) == 0) 202#define pud_present(pud) (pud_val(pud) != 0) 203#define pud_clear(pudp) (pud_val(*(pudp)) = 0) 204#define pud_page(pud) (pud_val(pud) & ~PUD_MASKED_BITS) 205 206#define pgd_set(pgdp, pudp) ({pgd_val(*(pgdp)) = (unsigned long)(pudp);}) 207 208/* 209 * Find an entry in a page-table-directory. We combine the address region 210 * (the high order N bits) and the pgd portion of the address. 211 */ 212/* to avoid overflow in free_pgtables we don't use PTRS_PER_PGD here */ 213#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & 0x1ff) 214 215#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) 216 217#define pmd_offset(pudp,addr) \ 218 (((pmd_t *) pud_page(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) 219 220#define pte_offset_kernel(dir,addr) \ 221 (((pte_t *) pmd_page_kernel(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))) 222 223#define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) 224#define pte_offset_map_nested(dir,addr) pte_offset_kernel((dir), (addr)) 225#define pte_unmap(pte) do { } while(0) 226#define pte_unmap_nested(pte) do { } while(0) 227 228/* to find an entry in a kernel page-table-directory */ 229/* This now only contains the vmalloc pages */ 230#define pgd_offset_k(address) pgd_offset(&init_mm, address) 231 232/* 233 * The following only work if pte_present() is true. 234 * Undefined behaviour if not.. 235 */ 236static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_USER;} 237static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW;} 238static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC;} 239static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY;} 240static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED;} 241static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE;} 242 243static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; } 244static inline void pte_cache(pte_t pte) { pte_val(pte) &= ~_PAGE_NO_CACHE; } 245 246static inline pte_t pte_rdprotect(pte_t pte) { 247 pte_val(pte) &= ~_PAGE_USER; return pte; } 248static inline pte_t pte_exprotect(pte_t pte) { 249 pte_val(pte) &= ~_PAGE_EXEC; return pte; } 250static inline pte_t pte_wrprotect(pte_t pte) { 251 pte_val(pte) &= ~(_PAGE_RW); return pte; } 252static inline pte_t pte_mkclean(pte_t pte) { 253 pte_val(pte) &= ~(_PAGE_DIRTY); return pte; } 254static inline pte_t pte_mkold(pte_t pte) { 255 pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 256static inline pte_t pte_mkread(pte_t pte) { 257 pte_val(pte) |= _PAGE_USER; return pte; } 258static inline pte_t pte_mkexec(pte_t pte) { 259 pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; } 260static inline pte_t pte_mkwrite(pte_t pte) { 261 pte_val(pte) |= _PAGE_RW; return pte; } 262static inline pte_t pte_mkdirty(pte_t pte) { 263 pte_val(pte) |= _PAGE_DIRTY; return pte; } 264static inline pte_t pte_mkyoung(pte_t pte) { 265 pte_val(pte) |= _PAGE_ACCESSED; return pte; } 266static inline pte_t pte_mkhuge(pte_t pte) { 267 return pte; } 268 269/* Atomic PTE updates */ 270static inline unsigned long pte_update(pte_t *p, unsigned long clr) 271{ 272 unsigned long old, tmp; 273 274 __asm__ __volatile__( 275 "1: ldarx %0,0,%3 # pte_update\n\ 276 andi. %1,%0,%6\n\ 277 bne- 1b \n\ 278 andc %1,%0,%4 \n\ 279 stdcx. %1,0,%3 \n\ 280 bne- 1b" 281 : "=&r" (old), "=&r" (tmp), "=m" (*p) 282 : "r" (p), "r" (clr), "m" (*p), "i" (_PAGE_BUSY) 283 : "cc" ); 284 return old; 285} 286 287/* PTE updating functions, this function puts the PTE in the 288 * batch, doesn't actually triggers the hash flush immediately, 289 * you need to call flush_tlb_pending() to do that. 290 * Pass -1 for "normal" size (4K or 64K) 291 */ 292extern void hpte_update(struct mm_struct *mm, unsigned long addr, 293 pte_t *ptep, unsigned long pte, int huge); 294 295static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 296 unsigned long addr, pte_t *ptep) 297{ 298 unsigned long old; 299 300 if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) 301 return 0; 302 old = pte_update(ptep, _PAGE_ACCESSED); 303 if (old & _PAGE_HASHPTE) { 304 hpte_update(mm, addr, ptep, old, 0); 305 flush_tlb_pending(); 306 } 307 return (old & _PAGE_ACCESSED) != 0; 308} 309#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 310#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 311({ \ 312 int __r; \ 313 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 314 __r; \ 315}) 316 317/* 318 * On RW/DIRTY bit transitions we can avoid flushing the hpte. For the 319 * moment we always flush but we need to fix hpte_update and test if the 320 * optimisation is worth it. 321 */ 322static inline int __ptep_test_and_clear_dirty(struct mm_struct *mm, 323 unsigned long addr, pte_t *ptep) 324{ 325 unsigned long old; 326 327 if ((pte_val(*ptep) & _PAGE_DIRTY) == 0) 328 return 0; 329 old = pte_update(ptep, _PAGE_DIRTY); 330 if (old & _PAGE_HASHPTE) 331 hpte_update(mm, addr, ptep, old, 0); 332 return (old & _PAGE_DIRTY) != 0; 333} 334#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 335#define ptep_test_and_clear_dirty(__vma, __addr, __ptep) \ 336({ \ 337 int __r; \ 338 __r = __ptep_test_and_clear_dirty((__vma)->vm_mm, __addr, __ptep); \ 339 __r; \ 340}) 341 342#define __HAVE_ARCH_PTEP_SET_WRPROTECT 343static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 344 pte_t *ptep) 345{ 346 unsigned long old; 347 348 if ((pte_val(*ptep) & _PAGE_RW) == 0) 349 return; 350 old = pte_update(ptep, _PAGE_RW); 351 if (old & _PAGE_HASHPTE) 352 hpte_update(mm, addr, ptep, old, 0); 353} 354 355/* 356 * We currently remove entries from the hashtable regardless of whether 357 * the entry was young or dirty. The generic routines only flush if the 358 * entry was young or dirty which is not good enough. 359 * 360 * We should be more intelligent about this but for the moment we override 361 * these functions and force a tlb flush unconditionally 362 */ 363#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 364#define ptep_clear_flush_young(__vma, __address, __ptep) \ 365({ \ 366 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ 367 __ptep); \ 368 __young; \ 369}) 370 371#define __HAVE_ARCH_PTEP_CLEAR_DIRTY_FLUSH 372#define ptep_clear_flush_dirty(__vma, __address, __ptep) \ 373({ \ 374 int __dirty = __ptep_test_and_clear_dirty((__vma)->vm_mm, __address, \ 375 __ptep); \ 376 flush_tlb_page(__vma, __address); \ 377 __dirty; \ 378}) 379 380#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 381static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 382 unsigned long addr, pte_t *ptep) 383{ 384 unsigned long old = pte_update(ptep, ~0UL); 385 386 if (old & _PAGE_HASHPTE) 387 hpte_update(mm, addr, ptep, old, 0); 388 return __pte(old); 389} 390 391static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 392 pte_t * ptep) 393{ 394 unsigned long old = pte_update(ptep, ~0UL); 395 396 if (old & _PAGE_HASHPTE) 397 hpte_update(mm, addr, ptep, old, 0); 398} 399 400/* 401 * set_pte stores a linux PTE into the linux page table. 402 */ 403static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 404 pte_t *ptep, pte_t pte) 405{ 406 if (pte_present(*ptep)) { 407 pte_clear(mm, addr, ptep); 408 flush_tlb_pending(); 409 } 410 pte = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS); 411 412#ifdef CONFIG_PPC_64K_PAGES 413 if (mmu_virtual_psize != MMU_PAGE_64K) 414 pte = __pte(pte_val(pte) | _PAGE_COMBO); 415#endif /* CONFIG_PPC_64K_PAGES */ 416 417 *ptep = pte; 418} 419 420/* Set the dirty and/or accessed bits atomically in a linux PTE, this 421 * function doesn't need to flush the hash entry 422 */ 423#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 424static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry, int dirty) 425{ 426 unsigned long bits = pte_val(entry) & 427 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 428 unsigned long old, tmp; 429 430 __asm__ __volatile__( 431 "1: ldarx %0,0,%4\n\ 432 andi. %1,%0,%6\n\ 433 bne- 1b \n\ 434 or %0,%3,%0\n\ 435 stdcx. %0,0,%4\n\ 436 bne- 1b" 437 :"=&r" (old), "=&r" (tmp), "=m" (*ptep) 438 :"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY) 439 :"cc"); 440} 441#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \ 442 do { \ 443 __ptep_set_access_flags(__ptep, __entry, __dirty); \ 444 flush_tlb_page_nohash(__vma, __address); \ 445 } while(0) 446 447/* 448 * Macro to mark a page protection value as "uncacheable". 449 */ 450#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) | _PAGE_NO_CACHE | _PAGE_GUARDED)) 451 452struct file; 453extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 454 unsigned long size, pgprot_t vma_prot); 455#define __HAVE_PHYS_MEM_ACCESS_PROT 456 457#define __HAVE_ARCH_PTE_SAME 458#define pte_same(A,B) (((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0) 459 460#define pte_ERROR(e) \ 461 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 462#define pmd_ERROR(e) \ 463 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 464#define pgd_ERROR(e) \ 465 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 466 467extern pgd_t swapper_pg_dir[]; 468 469extern void paging_init(void); 470 471#ifdef CONFIG_HUGETLB_PAGE 472#define hugetlb_free_pgd_range(tlb, addr, end, floor, ceiling) \ 473 free_pgd_range(tlb, addr, end, floor, ceiling) 474#endif 475 476/* 477 * This gets called at the end of handling a page fault, when 478 * the kernel has put a new PTE into the page table for the process. 479 * We use it to put a corresponding HPTE into the hash table 480 * ahead of time, instead of waiting for the inevitable extra 481 * hash-table miss exception. 482 */ 483struct vm_area_struct; 484extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t); 485 486/* Encode and de-code a swap entry */ 487#define __swp_type(entry) (((entry).val >> 1) & 0x3f) 488#define __swp_offset(entry) ((entry).val >> 8) 489#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)}) 490#define __pte_to_swp_entry(pte) ((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT}) 491#define __swp_entry_to_pte(x) ((pte_t) { (x).val << PTE_RPN_SHIFT }) 492#define pte_to_pgoff(pte) (pte_val(pte) >> PTE_RPN_SHIFT) 493#define pgoff_to_pte(off) ((pte_t) {((off) << PTE_RPN_SHIFT)|_PAGE_FILE}) 494#define PTE_FILE_MAX_BITS (BITS_PER_LONG - PTE_RPN_SHIFT) 495 496/* 497 * kern_addr_valid is intended to indicate whether an address is a valid 498 * kernel address. Most 32-bit archs define it as always true (like this) 499 * but most 64-bit archs actually perform a test. What should we do here? 500 * The only use is in fs/ncpfs/dir.c 501 */ 502#define kern_addr_valid(addr) (1) 503 504#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 505 remap_pfn_range(vma, vaddr, pfn, size, prot) 506 507void pgtable_cache_init(void); 508 509/* 510 * find_linux_pte returns the address of a linux pte for a given 511 * effective address and directory. If not found, it returns zero. 512 */static inline pte_t *find_linux_pte(pgd_t *pgdir, unsigned long ea) 513{ 514 pgd_t *pg; 515 pud_t *pu; 516 pmd_t *pm; 517 pte_t *pt = NULL; 518 519 pg = pgdir + pgd_index(ea); 520 if (!pgd_none(*pg)) { 521 pu = pud_offset(pg, ea); 522 if (!pud_none(*pu)) { 523 pm = pmd_offset(pu, ea); 524 if (pmd_present(*pm)) 525 pt = pte_offset_kernel(pm, ea); 526 } 527 } 528 return pt; 529} 530 531#include <asm-generic/pgtable.h> 532 533#endif /* __ASSEMBLY__ */ 534 535#endif /* CONFIG_PPC64 */ 536#endif /* __KERNEL__ */ 537#endif /* _ASM_POWERPC_PGTABLE_H */