at v2.6.16-rc2 429 lines 12 kB view raw
1/* 2 * PowerPC atomic bit operations. 3 * 4 * Merged version by David Gibson <david@gibson.dropbear.id.au>. 5 * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don 6 * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They 7 * originally took it from the ppc32 code. 8 * 9 * Within a word, bits are numbered LSB first. Lot's of places make 10 * this assumption by directly testing bits with (val & (1<<nr)). 11 * This can cause confusion for large (> 1 word) bitmaps on a 12 * big-endian system because, unlike little endian, the number of each 13 * bit depends on the word size. 14 * 15 * The bitop functions are defined to work on unsigned longs, so for a 16 * ppc64 system the bits end up numbered: 17 * |63..............0|127............64|191...........128|255...........196| 18 * and on ppc32: 19 * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224| 20 * 21 * There are a few little-endian macros used mostly for filesystem 22 * bitmaps, these work on similar bit arrays layouts, but 23 * byte-oriented: 24 * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56| 25 * 26 * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit 27 * number field needs to be reversed compared to the big-endian bit 28 * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b). 29 * 30 * This program is free software; you can redistribute it and/or 31 * modify it under the terms of the GNU General Public License 32 * as published by the Free Software Foundation; either version 33 * 2 of the License, or (at your option) any later version. 34 */ 35 36#ifndef _ASM_POWERPC_BITOPS_H 37#define _ASM_POWERPC_BITOPS_H 38 39#ifdef __KERNEL__ 40 41#include <linux/compiler.h> 42#include <asm/atomic.h> 43#include <asm/asm-compat.h> 44#include <asm/synch.h> 45 46/* 47 * clear_bit doesn't imply a memory barrier 48 */ 49#define smp_mb__before_clear_bit() smp_mb() 50#define smp_mb__after_clear_bit() smp_mb() 51 52#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG)) 53#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG) 54#define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) 55 56static __inline__ void set_bit(int nr, volatile unsigned long *addr) 57{ 58 unsigned long old; 59 unsigned long mask = BITOP_MASK(nr); 60 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 61 62 __asm__ __volatile__( 63"1:" PPC_LLARX "%0,0,%3 # set_bit\n" 64 "or %0,%0,%2\n" 65 PPC405_ERR77(0,%3) 66 PPC_STLCX "%0,0,%3\n" 67 "bne- 1b" 68 : "=&r"(old), "=m"(*p) 69 : "r"(mask), "r"(p), "m"(*p) 70 : "cc" ); 71} 72 73static __inline__ void clear_bit(int nr, volatile unsigned long *addr) 74{ 75 unsigned long old; 76 unsigned long mask = BITOP_MASK(nr); 77 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 78 79 __asm__ __volatile__( 80"1:" PPC_LLARX "%0,0,%3 # clear_bit\n" 81 "andc %0,%0,%2\n" 82 PPC405_ERR77(0,%3) 83 PPC_STLCX "%0,0,%3\n" 84 "bne- 1b" 85 : "=&r"(old), "=m"(*p) 86 : "r"(mask), "r"(p), "m"(*p) 87 : "cc" ); 88} 89 90static __inline__ void change_bit(int nr, volatile unsigned long *addr) 91{ 92 unsigned long old; 93 unsigned long mask = BITOP_MASK(nr); 94 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 95 96 __asm__ __volatile__( 97"1:" PPC_LLARX "%0,0,%3 # change_bit\n" 98 "xor %0,%0,%2\n" 99 PPC405_ERR77(0,%3) 100 PPC_STLCX "%0,0,%3\n" 101 "bne- 1b" 102 : "=&r"(old), "=m"(*p) 103 : "r"(mask), "r"(p), "m"(*p) 104 : "cc" ); 105} 106 107static __inline__ int test_and_set_bit(unsigned long nr, 108 volatile unsigned long *addr) 109{ 110 unsigned long old, t; 111 unsigned long mask = BITOP_MASK(nr); 112 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 113 114 __asm__ __volatile__( 115 LWSYNC_ON_SMP 116"1:" PPC_LLARX "%0,0,%3 # test_and_set_bit\n" 117 "or %1,%0,%2 \n" 118 PPC405_ERR77(0,%3) 119 PPC_STLCX "%1,0,%3 \n" 120 "bne- 1b" 121 ISYNC_ON_SMP 122 : "=&r" (old), "=&r" (t) 123 : "r" (mask), "r" (p) 124 : "cc", "memory"); 125 126 return (old & mask) != 0; 127} 128 129static __inline__ int test_and_clear_bit(unsigned long nr, 130 volatile unsigned long *addr) 131{ 132 unsigned long old, t; 133 unsigned long mask = BITOP_MASK(nr); 134 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 135 136 __asm__ __volatile__( 137 LWSYNC_ON_SMP 138"1:" PPC_LLARX "%0,0,%3 # test_and_clear_bit\n" 139 "andc %1,%0,%2 \n" 140 PPC405_ERR77(0,%3) 141 PPC_STLCX "%1,0,%3 \n" 142 "bne- 1b" 143 ISYNC_ON_SMP 144 : "=&r" (old), "=&r" (t) 145 : "r" (mask), "r" (p) 146 : "cc", "memory"); 147 148 return (old & mask) != 0; 149} 150 151static __inline__ int test_and_change_bit(unsigned long nr, 152 volatile unsigned long *addr) 153{ 154 unsigned long old, t; 155 unsigned long mask = BITOP_MASK(nr); 156 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 157 158 __asm__ __volatile__( 159 LWSYNC_ON_SMP 160"1:" PPC_LLARX "%0,0,%3 # test_and_change_bit\n" 161 "xor %1,%0,%2 \n" 162 PPC405_ERR77(0,%3) 163 PPC_STLCX "%1,0,%3 \n" 164 "bne- 1b" 165 ISYNC_ON_SMP 166 : "=&r" (old), "=&r" (t) 167 : "r" (mask), "r" (p) 168 : "cc", "memory"); 169 170 return (old & mask) != 0; 171} 172 173static __inline__ void set_bits(unsigned long mask, unsigned long *addr) 174{ 175 unsigned long old; 176 177 __asm__ __volatile__( 178"1:" PPC_LLARX "%0,0,%3 # set_bits\n" 179 "or %0,%0,%2\n" 180 PPC_STLCX "%0,0,%3\n" 181 "bne- 1b" 182 : "=&r" (old), "=m" (*addr) 183 : "r" (mask), "r" (addr), "m" (*addr) 184 : "cc"); 185} 186 187/* Non-atomic versions */ 188static __inline__ int test_bit(unsigned long nr, 189 __const__ volatile unsigned long *addr) 190{ 191 return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1))); 192} 193 194static __inline__ void __set_bit(unsigned long nr, 195 volatile unsigned long *addr) 196{ 197 unsigned long mask = BITOP_MASK(nr); 198 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 199 200 *p |= mask; 201} 202 203static __inline__ void __clear_bit(unsigned long nr, 204 volatile unsigned long *addr) 205{ 206 unsigned long mask = BITOP_MASK(nr); 207 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 208 209 *p &= ~mask; 210} 211 212static __inline__ void __change_bit(unsigned long nr, 213 volatile unsigned long *addr) 214{ 215 unsigned long mask = BITOP_MASK(nr); 216 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 217 218 *p ^= mask; 219} 220 221static __inline__ int __test_and_set_bit(unsigned long nr, 222 volatile unsigned long *addr) 223{ 224 unsigned long mask = BITOP_MASK(nr); 225 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 226 unsigned long old = *p; 227 228 *p = old | mask; 229 return (old & mask) != 0; 230} 231 232static __inline__ int __test_and_clear_bit(unsigned long nr, 233 volatile unsigned long *addr) 234{ 235 unsigned long mask = BITOP_MASK(nr); 236 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 237 unsigned long old = *p; 238 239 *p = old & ~mask; 240 return (old & mask) != 0; 241} 242 243static __inline__ int __test_and_change_bit(unsigned long nr, 244 volatile unsigned long *addr) 245{ 246 unsigned long mask = BITOP_MASK(nr); 247 unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); 248 unsigned long old = *p; 249 250 *p = old ^ mask; 251 return (old & mask) != 0; 252} 253 254/* 255 * Return the zero-based bit position (LE, not IBM bit numbering) of 256 * the most significant 1-bit in a double word. 257 */ 258static __inline__ int __ilog2(unsigned long x) 259{ 260 int lz; 261 262 asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x)); 263 return BITS_PER_LONG - 1 - lz; 264} 265 266/* 267 * Determines the bit position of the least significant 0 bit in the 268 * specified double word. The returned bit position will be 269 * zero-based, starting from the right side (63/31 - 0). 270 */ 271static __inline__ unsigned long ffz(unsigned long x) 272{ 273 /* no zero exists anywhere in the 8 byte area. */ 274 if ((x = ~x) == 0) 275 return BITS_PER_LONG; 276 277 /* 278 * Calculate the bit position of the least signficant '1' bit in x 279 * (since x has been changed this will actually be the least signficant 280 * '0' bit in * the original x). Note: (x & -x) gives us a mask that 281 * is the least significant * (RIGHT-most) 1-bit of the value in x. 282 */ 283 return __ilog2(x & -x); 284} 285 286static __inline__ int __ffs(unsigned long x) 287{ 288 return __ilog2(x & -x); 289} 290 291/* 292 * ffs: find first bit set. This is defined the same way as 293 * the libc and compiler builtin ffs routines, therefore 294 * differs in spirit from the above ffz (man ffs). 295 */ 296static __inline__ int ffs(int x) 297{ 298 unsigned long i = (unsigned long)x; 299 return __ilog2(i & -i) + 1; 300} 301 302/* 303 * fls: find last (most-significant) bit set. 304 * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. 305 */ 306static __inline__ int fls(unsigned int x) 307{ 308 int lz; 309 310 asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x)); 311 return 32 - lz; 312} 313#define fls64(x) generic_fls64(x) 314 315/* 316 * hweightN: returns the hamming weight (i.e. the number 317 * of bits set) of a N-bit word 318 */ 319#define hweight64(x) generic_hweight64(x) 320#define hweight32(x) generic_hweight32(x) 321#define hweight16(x) generic_hweight16(x) 322#define hweight8(x) generic_hweight8(x) 323 324#define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0) 325unsigned long find_next_zero_bit(const unsigned long *addr, 326 unsigned long size, unsigned long offset); 327/** 328 * find_first_bit - find the first set bit in a memory region 329 * @addr: The address to start the search at 330 * @size: The maximum size to search 331 * 332 * Returns the bit-number of the first set bit, not the number of the byte 333 * containing a bit. 334 */ 335#define find_first_bit(addr, size) find_next_bit((addr), (size), 0) 336unsigned long find_next_bit(const unsigned long *addr, 337 unsigned long size, unsigned long offset); 338 339/* Little-endian versions */ 340 341static __inline__ int test_le_bit(unsigned long nr, 342 __const__ unsigned long *addr) 343{ 344 __const__ unsigned char *tmp = (__const__ unsigned char *) addr; 345 return (tmp[nr >> 3] >> (nr & 7)) & 1; 346} 347 348#define __set_le_bit(nr, addr) \ 349 __set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) 350#define __clear_le_bit(nr, addr) \ 351 __clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) 352 353#define test_and_set_le_bit(nr, addr) \ 354 test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) 355#define test_and_clear_le_bit(nr, addr) \ 356 test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) 357 358#define __test_and_set_le_bit(nr, addr) \ 359 __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) 360#define __test_and_clear_le_bit(nr, addr) \ 361 __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) 362 363#define find_first_zero_le_bit(addr, size) find_next_zero_le_bit((addr), (size), 0) 364unsigned long find_next_zero_le_bit(const unsigned long *addr, 365 unsigned long size, unsigned long offset); 366 367/* Bitmap functions for the ext2 filesystem */ 368 369#define ext2_set_bit(nr,addr) \ 370 __test_and_set_le_bit((nr), (unsigned long*)addr) 371#define ext2_clear_bit(nr, addr) \ 372 __test_and_clear_le_bit((nr), (unsigned long*)addr) 373 374#define ext2_set_bit_atomic(lock, nr, addr) \ 375 test_and_set_le_bit((nr), (unsigned long*)addr) 376#define ext2_clear_bit_atomic(lock, nr, addr) \ 377 test_and_clear_le_bit((nr), (unsigned long*)addr) 378 379#define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr) 380 381#define ext2_find_first_zero_bit(addr, size) \ 382 find_first_zero_le_bit((unsigned long*)addr, size) 383#define ext2_find_next_zero_bit(addr, size, off) \ 384 find_next_zero_le_bit((unsigned long*)addr, size, off) 385 386/* Bitmap functions for the minix filesystem. */ 387 388#define minix_test_and_set_bit(nr,addr) \ 389 __test_and_set_le_bit(nr, (unsigned long *)addr) 390#define minix_set_bit(nr,addr) \ 391 __set_le_bit(nr, (unsigned long *)addr) 392#define minix_test_and_clear_bit(nr,addr) \ 393 __test_and_clear_le_bit(nr, (unsigned long *)addr) 394#define minix_test_bit(nr,addr) \ 395 test_le_bit(nr, (unsigned long *)addr) 396 397#define minix_find_first_zero_bit(addr,size) \ 398 find_first_zero_le_bit((unsigned long *)addr, size) 399 400/* 401 * Every architecture must define this function. It's the fastest 402 * way of searching a 140-bit bitmap where the first 100 bits are 403 * unlikely to be set. It's guaranteed that at least one of the 140 404 * bits is cleared. 405 */ 406static inline int sched_find_first_bit(const unsigned long *b) 407{ 408#ifdef CONFIG_PPC64 409 if (unlikely(b[0])) 410 return __ffs(b[0]); 411 if (unlikely(b[1])) 412 return __ffs(b[1]) + 64; 413 return __ffs(b[2]) + 128; 414#else 415 if (unlikely(b[0])) 416 return __ffs(b[0]); 417 if (unlikely(b[1])) 418 return __ffs(b[1]) + 32; 419 if (unlikely(b[2])) 420 return __ffs(b[2]) + 64; 421 if (b[3]) 422 return __ffs(b[3]) + 96; 423 return __ffs(b[4]) + 128; 424#endif 425} 426 427#endif /* __KERNEL__ */ 428 429#endif /* _ASM_POWERPC_BITOPS_H */