at v2.6.15 19 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifdef __KERNEL__ 5#ifndef __ASSEMBLY__ 6 7#include <linux/config.h> 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <asm/atomic.h> 17 18/* Free memory management - zoned buddy allocator. */ 19#ifndef CONFIG_FORCE_MAX_ZONEORDER 20#define MAX_ORDER 11 21#else 22#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 23#endif 24 25struct free_area { 26 struct list_head free_list; 27 unsigned long nr_free; 28}; 29 30struct pglist_data; 31 32/* 33 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 34 * So add a wild amount of padding here to ensure that they fall into separate 35 * cachelines. There are very few zone structures in the machine, so space 36 * consumption is not a concern here. 37 */ 38#if defined(CONFIG_SMP) 39struct zone_padding { 40 char x[0]; 41} ____cacheline_maxaligned_in_smp; 42#define ZONE_PADDING(name) struct zone_padding name; 43#else 44#define ZONE_PADDING(name) 45#endif 46 47struct per_cpu_pages { 48 int count; /* number of pages in the list */ 49 int low; /* low watermark, refill needed */ 50 int high; /* high watermark, emptying needed */ 51 int batch; /* chunk size for buddy add/remove */ 52 struct list_head list; /* the list of pages */ 53}; 54 55struct per_cpu_pageset { 56 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */ 57#ifdef CONFIG_NUMA 58 unsigned long numa_hit; /* allocated in intended node */ 59 unsigned long numa_miss; /* allocated in non intended node */ 60 unsigned long numa_foreign; /* was intended here, hit elsewhere */ 61 unsigned long interleave_hit; /* interleaver prefered this zone */ 62 unsigned long local_node; /* allocation from local node */ 63 unsigned long other_node; /* allocation from other node */ 64#endif 65} ____cacheline_aligned_in_smp; 66 67#ifdef CONFIG_NUMA 68#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)]) 69#else 70#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)]) 71#endif 72 73#define ZONE_DMA 0 74#define ZONE_DMA32 1 75#define ZONE_NORMAL 2 76#define ZONE_HIGHMEM 3 77 78#define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */ 79#define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */ 80 81 82/* 83 * When a memory allocation must conform to specific limitations (such 84 * as being suitable for DMA) the caller will pass in hints to the 85 * allocator in the gfp_mask, in the zone modifier bits. These bits 86 * are used to select a priority ordered list of memory zones which 87 * match the requested limits. GFP_ZONEMASK defines which bits within 88 * the gfp_mask should be considered as zone modifiers. Each valid 89 * combination of the zone modifier bits has a corresponding list 90 * of zones (in node_zonelists). Thus for two zone modifiers there 91 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will 92 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible 93 * combinations of zone modifiers in "zone modifier space". 94 * 95 * NOTE! Make sure this matches the zones in <linux/gfp.h> 96 */ 97#define GFP_ZONEMASK 0x07 98#define GFP_ZONETYPES 5 99 100/* 101 * On machines where it is needed (eg PCs) we divide physical memory 102 * into multiple physical zones. On a PC we have 4 zones: 103 * 104 * ZONE_DMA < 16 MB ISA DMA capable memory 105 * ZONE_DMA32 0 MB Empty 106 * ZONE_NORMAL 16-896 MB direct mapped by the kernel 107 * ZONE_HIGHMEM > 896 MB only page cache and user processes 108 */ 109 110struct zone { 111 /* Fields commonly accessed by the page allocator */ 112 unsigned long free_pages; 113 unsigned long pages_min, pages_low, pages_high; 114 /* 115 * We don't know if the memory that we're going to allocate will be freeable 116 * or/and it will be released eventually, so to avoid totally wasting several 117 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 118 * to run OOM on the lower zones despite there's tons of freeable ram 119 * on the higher zones). This array is recalculated at runtime if the 120 * sysctl_lowmem_reserve_ratio sysctl changes. 121 */ 122 unsigned long lowmem_reserve[MAX_NR_ZONES]; 123 124#ifdef CONFIG_NUMA 125 struct per_cpu_pageset *pageset[NR_CPUS]; 126#else 127 struct per_cpu_pageset pageset[NR_CPUS]; 128#endif 129 /* 130 * free areas of different sizes 131 */ 132 spinlock_t lock; 133#ifdef CONFIG_MEMORY_HOTPLUG 134 /* see spanned/present_pages for more description */ 135 seqlock_t span_seqlock; 136#endif 137 struct free_area free_area[MAX_ORDER]; 138 139 140 ZONE_PADDING(_pad1_) 141 142 /* Fields commonly accessed by the page reclaim scanner */ 143 spinlock_t lru_lock; 144 struct list_head active_list; 145 struct list_head inactive_list; 146 unsigned long nr_scan_active; 147 unsigned long nr_scan_inactive; 148 unsigned long nr_active; 149 unsigned long nr_inactive; 150 unsigned long pages_scanned; /* since last reclaim */ 151 int all_unreclaimable; /* All pages pinned */ 152 153 /* 154 * Does the allocator try to reclaim pages from the zone as soon 155 * as it fails a watermark_ok() in __alloc_pages? 156 */ 157 int reclaim_pages; 158 /* A count of how many reclaimers are scanning this zone */ 159 atomic_t reclaim_in_progress; 160 161 /* 162 * prev_priority holds the scanning priority for this zone. It is 163 * defined as the scanning priority at which we achieved our reclaim 164 * target at the previous try_to_free_pages() or balance_pgdat() 165 * invokation. 166 * 167 * We use prev_priority as a measure of how much stress page reclaim is 168 * under - it drives the swappiness decision: whether to unmap mapped 169 * pages. 170 * 171 * temp_priority is used to remember the scanning priority at which 172 * this zone was successfully refilled to free_pages == pages_high. 173 * 174 * Access to both these fields is quite racy even on uniprocessor. But 175 * it is expected to average out OK. 176 */ 177 int temp_priority; 178 int prev_priority; 179 180 181 ZONE_PADDING(_pad2_) 182 /* Rarely used or read-mostly fields */ 183 184 /* 185 * wait_table -- the array holding the hash table 186 * wait_table_size -- the size of the hash table array 187 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 188 * 189 * The purpose of all these is to keep track of the people 190 * waiting for a page to become available and make them 191 * runnable again when possible. The trouble is that this 192 * consumes a lot of space, especially when so few things 193 * wait on pages at a given time. So instead of using 194 * per-page waitqueues, we use a waitqueue hash table. 195 * 196 * The bucket discipline is to sleep on the same queue when 197 * colliding and wake all in that wait queue when removing. 198 * When something wakes, it must check to be sure its page is 199 * truly available, a la thundering herd. The cost of a 200 * collision is great, but given the expected load of the 201 * table, they should be so rare as to be outweighed by the 202 * benefits from the saved space. 203 * 204 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 205 * primary users of these fields, and in mm/page_alloc.c 206 * free_area_init_core() performs the initialization of them. 207 */ 208 wait_queue_head_t * wait_table; 209 unsigned long wait_table_size; 210 unsigned long wait_table_bits; 211 212 /* 213 * Discontig memory support fields. 214 */ 215 struct pglist_data *zone_pgdat; 216 struct page *zone_mem_map; 217 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 218 unsigned long zone_start_pfn; 219 220 /* 221 * zone_start_pfn, spanned_pages and present_pages are all 222 * protected by span_seqlock. It is a seqlock because it has 223 * to be read outside of zone->lock, and it is done in the main 224 * allocator path. But, it is written quite infrequently. 225 * 226 * The lock is declared along with zone->lock because it is 227 * frequently read in proximity to zone->lock. It's good to 228 * give them a chance of being in the same cacheline. 229 */ 230 unsigned long spanned_pages; /* total size, including holes */ 231 unsigned long present_pages; /* amount of memory (excluding holes) */ 232 233 /* 234 * rarely used fields: 235 */ 236 char *name; 237} ____cacheline_maxaligned_in_smp; 238 239 240/* 241 * The "priority" of VM scanning is how much of the queues we will scan in one 242 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 243 * queues ("queue_length >> 12") during an aging round. 244 */ 245#define DEF_PRIORITY 12 246 247/* 248 * One allocation request operates on a zonelist. A zonelist 249 * is a list of zones, the first one is the 'goal' of the 250 * allocation, the other zones are fallback zones, in decreasing 251 * priority. 252 * 253 * Right now a zonelist takes up less than a cacheline. We never 254 * modify it apart from boot-up, and only a few indices are used, 255 * so despite the zonelist table being relatively big, the cache 256 * footprint of this construct is very small. 257 */ 258struct zonelist { 259 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited 260}; 261 262 263/* 264 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 265 * (mostly NUMA machines?) to denote a higher-level memory zone than the 266 * zone denotes. 267 * 268 * On NUMA machines, each NUMA node would have a pg_data_t to describe 269 * it's memory layout. 270 * 271 * Memory statistics and page replacement data structures are maintained on a 272 * per-zone basis. 273 */ 274struct bootmem_data; 275typedef struct pglist_data { 276 struct zone node_zones[MAX_NR_ZONES]; 277 struct zonelist node_zonelists[GFP_ZONETYPES]; 278 int nr_zones; 279#ifdef CONFIG_FLAT_NODE_MEM_MAP 280 struct page *node_mem_map; 281#endif 282 struct bootmem_data *bdata; 283#ifdef CONFIG_MEMORY_HOTPLUG 284 /* 285 * Must be held any time you expect node_start_pfn, node_present_pages 286 * or node_spanned_pages stay constant. Holding this will also 287 * guarantee that any pfn_valid() stays that way. 288 * 289 * Nests above zone->lock and zone->size_seqlock. 290 */ 291 spinlock_t node_size_lock; 292#endif 293 unsigned long node_start_pfn; 294 unsigned long node_present_pages; /* total number of physical pages */ 295 unsigned long node_spanned_pages; /* total size of physical page 296 range, including holes */ 297 int node_id; 298 struct pglist_data *pgdat_next; 299 wait_queue_head_t kswapd_wait; 300 struct task_struct *kswapd; 301 int kswapd_max_order; 302} pg_data_t; 303 304#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 305#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 306#ifdef CONFIG_FLAT_NODE_MEM_MAP 307#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 308#else 309#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 310#endif 311#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 312 313#include <linux/memory_hotplug.h> 314 315extern struct pglist_data *pgdat_list; 316 317void __get_zone_counts(unsigned long *active, unsigned long *inactive, 318 unsigned long *free, struct pglist_data *pgdat); 319void get_zone_counts(unsigned long *active, unsigned long *inactive, 320 unsigned long *free); 321void build_all_zonelists(void); 322void wakeup_kswapd(struct zone *zone, int order); 323int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 324 int classzone_idx, int alloc_flags); 325 326#ifdef CONFIG_HAVE_MEMORY_PRESENT 327void memory_present(int nid, unsigned long start, unsigned long end); 328#else 329static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 330#endif 331 332#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 333unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 334#endif 335 336/* 337 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 338 */ 339#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 340 341/** 342 * for_each_pgdat - helper macro to iterate over all nodes 343 * @pgdat - pointer to a pg_data_t variable 344 * 345 * Meant to help with common loops of the form 346 * pgdat = pgdat_list; 347 * while(pgdat) { 348 * ... 349 * pgdat = pgdat->pgdat_next; 350 * } 351 */ 352#define for_each_pgdat(pgdat) \ 353 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next) 354 355/* 356 * next_zone - helper magic for for_each_zone() 357 * Thanks to William Lee Irwin III for this piece of ingenuity. 358 */ 359static inline struct zone *next_zone(struct zone *zone) 360{ 361 pg_data_t *pgdat = zone->zone_pgdat; 362 363 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1) 364 zone++; 365 else if (pgdat->pgdat_next) { 366 pgdat = pgdat->pgdat_next; 367 zone = pgdat->node_zones; 368 } else 369 zone = NULL; 370 371 return zone; 372} 373 374/** 375 * for_each_zone - helper macro to iterate over all memory zones 376 * @zone - pointer to struct zone variable 377 * 378 * The user only needs to declare the zone variable, for_each_zone 379 * fills it in. This basically means for_each_zone() is an 380 * easier to read version of this piece of code: 381 * 382 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next) 383 * for (i = 0; i < MAX_NR_ZONES; ++i) { 384 * struct zone * z = pgdat->node_zones + i; 385 * ... 386 * } 387 * } 388 */ 389#define for_each_zone(zone) \ 390 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone)) 391 392static inline int is_highmem_idx(int idx) 393{ 394 return (idx == ZONE_HIGHMEM); 395} 396 397static inline int is_normal_idx(int idx) 398{ 399 return (idx == ZONE_NORMAL); 400} 401/** 402 * is_highmem - helper function to quickly check if a struct zone is a 403 * highmem zone or not. This is an attempt to keep references 404 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 405 * @zone - pointer to struct zone variable 406 */ 407static inline int is_highmem(struct zone *zone) 408{ 409 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM; 410} 411 412static inline int is_normal(struct zone *zone) 413{ 414 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL; 415} 416 417/* These two functions are used to setup the per zone pages min values */ 418struct ctl_table; 419struct file; 420int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 421 void __user *, size_t *, loff_t *); 422extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 423int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *, 424 void __user *, size_t *, loff_t *); 425 426#include <linux/topology.h> 427/* Returns the number of the current Node. */ 428#ifndef numa_node_id 429#define numa_node_id() (cpu_to_node(raw_smp_processor_id())) 430#endif 431 432#ifndef CONFIG_NEED_MULTIPLE_NODES 433 434extern struct pglist_data contig_page_data; 435#define NODE_DATA(nid) (&contig_page_data) 436#define NODE_MEM_MAP(nid) mem_map 437#define MAX_NODES_SHIFT 1 438#define pfn_to_nid(pfn) (0) 439 440#else /* CONFIG_NEED_MULTIPLE_NODES */ 441 442#include <asm/mmzone.h> 443 444#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 445 446#ifdef CONFIG_SPARSEMEM 447#include <asm/sparsemem.h> 448#endif 449 450#if BITS_PER_LONG == 32 451/* 452 * with 32 bit page->flags field, we reserve 9 bits for node/zone info. 453 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes. 454 */ 455#define FLAGS_RESERVED 9 456 457#elif BITS_PER_LONG == 64 458/* 459 * with 64 bit flags field, there's plenty of room. 460 */ 461#define FLAGS_RESERVED 32 462 463#else 464 465#error BITS_PER_LONG not defined 466 467#endif 468 469#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 470#define early_pfn_to_nid(nid) (0UL) 471#endif 472 473#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 474#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 475 476#ifdef CONFIG_SPARSEMEM 477 478/* 479 * SECTION_SHIFT #bits space required to store a section # 480 * 481 * PA_SECTION_SHIFT physical address to/from section number 482 * PFN_SECTION_SHIFT pfn to/from section number 483 */ 484#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS) 485 486#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 487#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 488 489#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 490 491#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 492#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 493 494#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 495#error Allocator MAX_ORDER exceeds SECTION_SIZE 496#endif 497 498struct page; 499struct mem_section { 500 /* 501 * This is, logically, a pointer to an array of struct 502 * pages. However, it is stored with some other magic. 503 * (see sparse.c::sparse_init_one_section()) 504 * 505 * Making it a UL at least makes someone do a cast 506 * before using it wrong. 507 */ 508 unsigned long section_mem_map; 509}; 510 511#ifdef CONFIG_SPARSEMEM_EXTREME 512#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 513#else 514#define SECTIONS_PER_ROOT 1 515#endif 516 517#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 518#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT) 519#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 520 521#ifdef CONFIG_SPARSEMEM_EXTREME 522extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 523#else 524extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 525#endif 526 527static inline struct mem_section *__nr_to_section(unsigned long nr) 528{ 529 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 530 return NULL; 531 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 532} 533extern int __section_nr(struct mem_section* ms); 534 535/* 536 * We use the lower bits of the mem_map pointer to store 537 * a little bit of information. There should be at least 538 * 3 bits here due to 32-bit alignment. 539 */ 540#define SECTION_MARKED_PRESENT (1UL<<0) 541#define SECTION_HAS_MEM_MAP (1UL<<1) 542#define SECTION_MAP_LAST_BIT (1UL<<2) 543#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 544 545static inline struct page *__section_mem_map_addr(struct mem_section *section) 546{ 547 unsigned long map = section->section_mem_map; 548 map &= SECTION_MAP_MASK; 549 return (struct page *)map; 550} 551 552static inline int valid_section(struct mem_section *section) 553{ 554 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 555} 556 557static inline int section_has_mem_map(struct mem_section *section) 558{ 559 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 560} 561 562static inline int valid_section_nr(unsigned long nr) 563{ 564 return valid_section(__nr_to_section(nr)); 565} 566 567/* 568 * Given a kernel address, find the home node of the underlying memory. 569 */ 570#define kvaddr_to_nid(kaddr) pfn_to_nid(__pa(kaddr) >> PAGE_SHIFT) 571 572static inline struct mem_section *__pfn_to_section(unsigned long pfn) 573{ 574 return __nr_to_section(pfn_to_section_nr(pfn)); 575} 576 577#define pfn_to_page(pfn) \ 578({ \ 579 unsigned long __pfn = (pfn); \ 580 __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \ 581}) 582#define page_to_pfn(page) \ 583({ \ 584 page - __section_mem_map_addr(__nr_to_section( \ 585 page_to_section(page))); \ 586}) 587 588static inline int pfn_valid(unsigned long pfn) 589{ 590 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 591 return 0; 592 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 593} 594 595/* 596 * These are _only_ used during initialisation, therefore they 597 * can use __initdata ... They could have names to indicate 598 * this restriction. 599 */ 600#ifdef CONFIG_NUMA 601#define pfn_to_nid early_pfn_to_nid 602#endif 603 604#define pfn_to_pgdat(pfn) \ 605({ \ 606 NODE_DATA(pfn_to_nid(pfn)); \ 607}) 608 609#define early_pfn_valid(pfn) pfn_valid(pfn) 610void sparse_init(void); 611#else 612#define sparse_init() do {} while (0) 613#define sparse_index_init(_sec, _nid) do {} while (0) 614#endif /* CONFIG_SPARSEMEM */ 615 616#ifdef CONFIG_NODES_SPAN_OTHER_NODES 617#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid)) 618#else 619#define early_pfn_in_nid(pfn, nid) (1) 620#endif 621 622#ifndef early_pfn_valid 623#define early_pfn_valid(pfn) (1) 624#endif 625 626void memory_present(int nid, unsigned long start, unsigned long end); 627unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 628 629#endif /* !__ASSEMBLY__ */ 630#endif /* __KERNEL__ */ 631#endif /* _LINUX_MMZONE_H */