at v2.6.16-rc2 394 lines 12 kB view raw
1/* 2 * linux/include/asm-arm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/config.h> 14#include <linux/sched.h> 15#include <linux/mm.h> 16 17#include <asm/glue.h> 18#include <asm/shmparam.h> 19 20#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 21 22/* 23 * Cache Model 24 * =========== 25 */ 26#undef _CACHE 27#undef MULTI_CACHE 28 29#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710) 30# ifdef _CACHE 31# define MULTI_CACHE 1 32# else 33# define _CACHE v3 34# endif 35#endif 36 37#if defined(CONFIG_CPU_ARM720T) 38# ifdef _CACHE 39# define MULTI_CACHE 1 40# else 41# define _CACHE v4 42# endif 43#endif 44 45#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 46 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 47# define MULTI_CACHE 1 48#endif 49 50#if defined(CONFIG_CPU_ARM926T) 51# ifdef _CACHE 52# define MULTI_CACHE 1 53# else 54# define _CACHE arm926 55# endif 56#endif 57 58#if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100) 59# ifdef _CACHE 60# define MULTI_CACHE 1 61# else 62# define _CACHE v4wb 63# endif 64#endif 65 66#if defined(CONFIG_CPU_XSCALE) 67# ifdef _CACHE 68# define MULTI_CACHE 1 69# else 70# define _CACHE xscale 71# endif 72#endif 73 74#if defined(CONFIG_CPU_V6) 75//# ifdef _CACHE 76# define MULTI_CACHE 1 77//# else 78//# define _CACHE v6 79//# endif 80#endif 81 82#if !defined(_CACHE) && !defined(MULTI_CACHE) 83#error Unknown cache maintainence model 84#endif 85 86/* 87 * This flag is used to indicate that the page pointed to by a pte 88 * is dirty and requires cleaning before returning it to the user. 89 */ 90#define PG_dcache_dirty PG_arch_1 91 92/* 93 * MM Cache Management 94 * =================== 95 * 96 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 97 * implement these methods. 98 * 99 * Start addresses are inclusive and end addresses are exclusive; 100 * start addresses should be rounded down, end addresses up. 101 * 102 * See Documentation/cachetlb.txt for more information. 103 * Please note that the implementation of these, and the required 104 * effects are cache-type (VIVT/VIPT/PIPT) specific. 105 * 106 * flush_cache_kern_all() 107 * 108 * Unconditionally clean and invalidate the entire cache. 109 * 110 * flush_cache_user_mm(mm) 111 * 112 * Clean and invalidate all user space cache entries 113 * before a change of page tables. 114 * 115 * flush_cache_user_range(start, end, flags) 116 * 117 * Clean and invalidate a range of cache entries in the 118 * specified address space before a change of page tables. 119 * - start - user start address (inclusive, page aligned) 120 * - end - user end address (exclusive, page aligned) 121 * - flags - vma->vm_flags field 122 * 123 * coherent_kern_range(start, end) 124 * 125 * Ensure coherency between the Icache and the Dcache in the 126 * region described by start, end. If you have non-snooping 127 * Harvard caches, you need to implement this function. 128 * - start - virtual start address 129 * - end - virtual end address 130 * 131 * DMA Cache Coherency 132 * =================== 133 * 134 * dma_inv_range(start, end) 135 * 136 * Invalidate (discard) the specified virtual address range. 137 * May not write back any entries. If 'start' or 'end' 138 * are not cache line aligned, those lines must be written 139 * back. 140 * - start - virtual start address 141 * - end - virtual end address 142 * 143 * dma_clean_range(start, end) 144 * 145 * Clean (write back) the specified virtual address range. 146 * - start - virtual start address 147 * - end - virtual end address 148 * 149 * dma_flush_range(start, end) 150 * 151 * Clean and invalidate the specified virtual address range. 152 * - start - virtual start address 153 * - end - virtual end address 154 */ 155 156struct cpu_cache_fns { 157 void (*flush_kern_all)(void); 158 void (*flush_user_all)(void); 159 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 160 161 void (*coherent_kern_range)(unsigned long, unsigned long); 162 void (*coherent_user_range)(unsigned long, unsigned long); 163 void (*flush_kern_dcache_page)(void *); 164 165 void (*dma_inv_range)(unsigned long, unsigned long); 166 void (*dma_clean_range)(unsigned long, unsigned long); 167 void (*dma_flush_range)(unsigned long, unsigned long); 168}; 169 170/* 171 * Select the calling method 172 */ 173#ifdef MULTI_CACHE 174 175extern struct cpu_cache_fns cpu_cache; 176 177#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 178#define __cpuc_flush_user_all cpu_cache.flush_user_all 179#define __cpuc_flush_user_range cpu_cache.flush_user_range 180#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 181#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 182#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page 183 184/* 185 * These are private to the dma-mapping API. Do not use directly. 186 * Their sole purpose is to ensure that data held in the cache 187 * is visible to DMA, or data written by DMA to system memory is 188 * visible to the CPU. 189 */ 190#define dmac_inv_range cpu_cache.dma_inv_range 191#define dmac_clean_range cpu_cache.dma_clean_range 192#define dmac_flush_range cpu_cache.dma_flush_range 193 194#else 195 196#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 197#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 198#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 199#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 200#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 201#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) 202 203extern void __cpuc_flush_kern_all(void); 204extern void __cpuc_flush_user_all(void); 205extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 206extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 207extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 208extern void __cpuc_flush_dcache_page(void *); 209 210/* 211 * These are private to the dma-mapping API. Do not use directly. 212 * Their sole purpose is to ensure that data held in the cache 213 * is visible to DMA, or data written by DMA to system memory is 214 * visible to the CPU. 215 */ 216#define dmac_inv_range __glue(_CACHE,_dma_inv_range) 217#define dmac_clean_range __glue(_CACHE,_dma_clean_range) 218#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 219 220extern void dmac_inv_range(unsigned long, unsigned long); 221extern void dmac_clean_range(unsigned long, unsigned long); 222extern void dmac_flush_range(unsigned long, unsigned long); 223 224#endif 225 226/* 227 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 228 * vmalloc, ioremap etc) in kernel space for pages. Since the 229 * direct-mappings of these pages may contain cached data, we need 230 * to do a full cache flush to ensure that writebacks don't corrupt 231 * data placed into these pages via the new mappings. 232 */ 233#define flush_cache_vmap(start, end) flush_cache_all() 234#define flush_cache_vunmap(start, end) flush_cache_all() 235 236/* 237 * Copy user data from/to a page which is mapped into a different 238 * processes address space. Really, we want to allow our "user 239 * space" model to handle this. 240 */ 241#define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 242 do { \ 243 flush_cache_page(vma, vaddr, page_to_pfn(page));\ 244 memcpy(dst, src, len); \ 245 flush_dcache_page(page); \ 246 } while (0) 247 248#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 249 do { \ 250 flush_cache_page(vma, vaddr, page_to_pfn(page));\ 251 memcpy(dst, src, len); \ 252 } while (0) 253 254/* 255 * Convert calls to our calling convention. 256 */ 257#define flush_cache_all() __cpuc_flush_kern_all() 258#ifndef CONFIG_CPU_CACHE_VIPT 259static inline void flush_cache_mm(struct mm_struct *mm) 260{ 261 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) 262 __cpuc_flush_user_all(); 263} 264 265static inline void 266flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 267{ 268 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) 269 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 270 vma->vm_flags); 271} 272 273static inline void 274flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 275{ 276 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 277 unsigned long addr = user_addr & PAGE_MASK; 278 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 279 } 280} 281#else 282extern void flush_cache_mm(struct mm_struct *mm); 283extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end); 284extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn); 285#endif 286 287/* 288 * flush_cache_user_range is used when we want to ensure that the 289 * Harvard caches are synchronised for the user space address range. 290 * This is used for the ARM private sys_cacheflush system call. 291 */ 292#define flush_cache_user_range(vma,start,end) \ 293 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 294 295/* 296 * Perform necessary cache operations to ensure that data previously 297 * stored within this range of addresses can be executed by the CPU. 298 */ 299#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 300 301/* 302 * Perform necessary cache operations to ensure that the TLB will 303 * see data written in the specified area. 304 */ 305#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 306 307/* 308 * flush_dcache_page is used when the kernel has written to the page 309 * cache page at virtual address page->virtual. 310 * 311 * If this page isn't mapped (ie, page_mapping == NULL), or it might 312 * have userspace mappings, then we _must_ always clean + invalidate 313 * the dcache entries associated with the kernel mapping. 314 * 315 * Otherwise we can defer the operation, and clean the cache when we are 316 * about to change to user space. This is the same method as used on SPARC64. 317 * See update_mmu_cache for the user space part. 318 */ 319extern void flush_dcache_page(struct page *); 320 321#define flush_dcache_mmap_lock(mapping) \ 322 write_lock_irq(&(mapping)->tree_lock) 323#define flush_dcache_mmap_unlock(mapping) \ 324 write_unlock_irq(&(mapping)->tree_lock) 325 326#define flush_icache_user_range(vma,page,addr,len) \ 327 flush_dcache_page(page) 328 329/* 330 * We don't appear to need to do anything here. In fact, if we did, we'd 331 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 332 */ 333#define flush_icache_page(vma,page) do { } while (0) 334 335#define __cacheid_present(val) (val != read_cpuid(CPUID_ID)) 336#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25)) 337#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25)) 338#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25)) 339#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23)) 340 341#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT) 342 343#define cache_is_vivt() 1 344#define cache_is_vipt() 0 345#define cache_is_vipt_nonaliasing() 0 346#define cache_is_vipt_aliasing() 0 347 348#elif defined(CONFIG_CPU_CACHE_VIPT) 349 350#define cache_is_vivt() 0 351#define cache_is_vipt() 1 352#define cache_is_vipt_nonaliasing() \ 353 ({ \ 354 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 355 __cacheid_vipt_nonaliasing(__val); \ 356 }) 357 358#define cache_is_vipt_aliasing() \ 359 ({ \ 360 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 361 __cacheid_vipt_aliasing(__val); \ 362 }) 363 364#else 365 366#define cache_is_vivt() \ 367 ({ \ 368 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 369 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \ 370 }) 371 372#define cache_is_vipt() \ 373 ({ \ 374 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 375 __cacheid_present(__val) && __cacheid_vipt(__val); \ 376 }) 377 378#define cache_is_vipt_nonaliasing() \ 379 ({ \ 380 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 381 __cacheid_present(__val) && \ 382 __cacheid_vipt_nonaliasing(__val); \ 383 }) 384 385#define cache_is_vipt_aliasing() \ 386 ({ \ 387 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 388 __cacheid_present(__val) && \ 389 __cacheid_vipt_aliasing(__val); \ 390 }) 391 392#endif 393 394#endif