at v2.6.15 48 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb_ch9.h> 6 7#define USB_MAJOR 180 8#define USB_DEVICE_MAJOR 189 9 10 11#ifdef __KERNEL__ 12 13#include <linux/config.h> 14#include <linux/errno.h> /* for -ENODEV */ 15#include <linux/delay.h> /* for mdelay() */ 16#include <linux/interrupt.h> /* for in_interrupt() */ 17#include <linux/list.h> /* for struct list_head */ 18#include <linux/kref.h> /* for struct kref */ 19#include <linux/device.h> /* for struct device */ 20#include <linux/fs.h> /* for struct file_operations */ 21#include <linux/completion.h> /* for struct completion */ 22#include <linux/sched.h> /* for current && schedule_timeout */ 23 24struct usb_device; 25struct usb_driver; 26 27/*-------------------------------------------------------------------------*/ 28 29/* 30 * Host-side wrappers for standard USB descriptors ... these are parsed 31 * from the data provided by devices. Parsing turns them from a flat 32 * sequence of descriptors into a hierarchy: 33 * 34 * - devices have one (usually) or more configs; 35 * - configs have one (often) or more interfaces; 36 * - interfaces have one (usually) or more settings; 37 * - each interface setting has zero or (usually) more endpoints. 38 * 39 * And there might be other descriptors mixed in with those. 40 * 41 * Devices may also have class-specific or vendor-specific descriptors. 42 */ 43 44/** 45 * struct usb_host_endpoint - host-side endpoint descriptor and queue 46 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 47 * @urb_list: urbs queued to this endpoint; maintained by usbcore 48 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 49 * with one or more transfer descriptors (TDs) per urb 50 * @kobj: kobject for sysfs info 51 * @extra: descriptors following this endpoint in the configuration 52 * @extralen: how many bytes of "extra" are valid 53 * 54 * USB requests are always queued to a given endpoint, identified by a 55 * descriptor within an active interface in a given USB configuration. 56 */ 57struct usb_host_endpoint { 58 struct usb_endpoint_descriptor desc; 59 struct list_head urb_list; 60 void *hcpriv; 61 struct kobject *kobj; /* For sysfs info */ 62 63 unsigned char *extra; /* Extra descriptors */ 64 int extralen; 65}; 66 67/* host-side wrapper for one interface setting's parsed descriptors */ 68struct usb_host_interface { 69 struct usb_interface_descriptor desc; 70 71 /* array of desc.bNumEndpoint endpoints associated with this 72 * interface setting. these will be in no particular order. 73 */ 74 struct usb_host_endpoint *endpoint; 75 76 char *string; /* iInterface string, if present */ 77 unsigned char *extra; /* Extra descriptors */ 78 int extralen; 79}; 80 81enum usb_interface_condition { 82 USB_INTERFACE_UNBOUND = 0, 83 USB_INTERFACE_BINDING, 84 USB_INTERFACE_BOUND, 85 USB_INTERFACE_UNBINDING, 86}; 87 88/** 89 * struct usb_interface - what usb device drivers talk to 90 * @altsetting: array of interface structures, one for each alternate 91 * setting that may be selected. Each one includes a set of 92 * endpoint configurations. They will be in no particular order. 93 * @num_altsetting: number of altsettings defined. 94 * @cur_altsetting: the current altsetting. 95 * @driver: the USB driver that is bound to this interface. 96 * @minor: the minor number assigned to this interface, if this 97 * interface is bound to a driver that uses the USB major number. 98 * If this interface does not use the USB major, this field should 99 * be unused. The driver should set this value in the probe() 100 * function of the driver, after it has been assigned a minor 101 * number from the USB core by calling usb_register_dev(). 102 * @condition: binding state of the interface: not bound, binding 103 * (in probe()), bound to a driver, or unbinding (in disconnect()) 104 * @dev: driver model's view of this device 105 * @class_dev: driver model's class view of this device. 106 * 107 * USB device drivers attach to interfaces on a physical device. Each 108 * interface encapsulates a single high level function, such as feeding 109 * an audio stream to a speaker or reporting a change in a volume control. 110 * Many USB devices only have one interface. The protocol used to talk to 111 * an interface's endpoints can be defined in a usb "class" specification, 112 * or by a product's vendor. The (default) control endpoint is part of 113 * every interface, but is never listed among the interface's descriptors. 114 * 115 * The driver that is bound to the interface can use standard driver model 116 * calls such as dev_get_drvdata() on the dev member of this structure. 117 * 118 * Each interface may have alternate settings. The initial configuration 119 * of a device sets altsetting 0, but the device driver can change 120 * that setting using usb_set_interface(). Alternate settings are often 121 * used to control the the use of periodic endpoints, such as by having 122 * different endpoints use different amounts of reserved USB bandwidth. 123 * All standards-conformant USB devices that use isochronous endpoints 124 * will use them in non-default settings. 125 * 126 * The USB specification says that alternate setting numbers must run from 127 * 0 to one less than the total number of alternate settings. But some 128 * devices manage to mess this up, and the structures aren't necessarily 129 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 130 * look up an alternate setting in the altsetting array based on its number. 131 */ 132struct usb_interface { 133 /* array of alternate settings for this interface, 134 * stored in no particular order */ 135 struct usb_host_interface *altsetting; 136 137 struct usb_host_interface *cur_altsetting; /* the currently 138 * active alternate setting */ 139 unsigned num_altsetting; /* number of alternate settings */ 140 141 int minor; /* minor number this interface is 142 * bound to */ 143 enum usb_interface_condition condition; /* state of binding */ 144 struct device dev; /* interface specific device info */ 145 struct class_device *class_dev; 146}; 147#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 148#define interface_to_usbdev(intf) \ 149 container_of(intf->dev.parent, struct usb_device, dev) 150 151static inline void *usb_get_intfdata (struct usb_interface *intf) 152{ 153 return dev_get_drvdata (&intf->dev); 154} 155 156static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 157{ 158 dev_set_drvdata(&intf->dev, data); 159} 160 161struct usb_interface *usb_get_intf(struct usb_interface *intf); 162void usb_put_intf(struct usb_interface *intf); 163 164/* this maximum is arbitrary */ 165#define USB_MAXINTERFACES 32 166 167/** 168 * struct usb_interface_cache - long-term representation of a device interface 169 * @num_altsetting: number of altsettings defined. 170 * @ref: reference counter. 171 * @altsetting: variable-length array of interface structures, one for 172 * each alternate setting that may be selected. Each one includes a 173 * set of endpoint configurations. They will be in no particular order. 174 * 175 * These structures persist for the lifetime of a usb_device, unlike 176 * struct usb_interface (which persists only as long as its configuration 177 * is installed). The altsetting arrays can be accessed through these 178 * structures at any time, permitting comparison of configurations and 179 * providing support for the /proc/bus/usb/devices pseudo-file. 180 */ 181struct usb_interface_cache { 182 unsigned num_altsetting; /* number of alternate settings */ 183 struct kref ref; /* reference counter */ 184 185 /* variable-length array of alternate settings for this interface, 186 * stored in no particular order */ 187 struct usb_host_interface altsetting[0]; 188}; 189#define ref_to_usb_interface_cache(r) \ 190 container_of(r, struct usb_interface_cache, ref) 191#define altsetting_to_usb_interface_cache(a) \ 192 container_of(a, struct usb_interface_cache, altsetting[0]) 193 194/** 195 * struct usb_host_config - representation of a device's configuration 196 * @desc: the device's configuration descriptor. 197 * @string: pointer to the cached version of the iConfiguration string, if 198 * present for this configuration. 199 * @interface: array of pointers to usb_interface structures, one for each 200 * interface in the configuration. The number of interfaces is stored 201 * in desc.bNumInterfaces. These pointers are valid only while the 202 * the configuration is active. 203 * @intf_cache: array of pointers to usb_interface_cache structures, one 204 * for each interface in the configuration. These structures exist 205 * for the entire life of the device. 206 * @extra: pointer to buffer containing all extra descriptors associated 207 * with this configuration (those preceding the first interface 208 * descriptor). 209 * @extralen: length of the extra descriptors buffer. 210 * 211 * USB devices may have multiple configurations, but only one can be active 212 * at any time. Each encapsulates a different operational environment; 213 * for example, a dual-speed device would have separate configurations for 214 * full-speed and high-speed operation. The number of configurations 215 * available is stored in the device descriptor as bNumConfigurations. 216 * 217 * A configuration can contain multiple interfaces. Each corresponds to 218 * a different function of the USB device, and all are available whenever 219 * the configuration is active. The USB standard says that interfaces 220 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 221 * of devices get this wrong. In addition, the interface array is not 222 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 223 * look up an interface entry based on its number. 224 * 225 * Device drivers should not attempt to activate configurations. The choice 226 * of which configuration to install is a policy decision based on such 227 * considerations as available power, functionality provided, and the user's 228 * desires (expressed through hotplug scripts). However, drivers can call 229 * usb_reset_configuration() to reinitialize the current configuration and 230 * all its interfaces. 231 */ 232struct usb_host_config { 233 struct usb_config_descriptor desc; 234 235 char *string; /* iConfiguration string, if present */ 236 /* the interfaces associated with this configuration, 237 * stored in no particular order */ 238 struct usb_interface *interface[USB_MAXINTERFACES]; 239 240 /* Interface information available even when this is not the 241 * active configuration */ 242 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 243 244 unsigned char *extra; /* Extra descriptors */ 245 int extralen; 246}; 247 248int __usb_get_extra_descriptor(char *buffer, unsigned size, 249 unsigned char type, void **ptr); 250#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 251 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 252 type,(void**)ptr) 253 254/* ----------------------------------------------------------------------- */ 255 256struct usb_operations; 257 258/* USB device number allocation bitmap */ 259struct usb_devmap { 260 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 261}; 262 263/* 264 * Allocated per bus (tree of devices) we have: 265 */ 266struct usb_bus { 267 struct device *controller; /* host/master side hardware */ 268 int busnum; /* Bus number (in order of reg) */ 269 char *bus_name; /* stable id (PCI slot_name etc) */ 270 u8 otg_port; /* 0, or number of OTG/HNP port */ 271 unsigned is_b_host:1; /* true during some HNP roleswitches */ 272 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 273 274 int devnum_next; /* Next open device number in 275 * round-robin allocation */ 276 277 struct usb_devmap devmap; /* device address allocation map */ 278 struct usb_operations *op; /* Operations (specific to the HC) */ 279 struct usb_device *root_hub; /* Root hub */ 280 struct list_head bus_list; /* list of busses */ 281 void *hcpriv; /* Host Controller private data */ 282 283 int bandwidth_allocated; /* on this bus: how much of the time 284 * reserved for periodic (intr/iso) 285 * requests is used, on average? 286 * Units: microseconds/frame. 287 * Limits: Full/low speed reserve 90%, 288 * while high speed reserves 80%. 289 */ 290 int bandwidth_int_reqs; /* number of Interrupt requests */ 291 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 292 293 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 294 295 struct class_device *class_dev; /* class device for this bus */ 296 struct kref kref; /* reference counting for this bus */ 297 void (*release)(struct usb_bus *bus); 298 299#if defined(CONFIG_USB_MON) 300 struct mon_bus *mon_bus; /* non-null when associated */ 301 int monitored; /* non-zero when monitored */ 302#endif 303}; 304 305/* ----------------------------------------------------------------------- */ 306 307/* This is arbitrary. 308 * From USB 2.0 spec Table 11-13, offset 7, a hub can 309 * have up to 255 ports. The most yet reported is 10. 310 */ 311#define USB_MAXCHILDREN (16) 312 313struct usb_tt; 314 315/* 316 * struct usb_device - kernel's representation of a USB device 317 * 318 * FIXME: Write the kerneldoc! 319 * 320 * Usbcore drivers should not set usbdev->state directly. Instead use 321 * usb_set_device_state(). 322 */ 323struct usb_device { 324 int devnum; /* Address on USB bus */ 325 char devpath [16]; /* Use in messages: /port/port/... */ 326 enum usb_device_state state; /* configured, not attached, etc */ 327 enum usb_device_speed speed; /* high/full/low (or error) */ 328 329 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 330 int ttport; /* device port on that tt hub */ 331 332 struct semaphore serialize; 333 334 unsigned int toggle[2]; /* one bit for each endpoint 335 * ([0] = IN, [1] = OUT) */ 336 337 struct usb_device *parent; /* our hub, unless we're the root */ 338 struct usb_bus *bus; /* Bus we're part of */ 339 struct usb_host_endpoint ep0; 340 341 struct device dev; /* Generic device interface */ 342 343 struct usb_device_descriptor descriptor;/* Descriptor */ 344 struct usb_host_config *config; /* All of the configs */ 345 346 struct usb_host_config *actconfig;/* the active configuration */ 347 struct usb_host_endpoint *ep_in[16]; 348 struct usb_host_endpoint *ep_out[16]; 349 350 char **rawdescriptors; /* Raw descriptors for each config */ 351 352 int have_langid; /* whether string_langid is valid */ 353 int string_langid; /* language ID for strings */ 354 355 /* static strings from the device */ 356 char *product; /* iProduct string, if present */ 357 char *manufacturer; /* iManufacturer string, if present */ 358 char *serial; /* iSerialNumber string, if present */ 359 360 struct list_head filelist; 361 struct class_device *class_dev; 362 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 363 364 /* 365 * Child devices - these can be either new devices 366 * (if this is a hub device), or different instances 367 * of this same device. 368 * 369 * Each instance needs its own set of data structures. 370 */ 371 372 int maxchild; /* Number of ports if hub */ 373 struct usb_device *children[USB_MAXCHILDREN]; 374}; 375#define to_usb_device(d) container_of(d, struct usb_device, dev) 376 377extern struct usb_device *usb_get_dev(struct usb_device *dev); 378extern void usb_put_dev(struct usb_device *dev); 379 380extern void usb_lock_device(struct usb_device *udev); 381extern int usb_trylock_device(struct usb_device *udev); 382extern int usb_lock_device_for_reset(struct usb_device *udev, 383 struct usb_interface *iface); 384extern void usb_unlock_device(struct usb_device *udev); 385 386/* USB port reset for device reinitialization */ 387extern int usb_reset_device(struct usb_device *dev); 388 389extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 390 391/*-------------------------------------------------------------------------*/ 392 393/* for drivers using iso endpoints */ 394extern int usb_get_current_frame_number (struct usb_device *usb_dev); 395 396/* used these for multi-interface device registration */ 397extern int usb_driver_claim_interface(struct usb_driver *driver, 398 struct usb_interface *iface, void* priv); 399 400/** 401 * usb_interface_claimed - returns true iff an interface is claimed 402 * @iface: the interface being checked 403 * 404 * Returns true (nonzero) iff the interface is claimed, else false (zero). 405 * Callers must own the driver model's usb bus readlock. So driver 406 * probe() entries don't need extra locking, but other call contexts 407 * may need to explicitly claim that lock. 408 * 409 */ 410static inline int usb_interface_claimed(struct usb_interface *iface) { 411 return (iface->dev.driver != NULL); 412} 413 414extern void usb_driver_release_interface(struct usb_driver *driver, 415 struct usb_interface *iface); 416const struct usb_device_id *usb_match_id(struct usb_interface *interface, 417 const struct usb_device_id *id); 418 419extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 420 int minor); 421extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, 422 unsigned ifnum); 423extern struct usb_host_interface *usb_altnum_to_altsetting( 424 struct usb_interface *intf, unsigned int altnum); 425 426 427/** 428 * usb_make_path - returns stable device path in the usb tree 429 * @dev: the device whose path is being constructed 430 * @buf: where to put the string 431 * @size: how big is "buf"? 432 * 433 * Returns length of the string (> 0) or negative if size was too small. 434 * 435 * This identifier is intended to be "stable", reflecting physical paths in 436 * hardware such as physical bus addresses for host controllers or ports on 437 * USB hubs. That makes it stay the same until systems are physically 438 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 439 * controllers. Adding and removing devices, including virtual root hubs 440 * in host controller driver modules, does not change these path identifers; 441 * neither does rebooting or re-enumerating. These are more useful identifiers 442 * than changeable ("unstable") ones like bus numbers or device addresses. 443 * 444 * With a partial exception for devices connected to USB 2.0 root hubs, these 445 * identifiers are also predictable. So long as the device tree isn't changed, 446 * plugging any USB device into a given hub port always gives it the same path. 447 * Because of the use of "companion" controllers, devices connected to ports on 448 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 449 * high speed, and a different one if they are full or low speed. 450 */ 451static inline int usb_make_path (struct usb_device *dev, char *buf, 452 size_t size) 453{ 454 int actual; 455 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, 456 dev->devpath); 457 return (actual >= (int)size) ? -1 : actual; 458} 459 460/*-------------------------------------------------------------------------*/ 461 462#define USB_DEVICE_ID_MATCH_DEVICE \ 463 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 464#define USB_DEVICE_ID_MATCH_DEV_RANGE \ 465 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 466#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \ 467 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 468#define USB_DEVICE_ID_MATCH_DEV_INFO \ 469 (USB_DEVICE_ID_MATCH_DEV_CLASS | \ 470 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \ 471 USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 472#define USB_DEVICE_ID_MATCH_INT_INFO \ 473 (USB_DEVICE_ID_MATCH_INT_CLASS | \ 474 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \ 475 USB_DEVICE_ID_MATCH_INT_PROTOCOL) 476 477/** 478 * USB_DEVICE - macro used to describe a specific usb device 479 * @vend: the 16 bit USB Vendor ID 480 * @prod: the 16 bit USB Product ID 481 * 482 * This macro is used to create a struct usb_device_id that matches a 483 * specific device. 484 */ 485#define USB_DEVICE(vend,prod) \ 486 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), \ 487 .idProduct = (prod) 488/** 489 * USB_DEVICE_VER - macro used to describe a specific usb device with a 490 * version range 491 * @vend: the 16 bit USB Vendor ID 492 * @prod: the 16 bit USB Product ID 493 * @lo: the bcdDevice_lo value 494 * @hi: the bcdDevice_hi value 495 * 496 * This macro is used to create a struct usb_device_id that matches a 497 * specific device, with a version range. 498 */ 499#define USB_DEVICE_VER(vend,prod,lo,hi) \ 500 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \ 501 .idVendor = (vend), .idProduct = (prod), \ 502 .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 503 504/** 505 * USB_DEVICE_INFO - macro used to describe a class of usb devices 506 * @cl: bDeviceClass value 507 * @sc: bDeviceSubClass value 508 * @pr: bDeviceProtocol value 509 * 510 * This macro is used to create a struct usb_device_id that matches a 511 * specific class of devices. 512 */ 513#define USB_DEVICE_INFO(cl,sc,pr) \ 514 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), \ 515 .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 516 517/** 518 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 519 * @cl: bInterfaceClass value 520 * @sc: bInterfaceSubClass value 521 * @pr: bInterfaceProtocol value 522 * 523 * This macro is used to create a struct usb_device_id that matches a 524 * specific class of interfaces. 525 */ 526#define USB_INTERFACE_INFO(cl,sc,pr) \ 527 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), \ 528 .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 529 530/* ----------------------------------------------------------------------- */ 531 532/** 533 * struct usb_driver - identifies USB driver to usbcore 534 * @owner: Pointer to the module owner of this driver; initialize 535 * it using THIS_MODULE. 536 * @name: The driver name should be unique among USB drivers, 537 * and should normally be the same as the module name. 538 * @probe: Called to see if the driver is willing to manage a particular 539 * interface on a device. If it is, probe returns zero and uses 540 * dev_set_drvdata() to associate driver-specific data with the 541 * interface. It may also use usb_set_interface() to specify the 542 * appropriate altsetting. If unwilling to manage the interface, 543 * return a negative errno value. 544 * @disconnect: Called when the interface is no longer accessible, usually 545 * because its device has been (or is being) disconnected or the 546 * driver module is being unloaded. 547 * @ioctl: Used for drivers that want to talk to userspace through 548 * the "usbfs" filesystem. This lets devices provide ways to 549 * expose information to user space regardless of where they 550 * do (or don't) show up otherwise in the filesystem. 551 * @suspend: Called when the device is going to be suspended by the system. 552 * @resume: Called when the device is being resumed by the system. 553 * @id_table: USB drivers use ID table to support hotplugging. 554 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 555 * or your driver's probe function will never get called. 556 * @driver: the driver model core driver structure. 557 * 558 * USB drivers must provide a name, probe() and disconnect() methods, 559 * and an id_table. Other driver fields are optional. 560 * 561 * The id_table is used in hotplugging. It holds a set of descriptors, 562 * and specialized data may be associated with each entry. That table 563 * is used by both user and kernel mode hotplugging support. 564 * 565 * The probe() and disconnect() methods are called in a context where 566 * they can sleep, but they should avoid abusing the privilege. Most 567 * work to connect to a device should be done when the device is opened, 568 * and undone at the last close. The disconnect code needs to address 569 * concurrency issues with respect to open() and close() methods, as 570 * well as forcing all pending I/O requests to complete (by unlinking 571 * them as necessary, and blocking until the unlinks complete). 572 */ 573struct usb_driver { 574 struct module *owner; 575 576 const char *name; 577 578 int (*probe) (struct usb_interface *intf, 579 const struct usb_device_id *id); 580 581 void (*disconnect) (struct usb_interface *intf); 582 583 int (*ioctl) (struct usb_interface *intf, unsigned int code, 584 void *buf); 585 586 int (*suspend) (struct usb_interface *intf, pm_message_t message); 587 int (*resume) (struct usb_interface *intf); 588 589 const struct usb_device_id *id_table; 590 591 struct device_driver driver; 592}; 593#define to_usb_driver(d) container_of(d, struct usb_driver, driver) 594 595extern struct bus_type usb_bus_type; 596 597/** 598 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 599 * @name: the usb class device name for this driver. Will show up in sysfs. 600 * @fops: pointer to the struct file_operations of this driver. 601 * @minor_base: the start of the minor range for this driver. 602 * 603 * This structure is used for the usb_register_dev() and 604 * usb_unregister_dev() functions, to consolidate a number of the 605 * parameters used for them. 606 */ 607struct usb_class_driver { 608 char *name; 609 struct file_operations *fops; 610 int minor_base; 611}; 612 613/* 614 * use these in module_init()/module_exit() 615 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 616 */ 617extern int usb_register(struct usb_driver *); 618extern void usb_deregister(struct usb_driver *); 619 620extern int usb_register_dev(struct usb_interface *intf, 621 struct usb_class_driver *class_driver); 622extern void usb_deregister_dev(struct usb_interface *intf, 623 struct usb_class_driver *class_driver); 624 625extern int usb_disabled(void); 626 627/* ----------------------------------------------------------------------- */ 628 629/* 630 * URB support, for asynchronous request completions 631 */ 632 633/* 634 * urb->transfer_flags: 635 */ 636#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 637#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame 638 * ignored */ 639#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 640#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 641#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 642#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */ 643#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt 644 * needed */ 645 646struct usb_iso_packet_descriptor { 647 unsigned int offset; 648 unsigned int length; /* expected length */ 649 unsigned int actual_length; 650 unsigned int status; 651}; 652 653struct urb; 654struct pt_regs; 655 656typedef void (*usb_complete_t)(struct urb *, struct pt_regs *); 657 658/** 659 * struct urb - USB Request Block 660 * @urb_list: For use by current owner of the URB. 661 * @pipe: Holds endpoint number, direction, type, and more. 662 * Create these values with the eight macros available; 663 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 664 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 665 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 666 * numbers range from zero to fifteen. Note that "in" endpoint two 667 * is a different endpoint (and pipe) from "out" endpoint two. 668 * The current configuration controls the existence, type, and 669 * maximum packet size of any given endpoint. 670 * @dev: Identifies the USB device to perform the request. 671 * @status: This is read in non-iso completion functions to get the 672 * status of the particular request. ISO requests only use it 673 * to tell whether the URB was unlinked; detailed status for 674 * each frame is in the fields of the iso_frame-desc. 675 * @transfer_flags: A variety of flags may be used to affect how URB 676 * submission, unlinking, or operation are handled. Different 677 * kinds of URB can use different flags. 678 * @transfer_buffer: This identifies the buffer to (or from) which 679 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 680 * is set). This buffer must be suitable for DMA; allocate it with 681 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 682 * of this buffer will be modified. This buffer is used for the data 683 * stage of control transfers. 684 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 685 * the device driver is saying that it provided this DMA address, 686 * which the host controller driver should use in preference to the 687 * transfer_buffer. 688 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 689 * be broken up into chunks according to the current maximum packet 690 * size for the endpoint, which is a function of the configuration 691 * and is encoded in the pipe. When the length is zero, neither 692 * transfer_buffer nor transfer_dma is used. 693 * @actual_length: This is read in non-iso completion functions, and 694 * it tells how many bytes (out of transfer_buffer_length) were 695 * transferred. It will normally be the same as requested, unless 696 * either an error was reported or a short read was performed. 697 * The URB_SHORT_NOT_OK transfer flag may be used to make such 698 * short reads be reported as errors. 699 * @setup_packet: Only used for control transfers, this points to eight bytes 700 * of setup data. Control transfers always start by sending this data 701 * to the device. Then transfer_buffer is read or written, if needed. 702 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 703 * device driver has provided this DMA address for the setup packet. 704 * The host controller driver should use this in preference to 705 * setup_packet. 706 * @start_frame: Returns the initial frame for isochronous transfers. 707 * @number_of_packets: Lists the number of ISO transfer buffers. 708 * @interval: Specifies the polling interval for interrupt or isochronous 709 * transfers. The units are frames (milliseconds) for for full and low 710 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 711 * @error_count: Returns the number of ISO transfers that reported errors. 712 * @context: For use in completion functions. This normally points to 713 * request-specific driver context. 714 * @complete: Completion handler. This URB is passed as the parameter to the 715 * completion function. The completion function may then do what 716 * it likes with the URB, including resubmitting or freeing it. 717 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 718 * collect the transfer status for each buffer. 719 * 720 * This structure identifies USB transfer requests. URBs must be allocated by 721 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 722 * Initialization may be done using various usb_fill_*_urb() functions. URBs 723 * are submitted using usb_submit_urb(), and pending requests may be canceled 724 * using usb_unlink_urb() or usb_kill_urb(). 725 * 726 * Data Transfer Buffers: 727 * 728 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 729 * taken from the general page pool. That is provided by transfer_buffer 730 * (control requests also use setup_packet), and host controller drivers 731 * perform a dma mapping (and unmapping) for each buffer transferred. Those 732 * mapping operations can be expensive on some platforms (perhaps using a dma 733 * bounce buffer or talking to an IOMMU), 734 * although they're cheap on commodity x86 and ppc hardware. 735 * 736 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 737 * which tell the host controller driver that no such mapping is needed since 738 * the device driver is DMA-aware. For example, a device driver might 739 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 740 * When these transfer flags are provided, host controller drivers will 741 * attempt to use the dma addresses found in the transfer_dma and/or 742 * setup_dma fields rather than determining a dma address themselves. (Note 743 * that transfer_buffer and setup_packet must still be set because not all 744 * host controllers use DMA, nor do virtual root hubs). 745 * 746 * Initialization: 747 * 748 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 749 * zero), and complete fields. All URBs must also initialize 750 * transfer_buffer and transfer_buffer_length. They may provide the 751 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 752 * to be treated as errors; that flag is invalid for write requests. 753 * 754 * Bulk URBs may 755 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 756 * should always terminate with a short packet, even if it means adding an 757 * extra zero length packet. 758 * 759 * Control URBs must provide a setup_packet. The setup_packet and 760 * transfer_buffer may each be mapped for DMA or not, independently of 761 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 762 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 763 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 764 * 765 * Interrupt URBs must provide an interval, saying how often (in milliseconds 766 * or, for highspeed devices, 125 microsecond units) 767 * to poll for transfers. After the URB has been submitted, the interval 768 * field reflects how the transfer was actually scheduled. 769 * The polling interval may be more frequent than requested. 770 * For example, some controllers have a maximum interval of 32 milliseconds, 771 * while others support intervals of up to 1024 milliseconds. 772 * Isochronous URBs also have transfer intervals. (Note that for isochronous 773 * endpoints, as well as high speed interrupt endpoints, the encoding of 774 * the transfer interval in the endpoint descriptor is logarithmic. 775 * Device drivers must convert that value to linear units themselves.) 776 * 777 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 778 * the host controller to schedule the transfer as soon as bandwidth 779 * utilization allows, and then set start_frame to reflect the actual frame 780 * selected during submission. Otherwise drivers must specify the start_frame 781 * and handle the case where the transfer can't begin then. However, drivers 782 * won't know how bandwidth is currently allocated, and while they can 783 * find the current frame using usb_get_current_frame_number () they can't 784 * know the range for that frame number. (Ranges for frame counter values 785 * are HC-specific, and can go from 256 to 65536 frames from "now".) 786 * 787 * Isochronous URBs have a different data transfer model, in part because 788 * the quality of service is only "best effort". Callers provide specially 789 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 790 * at the end. Each such packet is an individual ISO transfer. Isochronous 791 * URBs are normally queued, submitted by drivers to arrange that 792 * transfers are at least double buffered, and then explicitly resubmitted 793 * in completion handlers, so 794 * that data (such as audio or video) streams at as constant a rate as the 795 * host controller scheduler can support. 796 * 797 * Completion Callbacks: 798 * 799 * The completion callback is made in_interrupt(), and one of the first 800 * things that a completion handler should do is check the status field. 801 * The status field is provided for all URBs. It is used to report 802 * unlinked URBs, and status for all non-ISO transfers. It should not 803 * be examined before the URB is returned to the completion handler. 804 * 805 * The context field is normally used to link URBs back to the relevant 806 * driver or request state. 807 * 808 * When the completion callback is invoked for non-isochronous URBs, the 809 * actual_length field tells how many bytes were transferred. This field 810 * is updated even when the URB terminated with an error or was unlinked. 811 * 812 * ISO transfer status is reported in the status and actual_length fields 813 * of the iso_frame_desc array, and the number of errors is reported in 814 * error_count. Completion callbacks for ISO transfers will normally 815 * (re)submit URBs to ensure a constant transfer rate. 816 * 817 * Note that even fields marked "public" should not be touched by the driver 818 * when the urb is owned by the hcd, that is, since the call to 819 * usb_submit_urb() till the entry into the completion routine. 820 */ 821struct urb 822{ 823 /* private: usb core and host controller only fields in the urb */ 824 struct kref kref; /* reference count of the URB */ 825 spinlock_t lock; /* lock for the URB */ 826 void *hcpriv; /* private data for host controller */ 827 int bandwidth; /* bandwidth for INT/ISO request */ 828 atomic_t use_count; /* concurrent submissions counter */ 829 u8 reject; /* submissions will fail */ 830 831 /* public: documented fields in the urb that can be used by drivers */ 832 struct list_head urb_list; /* list head for use by the urb's 833 * current owner */ 834 struct usb_device *dev; /* (in) pointer to associated device */ 835 unsigned int pipe; /* (in) pipe information */ 836 int status; /* (return) non-ISO status */ 837 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 838 void *transfer_buffer; /* (in) associated data buffer */ 839 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 840 int transfer_buffer_length; /* (in) data buffer length */ 841 int actual_length; /* (return) actual transfer length */ 842 unsigned char *setup_packet; /* (in) setup packet (control only) */ 843 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 844 int start_frame; /* (modify) start frame (ISO) */ 845 int number_of_packets; /* (in) number of ISO packets */ 846 int interval; /* (modify) transfer interval 847 * (INT/ISO) */ 848 int error_count; /* (return) number of ISO errors */ 849 void *context; /* (in) context for completion */ 850 usb_complete_t complete; /* (in) completion routine */ 851 struct usb_iso_packet_descriptor iso_frame_desc[0]; 852 /* (in) ISO ONLY */ 853}; 854 855/* ----------------------------------------------------------------------- */ 856 857/** 858 * usb_fill_control_urb - initializes a control urb 859 * @urb: pointer to the urb to initialize. 860 * @dev: pointer to the struct usb_device for this urb. 861 * @pipe: the endpoint pipe 862 * @setup_packet: pointer to the setup_packet buffer 863 * @transfer_buffer: pointer to the transfer buffer 864 * @buffer_length: length of the transfer buffer 865 * @complete: pointer to the usb_complete_t function 866 * @context: what to set the urb context to. 867 * 868 * Initializes a control urb with the proper information needed to submit 869 * it to a device. 870 */ 871static inline void usb_fill_control_urb (struct urb *urb, 872 struct usb_device *dev, 873 unsigned int pipe, 874 unsigned char *setup_packet, 875 void *transfer_buffer, 876 int buffer_length, 877 usb_complete_t complete, 878 void *context) 879{ 880 spin_lock_init(&urb->lock); 881 urb->dev = dev; 882 urb->pipe = pipe; 883 urb->setup_packet = setup_packet; 884 urb->transfer_buffer = transfer_buffer; 885 urb->transfer_buffer_length = buffer_length; 886 urb->complete = complete; 887 urb->context = context; 888} 889 890/** 891 * usb_fill_bulk_urb - macro to help initialize a bulk urb 892 * @urb: pointer to the urb to initialize. 893 * @dev: pointer to the struct usb_device for this urb. 894 * @pipe: the endpoint pipe 895 * @transfer_buffer: pointer to the transfer buffer 896 * @buffer_length: length of the transfer buffer 897 * @complete: pointer to the usb_complete_t function 898 * @context: what to set the urb context to. 899 * 900 * Initializes a bulk urb with the proper information needed to submit it 901 * to a device. 902 */ 903static inline void usb_fill_bulk_urb (struct urb *urb, 904 struct usb_device *dev, 905 unsigned int pipe, 906 void *transfer_buffer, 907 int buffer_length, 908 usb_complete_t complete, 909 void *context) 910{ 911 spin_lock_init(&urb->lock); 912 urb->dev = dev; 913 urb->pipe = pipe; 914 urb->transfer_buffer = transfer_buffer; 915 urb->transfer_buffer_length = buffer_length; 916 urb->complete = complete; 917 urb->context = context; 918} 919 920/** 921 * usb_fill_int_urb - macro to help initialize a interrupt urb 922 * @urb: pointer to the urb to initialize. 923 * @dev: pointer to the struct usb_device for this urb. 924 * @pipe: the endpoint pipe 925 * @transfer_buffer: pointer to the transfer buffer 926 * @buffer_length: length of the transfer buffer 927 * @complete: pointer to the usb_complete_t function 928 * @context: what to set the urb context to. 929 * @interval: what to set the urb interval to, encoded like 930 * the endpoint descriptor's bInterval value. 931 * 932 * Initializes a interrupt urb with the proper information needed to submit 933 * it to a device. 934 * Note that high speed interrupt endpoints use a logarithmic encoding of 935 * the endpoint interval, and express polling intervals in microframes 936 * (eight per millisecond) rather than in frames (one per millisecond). 937 */ 938static inline void usb_fill_int_urb (struct urb *urb, 939 struct usb_device *dev, 940 unsigned int pipe, 941 void *transfer_buffer, 942 int buffer_length, 943 usb_complete_t complete, 944 void *context, 945 int interval) 946{ 947 spin_lock_init(&urb->lock); 948 urb->dev = dev; 949 urb->pipe = pipe; 950 urb->transfer_buffer = transfer_buffer; 951 urb->transfer_buffer_length = buffer_length; 952 urb->complete = complete; 953 urb->context = context; 954 if (dev->speed == USB_SPEED_HIGH) 955 urb->interval = 1 << (interval - 1); 956 else 957 urb->interval = interval; 958 urb->start_frame = -1; 959} 960 961extern void usb_init_urb(struct urb *urb); 962extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags); 963extern void usb_free_urb(struct urb *urb); 964#define usb_put_urb usb_free_urb 965extern struct urb *usb_get_urb(struct urb *urb); 966extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags); 967extern int usb_unlink_urb(struct urb *urb); 968extern void usb_kill_urb(struct urb *urb); 969 970#define HAVE_USB_BUFFERS 971void *usb_buffer_alloc (struct usb_device *dev, size_t size, 972 gfp_t mem_flags, dma_addr_t *dma); 973void usb_buffer_free (struct usb_device *dev, size_t size, 974 void *addr, dma_addr_t dma); 975 976#if 0 977struct urb *usb_buffer_map (struct urb *urb); 978void usb_buffer_dmasync (struct urb *urb); 979void usb_buffer_unmap (struct urb *urb); 980#endif 981 982struct scatterlist; 983int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, 984 struct scatterlist *sg, int nents); 985#if 0 986void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, 987 struct scatterlist *sg, int n_hw_ents); 988#endif 989void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, 990 struct scatterlist *sg, int n_hw_ents); 991 992/*-------------------------------------------------------------------* 993 * SYNCHRONOUS CALL SUPPORT * 994 *-------------------------------------------------------------------*/ 995 996extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 997 __u8 request, __u8 requesttype, __u16 value, __u16 index, 998 void *data, __u16 size, int timeout); 999extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 1000 void *data, int len, int *actual_length, 1001 int timeout); 1002 1003/* wrappers around usb_control_msg() for the most common standard requests */ 1004extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 1005 unsigned char descindex, void *buf, int size); 1006extern int usb_get_status(struct usb_device *dev, 1007 int type, int target, void *data); 1008extern int usb_get_string(struct usb_device *dev, 1009 unsigned short langid, unsigned char index, void *buf, int size); 1010extern int usb_string(struct usb_device *dev, int index, 1011 char *buf, size_t size); 1012 1013/* wrappers that also update important state inside usbcore */ 1014extern int usb_clear_halt(struct usb_device *dev, int pipe); 1015extern int usb_reset_configuration(struct usb_device *dev); 1016extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1017 1018/* 1019 * timeouts, in milliseconds, used for sending/receiving control messages 1020 * they typically complete within a few frames (msec) after they're issued 1021 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1022 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1023 */ 1024#define USB_CTRL_GET_TIMEOUT 5000 1025#define USB_CTRL_SET_TIMEOUT 5000 1026 1027 1028/** 1029 * struct usb_sg_request - support for scatter/gather I/O 1030 * @status: zero indicates success, else negative errno 1031 * @bytes: counts bytes transferred. 1032 * 1033 * These requests are initialized using usb_sg_init(), and then are used 1034 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1035 * members of the request object aren't for driver access. 1036 * 1037 * The status and bytecount values are valid only after usb_sg_wait() 1038 * returns. If the status is zero, then the bytecount matches the total 1039 * from the request. 1040 * 1041 * After an error completion, drivers may need to clear a halt condition 1042 * on the endpoint. 1043 */ 1044struct usb_sg_request { 1045 int status; 1046 size_t bytes; 1047 1048 /* 1049 * members below are private: to usbcore, 1050 * and are not provided for driver access! 1051 */ 1052 spinlock_t lock; 1053 1054 struct usb_device *dev; 1055 int pipe; 1056 struct scatterlist *sg; 1057 int nents; 1058 1059 int entries; 1060 struct urb **urbs; 1061 1062 int count; 1063 struct completion complete; 1064}; 1065 1066int usb_sg_init ( 1067 struct usb_sg_request *io, 1068 struct usb_device *dev, 1069 unsigned pipe, 1070 unsigned period, 1071 struct scatterlist *sg, 1072 int nents, 1073 size_t length, 1074 gfp_t mem_flags 1075); 1076void usb_sg_cancel (struct usb_sg_request *io); 1077void usb_sg_wait (struct usb_sg_request *io); 1078 1079 1080/* ----------------------------------------------------------------------- */ 1081 1082/* 1083 * For various legacy reasons, Linux has a small cookie that's paired with 1084 * a struct usb_device to identify an endpoint queue. Queue characteristics 1085 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1086 * an unsigned int encoded as: 1087 * 1088 * - direction: bit 7 (0 = Host-to-Device [Out], 1089 * 1 = Device-to-Host [In] ... 1090 * like endpoint bEndpointAddress) 1091 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1092 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1093 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1094 * 10 = control, 11 = bulk) 1095 * 1096 * Given the device address and endpoint descriptor, pipes are redundant. 1097 */ 1098 1099/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1100/* (yet ... they're the values used by usbfs) */ 1101#define PIPE_ISOCHRONOUS 0 1102#define PIPE_INTERRUPT 1 1103#define PIPE_CONTROL 2 1104#define PIPE_BULK 3 1105 1106#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1107#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1108 1109#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1110#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1111 1112#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1113#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1114#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1115#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1116#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1117 1118/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1119#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1120#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1121#define usb_settoggle(dev, ep, out, bit) \ 1122 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \ 1123 ((bit) << (ep))) 1124 1125 1126static inline unsigned int __create_pipe(struct usb_device *dev, 1127 unsigned int endpoint) 1128{ 1129 return (dev->devnum << 8) | (endpoint << 15); 1130} 1131 1132/* Create various pipes... */ 1133#define usb_sndctrlpipe(dev,endpoint) \ 1134 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1135#define usb_rcvctrlpipe(dev,endpoint) \ 1136 ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1137#define usb_sndisocpipe(dev,endpoint) \ 1138 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1139#define usb_rcvisocpipe(dev,endpoint) \ 1140 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1141#define usb_sndbulkpipe(dev,endpoint) \ 1142 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1143#define usb_rcvbulkpipe(dev,endpoint) \ 1144 ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1145#define usb_sndintpipe(dev,endpoint) \ 1146 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1147#define usb_rcvintpipe(dev,endpoint) \ 1148 ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1149 1150/*-------------------------------------------------------------------------*/ 1151 1152static inline __u16 1153usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1154{ 1155 struct usb_host_endpoint *ep; 1156 unsigned epnum = usb_pipeendpoint(pipe); 1157 1158 if (is_out) { 1159 WARN_ON(usb_pipein(pipe)); 1160 ep = udev->ep_out[epnum]; 1161 } else { 1162 WARN_ON(usb_pipeout(pipe)); 1163 ep = udev->ep_in[epnum]; 1164 } 1165 if (!ep) 1166 return 0; 1167 1168 /* NOTE: only 0x07ff bits are for packet size... */ 1169 return le16_to_cpu(ep->desc.wMaxPacketSize); 1170} 1171 1172/* ----------------------------------------------------------------------- */ 1173 1174/* Events from the usb core */ 1175#define USB_DEVICE_ADD 0x0001 1176#define USB_DEVICE_REMOVE 0x0002 1177#define USB_BUS_ADD 0x0003 1178#define USB_BUS_REMOVE 0x0004 1179extern void usb_register_notify(struct notifier_block *nb); 1180extern void usb_unregister_notify(struct notifier_block *nb); 1181 1182#ifdef DEBUG 1183#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \ 1184 __FILE__ , ## arg) 1185#else 1186#define dbg(format, arg...) do {} while (0) 1187#endif 1188 1189#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \ 1190 __FILE__ , ## arg) 1191#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \ 1192 __FILE__ , ## arg) 1193#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \ 1194 __FILE__ , ## arg) 1195 1196 1197#endif /* __KERNEL__ */ 1198 1199#endif