at v2.6.16-rc2 508 lines 11 kB view raw
1#ifndef _ALPHA_BITOPS_H 2#define _ALPHA_BITOPS_H 3 4#include <linux/config.h> 5#include <asm/compiler.h> 6 7/* 8 * Copyright 1994, Linus Torvalds. 9 */ 10 11/* 12 * These have to be done with inline assembly: that way the bit-setting 13 * is guaranteed to be atomic. All bit operations return 0 if the bit 14 * was cleared before the operation and != 0 if it was not. 15 * 16 * To get proper branch prediction for the main line, we must branch 17 * forward to code at the end of this object's .text section, then 18 * branch back to restart the operation. 19 * 20 * bit 0 is the LSB of addr; bit 64 is the LSB of (addr+1). 21 */ 22 23static inline void 24set_bit(unsigned long nr, volatile void * addr) 25{ 26 unsigned long temp; 27 int *m = ((int *) addr) + (nr >> 5); 28 29 __asm__ __volatile__( 30 "1: ldl_l %0,%3\n" 31 " bis %0,%2,%0\n" 32 " stl_c %0,%1\n" 33 " beq %0,2f\n" 34 ".subsection 2\n" 35 "2: br 1b\n" 36 ".previous" 37 :"=&r" (temp), "=m" (*m) 38 :"Ir" (1UL << (nr & 31)), "m" (*m)); 39} 40 41/* 42 * WARNING: non atomic version. 43 */ 44static inline void 45__set_bit(unsigned long nr, volatile void * addr) 46{ 47 int *m = ((int *) addr) + (nr >> 5); 48 49 *m |= 1 << (nr & 31); 50} 51 52#define smp_mb__before_clear_bit() smp_mb() 53#define smp_mb__after_clear_bit() smp_mb() 54 55static inline void 56clear_bit(unsigned long nr, volatile void * addr) 57{ 58 unsigned long temp; 59 int *m = ((int *) addr) + (nr >> 5); 60 61 __asm__ __volatile__( 62 "1: ldl_l %0,%3\n" 63 " bic %0,%2,%0\n" 64 " stl_c %0,%1\n" 65 " beq %0,2f\n" 66 ".subsection 2\n" 67 "2: br 1b\n" 68 ".previous" 69 :"=&r" (temp), "=m" (*m) 70 :"Ir" (1UL << (nr & 31)), "m" (*m)); 71} 72 73/* 74 * WARNING: non atomic version. 75 */ 76static __inline__ void 77__clear_bit(unsigned long nr, volatile void * addr) 78{ 79 int *m = ((int *) addr) + (nr >> 5); 80 81 *m &= ~(1 << (nr & 31)); 82} 83 84static inline void 85change_bit(unsigned long nr, volatile void * addr) 86{ 87 unsigned long temp; 88 int *m = ((int *) addr) + (nr >> 5); 89 90 __asm__ __volatile__( 91 "1: ldl_l %0,%3\n" 92 " xor %0,%2,%0\n" 93 " stl_c %0,%1\n" 94 " beq %0,2f\n" 95 ".subsection 2\n" 96 "2: br 1b\n" 97 ".previous" 98 :"=&r" (temp), "=m" (*m) 99 :"Ir" (1UL << (nr & 31)), "m" (*m)); 100} 101 102/* 103 * WARNING: non atomic version. 104 */ 105static __inline__ void 106__change_bit(unsigned long nr, volatile void * addr) 107{ 108 int *m = ((int *) addr) + (nr >> 5); 109 110 *m ^= 1 << (nr & 31); 111} 112 113static inline int 114test_and_set_bit(unsigned long nr, volatile void *addr) 115{ 116 unsigned long oldbit; 117 unsigned long temp; 118 int *m = ((int *) addr) + (nr >> 5); 119 120 __asm__ __volatile__( 121 "1: ldl_l %0,%4\n" 122 " and %0,%3,%2\n" 123 " bne %2,2f\n" 124 " xor %0,%3,%0\n" 125 " stl_c %0,%1\n" 126 " beq %0,3f\n" 127 "2:\n" 128#ifdef CONFIG_SMP 129 " mb\n" 130#endif 131 ".subsection 2\n" 132 "3: br 1b\n" 133 ".previous" 134 :"=&r" (temp), "=m" (*m), "=&r" (oldbit) 135 :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory"); 136 137 return oldbit != 0; 138} 139 140/* 141 * WARNING: non atomic version. 142 */ 143static inline int 144__test_and_set_bit(unsigned long nr, volatile void * addr) 145{ 146 unsigned long mask = 1 << (nr & 0x1f); 147 int *m = ((int *) addr) + (nr >> 5); 148 int old = *m; 149 150 *m = old | mask; 151 return (old & mask) != 0; 152} 153 154static inline int 155test_and_clear_bit(unsigned long nr, volatile void * addr) 156{ 157 unsigned long oldbit; 158 unsigned long temp; 159 int *m = ((int *) addr) + (nr >> 5); 160 161 __asm__ __volatile__( 162 "1: ldl_l %0,%4\n" 163 " and %0,%3,%2\n" 164 " beq %2,2f\n" 165 " xor %0,%3,%0\n" 166 " stl_c %0,%1\n" 167 " beq %0,3f\n" 168 "2:\n" 169#ifdef CONFIG_SMP 170 " mb\n" 171#endif 172 ".subsection 2\n" 173 "3: br 1b\n" 174 ".previous" 175 :"=&r" (temp), "=m" (*m), "=&r" (oldbit) 176 :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory"); 177 178 return oldbit != 0; 179} 180 181/* 182 * WARNING: non atomic version. 183 */ 184static inline int 185__test_and_clear_bit(unsigned long nr, volatile void * addr) 186{ 187 unsigned long mask = 1 << (nr & 0x1f); 188 int *m = ((int *) addr) + (nr >> 5); 189 int old = *m; 190 191 *m = old & ~mask; 192 return (old & mask) != 0; 193} 194 195static inline int 196test_and_change_bit(unsigned long nr, volatile void * addr) 197{ 198 unsigned long oldbit; 199 unsigned long temp; 200 int *m = ((int *) addr) + (nr >> 5); 201 202 __asm__ __volatile__( 203 "1: ldl_l %0,%4\n" 204 " and %0,%3,%2\n" 205 " xor %0,%3,%0\n" 206 " stl_c %0,%1\n" 207 " beq %0,3f\n" 208#ifdef CONFIG_SMP 209 " mb\n" 210#endif 211 ".subsection 2\n" 212 "3: br 1b\n" 213 ".previous" 214 :"=&r" (temp), "=m" (*m), "=&r" (oldbit) 215 :"Ir" (1UL << (nr & 31)), "m" (*m) : "memory"); 216 217 return oldbit != 0; 218} 219 220/* 221 * WARNING: non atomic version. 222 */ 223static __inline__ int 224__test_and_change_bit(unsigned long nr, volatile void * addr) 225{ 226 unsigned long mask = 1 << (nr & 0x1f); 227 int *m = ((int *) addr) + (nr >> 5); 228 int old = *m; 229 230 *m = old ^ mask; 231 return (old & mask) != 0; 232} 233 234static inline int 235test_bit(int nr, const volatile void * addr) 236{ 237 return (1UL & (((const int *) addr)[nr >> 5] >> (nr & 31))) != 0UL; 238} 239 240/* 241 * ffz = Find First Zero in word. Undefined if no zero exists, 242 * so code should check against ~0UL first.. 243 * 244 * Do a binary search on the bits. Due to the nature of large 245 * constants on the alpha, it is worthwhile to split the search. 246 */ 247static inline unsigned long ffz_b(unsigned long x) 248{ 249 unsigned long sum, x1, x2, x4; 250 251 x = ~x & -~x; /* set first 0 bit, clear others */ 252 x1 = x & 0xAA; 253 x2 = x & 0xCC; 254 x4 = x & 0xF0; 255 sum = x2 ? 2 : 0; 256 sum += (x4 != 0) * 4; 257 sum += (x1 != 0); 258 259 return sum; 260} 261 262static inline unsigned long ffz(unsigned long word) 263{ 264#if defined(__alpha_cix__) && defined(__alpha_fix__) 265 /* Whee. EV67 can calculate it directly. */ 266 return __kernel_cttz(~word); 267#else 268 unsigned long bits, qofs, bofs; 269 270 bits = __kernel_cmpbge(word, ~0UL); 271 qofs = ffz_b(bits); 272 bits = __kernel_extbl(word, qofs); 273 bofs = ffz_b(bits); 274 275 return qofs*8 + bofs; 276#endif 277} 278 279/* 280 * __ffs = Find First set bit in word. Undefined if no set bit exists. 281 */ 282static inline unsigned long __ffs(unsigned long word) 283{ 284#if defined(__alpha_cix__) && defined(__alpha_fix__) 285 /* Whee. EV67 can calculate it directly. */ 286 return __kernel_cttz(word); 287#else 288 unsigned long bits, qofs, bofs; 289 290 bits = __kernel_cmpbge(0, word); 291 qofs = ffz_b(bits); 292 bits = __kernel_extbl(word, qofs); 293 bofs = ffz_b(~bits); 294 295 return qofs*8 + bofs; 296#endif 297} 298 299#ifdef __KERNEL__ 300 301/* 302 * ffs: find first bit set. This is defined the same way as 303 * the libc and compiler builtin ffs routines, therefore 304 * differs in spirit from the above __ffs. 305 */ 306 307static inline int ffs(int word) 308{ 309 int result = __ffs(word) + 1; 310 return word ? result : 0; 311} 312 313/* 314 * fls: find last bit set. 315 */ 316#if defined(__alpha_cix__) && defined(__alpha_fix__) 317static inline int fls(int word) 318{ 319 return 64 - __kernel_ctlz(word & 0xffffffff); 320} 321#else 322#define fls generic_fls 323#endif 324#define fls64 generic_fls64 325 326/* Compute powers of two for the given integer. */ 327static inline long floor_log2(unsigned long word) 328{ 329#if defined(__alpha_cix__) && defined(__alpha_fix__) 330 return 63 - __kernel_ctlz(word); 331#else 332 long bit; 333 for (bit = -1; word ; bit++) 334 word >>= 1; 335 return bit; 336#endif 337} 338 339static inline long ceil_log2(unsigned long word) 340{ 341 long bit = floor_log2(word); 342 return bit + (word > (1UL << bit)); 343} 344 345/* 346 * hweightN: returns the hamming weight (i.e. the number 347 * of bits set) of a N-bit word 348 */ 349 350#if defined(__alpha_cix__) && defined(__alpha_fix__) 351/* Whee. EV67 can calculate it directly. */ 352static inline unsigned long hweight64(unsigned long w) 353{ 354 return __kernel_ctpop(w); 355} 356 357#define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful) 358#define hweight16(x) (unsigned int) hweight64((x) & 0xfffful) 359#define hweight8(x) (unsigned int) hweight64((x) & 0xfful) 360#else 361static inline unsigned long hweight64(unsigned long w) 362{ 363 unsigned long result; 364 for (result = 0; w ; w >>= 1) 365 result += (w & 1); 366 return result; 367} 368 369#define hweight32(x) generic_hweight32(x) 370#define hweight16(x) generic_hweight16(x) 371#define hweight8(x) generic_hweight8(x) 372#endif 373 374#endif /* __KERNEL__ */ 375 376/* 377 * Find next zero bit in a bitmap reasonably efficiently.. 378 */ 379static inline unsigned long 380find_next_zero_bit(const void *addr, unsigned long size, unsigned long offset) 381{ 382 const unsigned long *p = addr; 383 unsigned long result = offset & ~63UL; 384 unsigned long tmp; 385 386 p += offset >> 6; 387 if (offset >= size) 388 return size; 389 size -= result; 390 offset &= 63UL; 391 if (offset) { 392 tmp = *(p++); 393 tmp |= ~0UL >> (64-offset); 394 if (size < 64) 395 goto found_first; 396 if (~tmp) 397 goto found_middle; 398 size -= 64; 399 result += 64; 400 } 401 while (size & ~63UL) { 402 if (~(tmp = *(p++))) 403 goto found_middle; 404 result += 64; 405 size -= 64; 406 } 407 if (!size) 408 return result; 409 tmp = *p; 410 found_first: 411 tmp |= ~0UL << size; 412 if (tmp == ~0UL) /* Are any bits zero? */ 413 return result + size; /* Nope. */ 414 found_middle: 415 return result + ffz(tmp); 416} 417 418/* 419 * Find next one bit in a bitmap reasonably efficiently. 420 */ 421static inline unsigned long 422find_next_bit(const void * addr, unsigned long size, unsigned long offset) 423{ 424 const unsigned long *p = addr; 425 unsigned long result = offset & ~63UL; 426 unsigned long tmp; 427 428 p += offset >> 6; 429 if (offset >= size) 430 return size; 431 size -= result; 432 offset &= 63UL; 433 if (offset) { 434 tmp = *(p++); 435 tmp &= ~0UL << offset; 436 if (size < 64) 437 goto found_first; 438 if (tmp) 439 goto found_middle; 440 size -= 64; 441 result += 64; 442 } 443 while (size & ~63UL) { 444 if ((tmp = *(p++))) 445 goto found_middle; 446 result += 64; 447 size -= 64; 448 } 449 if (!size) 450 return result; 451 tmp = *p; 452 found_first: 453 tmp &= ~0UL >> (64 - size); 454 if (!tmp) 455 return result + size; 456 found_middle: 457 return result + __ffs(tmp); 458} 459 460/* 461 * The optimizer actually does good code for this case. 462 */ 463#define find_first_zero_bit(addr, size) \ 464 find_next_zero_bit((addr), (size), 0) 465#define find_first_bit(addr, size) \ 466 find_next_bit((addr), (size), 0) 467 468#ifdef __KERNEL__ 469 470/* 471 * Every architecture must define this function. It's the fastest 472 * way of searching a 140-bit bitmap where the first 100 bits are 473 * unlikely to be set. It's guaranteed that at least one of the 140 474 * bits is set. 475 */ 476static inline unsigned long 477sched_find_first_bit(unsigned long b[3]) 478{ 479 unsigned long b0 = b[0], b1 = b[1], b2 = b[2]; 480 unsigned long ofs; 481 482 ofs = (b1 ? 64 : 128); 483 b1 = (b1 ? b1 : b2); 484 ofs = (b0 ? 0 : ofs); 485 b0 = (b0 ? b0 : b1); 486 487 return __ffs(b0) + ofs; 488} 489 490 491#define ext2_set_bit __test_and_set_bit 492#define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) 493#define ext2_clear_bit __test_and_clear_bit 494#define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) 495#define ext2_test_bit test_bit 496#define ext2_find_first_zero_bit find_first_zero_bit 497#define ext2_find_next_zero_bit find_next_zero_bit 498 499/* Bitmap functions for the minix filesystem. */ 500#define minix_test_and_set_bit(nr,addr) __test_and_set_bit(nr,addr) 501#define minix_set_bit(nr,addr) __set_bit(nr,addr) 502#define minix_test_and_clear_bit(nr,addr) __test_and_clear_bit(nr,addr) 503#define minix_test_bit(nr,addr) test_bit(nr,addr) 504#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) 505 506#endif /* __KERNEL__ */ 507 508#endif /* _ALPHA_BITOPS_H */