at v2.6.16-rc2 328 lines 11 kB view raw
1/* 2 * CRIS pgtable.h - macros and functions to manipulate page tables. 3 */ 4 5#ifndef _CRIS_PGTABLE_H 6#define _CRIS_PGTABLE_H 7 8#include <asm/page.h> 9#include <asm-generic/pgtable-nopmd.h> 10 11#ifndef __ASSEMBLY__ 12#include <linux/config.h> 13#include <linux/sched.h> 14#include <asm/mmu.h> 15#endif 16#include <asm/arch/pgtable.h> 17 18/* 19 * The Linux memory management assumes a three-level page table setup. On 20 * CRIS, we use that, but "fold" the mid level into the top-level page 21 * table. Since the MMU TLB is software loaded through an interrupt, it 22 * supports any page table structure, so we could have used a three-level 23 * setup, but for the amounts of memory we normally use, a two-level is 24 * probably more efficient. 25 * 26 * This file contains the functions and defines necessary to modify and use 27 * the CRIS page table tree. 28 */ 29#ifndef __ASSEMBLY__ 30extern void paging_init(void); 31#endif 32 33/* Certain architectures need to do special things when pte's 34 * within a page table are directly modified. Thus, the following 35 * hook is made available. 36 */ 37#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval)) 38#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 39 40/* 41 * (pmds are folded into pgds so this doesn't get actually called, 42 * but the define is needed for a generic inline function.) 43 */ 44#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 45#define set_pgu(pudptr, pudval) (*(pudptr) = pudval) 46 47/* PGDIR_SHIFT determines the size of the area a second-level page table can 48 * map. It is equal to the page size times the number of PTE's that fit in 49 * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number. 50 */ 51 52#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2)) 53#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 54#define PGDIR_MASK (~(PGDIR_SIZE-1)) 55 56/* 57 * entries per page directory level: we use a two-level, so 58 * we don't really have any PMD directory physically. 59 * pointers are 4 bytes so we can use the page size and 60 * divide it by 4 (shift by 2). 61 */ 62#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2)) 63#define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2)) 64 65/* calculate how many PGD entries a user-level program can use 66 * the first mappable virtual address is 0 67 * (TASK_SIZE is the maximum virtual address space) 68 */ 69 70#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) 71#define FIRST_USER_ADDRESS 0 72 73/* zero page used for uninitialized stuff */ 74#ifndef __ASSEMBLY__ 75extern unsigned long empty_zero_page; 76#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 77#endif 78 79/* number of bits that fit into a memory pointer */ 80#define BITS_PER_PTR (8*sizeof(unsigned long)) 81 82/* to align the pointer to a pointer address */ 83#define PTR_MASK (~(sizeof(void*)-1)) 84 85/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */ 86/* 64-bit machines, beware! SRB. */ 87#define SIZEOF_PTR_LOG2 2 88 89/* to find an entry in a page-table */ 90#define PAGE_PTR(address) \ 91((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK) 92 93/* to set the page-dir */ 94#define SET_PAGE_DIR(tsk,pgdir) 95 96#define pte_none(x) (!pte_val(x)) 97#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 98#define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0) 99 100#define pmd_none(x) (!pmd_val(x)) 101/* by removing the _PAGE_KERNEL bit from the comparision, the same pmd_bad 102 * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries. 103 */ 104#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE) 105#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT) 106#define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0) 107 108#ifndef __ASSEMBLY__ 109 110/* 111 * The following only work if pte_present() is true. 112 * Undefined behaviour if not.. 113 */ 114 115static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } 116static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 117static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_READ; } 118static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; } 119static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 120static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 121 122static inline pte_t pte_wrprotect(pte_t pte) 123{ 124 pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE); 125 return pte; 126} 127 128static inline pte_t pte_rdprotect(pte_t pte) 129{ 130 pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); 131 return pte; 132} 133 134static inline pte_t pte_exprotect(pte_t pte) 135{ 136 pte_val(pte) &= ~(_PAGE_READ | _PAGE_SILENT_READ); 137 return pte; 138} 139 140static inline pte_t pte_mkclean(pte_t pte) 141{ 142 pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE); 143 return pte; 144} 145 146static inline pte_t pte_mkold(pte_t pte) 147{ 148 pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ); 149 return pte; 150} 151 152static inline pte_t pte_mkwrite(pte_t pte) 153{ 154 pte_val(pte) |= _PAGE_WRITE; 155 if (pte_val(pte) & _PAGE_MODIFIED) 156 pte_val(pte) |= _PAGE_SILENT_WRITE; 157 return pte; 158} 159 160static inline pte_t pte_mkread(pte_t pte) 161{ 162 pte_val(pte) |= _PAGE_READ; 163 if (pte_val(pte) & _PAGE_ACCESSED) 164 pte_val(pte) |= _PAGE_SILENT_READ; 165 return pte; 166} 167 168static inline pte_t pte_mkexec(pte_t pte) 169{ 170 pte_val(pte) |= _PAGE_READ; 171 if (pte_val(pte) & _PAGE_ACCESSED) 172 pte_val(pte) |= _PAGE_SILENT_READ; 173 return pte; 174} 175 176static inline pte_t pte_mkdirty(pte_t pte) 177{ 178 pte_val(pte) |= _PAGE_MODIFIED; 179 if (pte_val(pte) & _PAGE_WRITE) 180 pte_val(pte) |= _PAGE_SILENT_WRITE; 181 return pte; 182} 183 184static inline pte_t pte_mkyoung(pte_t pte) 185{ 186 pte_val(pte) |= _PAGE_ACCESSED; 187 if (pte_val(pte) & _PAGE_READ) 188 { 189 pte_val(pte) |= _PAGE_SILENT_READ; 190 if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) == 191 (_PAGE_WRITE | _PAGE_MODIFIED)) 192 pte_val(pte) |= _PAGE_SILENT_WRITE; 193 } 194 return pte; 195} 196 197/* 198 * Conversion functions: convert a page and protection to a page entry, 199 * and a page entry and page directory to the page they refer to. 200 */ 201 202/* What actually goes as arguments to the various functions is less than 203 * obvious, but a rule of thumb is that struct page's goes as struct page *, 204 * really physical DRAM addresses are unsigned long's, and DRAM "virtual" 205 * addresses (the 0xc0xxxxxx's) goes as void *'s. 206 */ 207 208static inline pte_t __mk_pte(void * page, pgprot_t pgprot) 209{ 210 pte_t pte; 211 /* the PTE needs a physical address */ 212 pte_val(pte) = __pa(page) | pgprot_val(pgprot); 213 return pte; 214} 215 216#define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot)) 217 218#define mk_pte_phys(physpage, pgprot) \ 219({ \ 220 pte_t __pte; \ 221 \ 222 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \ 223 __pte; \ 224}) 225 226static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 227{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 228 229 230/* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval 231 * __pte_page(pte_val) refers to the "virtual" DRAM interval 232 * pte_pagenr refers to the page-number counted starting from the virtual DRAM start 233 */ 234 235static inline unsigned long __pte_page(pte_t pte) 236{ 237 /* the PTE contains a physical address */ 238 return (unsigned long)__va(pte_val(pte) & PAGE_MASK); 239} 240 241#define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT) 242 243/* permanent address of a page */ 244 245#define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT)) 246#define pte_page(pte) (mem_map+pte_pagenr(pte)) 247 248/* only the pte's themselves need to point to physical DRAM (see above) 249 * the pagetable links are purely handled within the kernel SW and thus 250 * don't need the __pa and __va transformations. 251 */ 252 253static inline void pmd_set(pmd_t * pmdp, pte_t * ptep) 254{ pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; } 255 256#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 257#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK)) 258 259/* to find an entry in a page-table-directory. */ 260#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 261 262/* to find an entry in a page-table-directory */ 263static inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address) 264{ 265 return mm->pgd + pgd_index(address); 266} 267 268/* to find an entry in a kernel page-table-directory */ 269#define pgd_offset_k(address) pgd_offset(&init_mm, address) 270 271/* Find an entry in the third-level page table.. */ 272#define __pte_offset(address) \ 273 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 274#define pte_offset_kernel(dir, address) \ 275 ((pte_t *) pmd_page_kernel(*(dir)) + __pte_offset(address)) 276#define pte_offset_map(dir, address) \ 277 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 278#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address) 279 280#define pte_unmap(pte) do { } while (0) 281#define pte_unmap_nested(pte) do { } while (0) 282#define pte_pfn(x) ((unsigned long)(__va((x).pte)) >> PAGE_SHIFT) 283#define pfn_pte(pfn, prot) __pte((__pa((pfn) << PAGE_SHIFT)) | pgprot_val(prot)) 284 285#define pte_ERROR(e) \ 286 printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e)) 287#define pgd_ERROR(e) \ 288 printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e)) 289 290 291extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */ 292 293/* 294 * CRIS doesn't have any external MMU info: the kernel page 295 * tables contain all the necessary information. 296 * 297 * Actually I am not sure on what this could be used for. 298 */ 299static inline void update_mmu_cache(struct vm_area_struct * vma, 300 unsigned long address, pte_t pte) 301{ 302} 303 304/* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */ 305/* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */ 306 307#define __swp_type(x) (((x).val >> 5) & 0x7f) 308#define __swp_offset(x) ((x).val >> 12) 309#define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 5) | ((offset) << 12) }) 310#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 311#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 312 313#define kern_addr_valid(addr) (1) 314 315#include <asm-generic/pgtable.h> 316 317/* 318 * No page table caches to initialise 319 */ 320#define pgtable_cache_init() do { } while (0) 321 322#define pte_to_pgoff(x) (pte_val(x) >> 6) 323#define pgoff_to_pte(x) __pte(((x) << 6) | _PAGE_FILE) 324 325typedef pte_t *pte_addr_t; 326 327#endif /* __ASSEMBLY__ */ 328#endif /* _CRIS_PGTABLE_H */