at v2.6.15 35 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/sched.h> 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/config.h> 10#include <linux/gfp.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/prio_tree.h> 15#include <linux/fs.h> 16 17struct mempolicy; 18struct anon_vma; 19 20#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 21extern unsigned long max_mapnr; 22#endif 23 24extern unsigned long num_physpages; 25extern void * high_memory; 26extern unsigned long vmalloc_earlyreserve; 27extern int page_cluster; 28 29#ifdef CONFIG_SYSCTL 30extern int sysctl_legacy_va_layout; 31#else 32#define sysctl_legacy_va_layout 0 33#endif 34 35#include <asm/page.h> 36#include <asm/pgtable.h> 37#include <asm/processor.h> 38#include <asm/atomic.h> 39 40#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 41 42/* 43 * Linux kernel virtual memory manager primitives. 44 * The idea being to have a "virtual" mm in the same way 45 * we have a virtual fs - giving a cleaner interface to the 46 * mm details, and allowing different kinds of memory mappings 47 * (from shared memory to executable loading to arbitrary 48 * mmap() functions). 49 */ 50 51/* 52 * This struct defines a memory VMM memory area. There is one of these 53 * per VM-area/task. A VM area is any part of the process virtual memory 54 * space that has a special rule for the page-fault handlers (ie a shared 55 * library, the executable area etc). 56 */ 57struct vm_area_struct { 58 struct mm_struct * vm_mm; /* The address space we belong to. */ 59 unsigned long vm_start; /* Our start address within vm_mm. */ 60 unsigned long vm_end; /* The first byte after our end address 61 within vm_mm. */ 62 63 /* linked list of VM areas per task, sorted by address */ 64 struct vm_area_struct *vm_next; 65 66 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 67 unsigned long vm_flags; /* Flags, listed below. */ 68 69 struct rb_node vm_rb; 70 71 /* 72 * For areas with an address space and backing store, 73 * linkage into the address_space->i_mmap prio tree, or 74 * linkage to the list of like vmas hanging off its node, or 75 * linkage of vma in the address_space->i_mmap_nonlinear list. 76 */ 77 union { 78 struct { 79 struct list_head list; 80 void *parent; /* aligns with prio_tree_node parent */ 81 struct vm_area_struct *head; 82 } vm_set; 83 84 struct raw_prio_tree_node prio_tree_node; 85 } shared; 86 87 /* 88 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 89 * list, after a COW of one of the file pages. A MAP_SHARED vma 90 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 91 * or brk vma (with NULL file) can only be in an anon_vma list. 92 */ 93 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 94 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 95 96 /* Function pointers to deal with this struct. */ 97 struct vm_operations_struct * vm_ops; 98 99 /* Information about our backing store: */ 100 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 101 units, *not* PAGE_CACHE_SIZE */ 102 struct file * vm_file; /* File we map to (can be NULL). */ 103 void * vm_private_data; /* was vm_pte (shared mem) */ 104 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 105 106#ifndef CONFIG_MMU 107 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 108#endif 109#ifdef CONFIG_NUMA 110 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 111#endif 112}; 113 114/* 115 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 116 * disabled, then there's a single shared list of VMAs maintained by the 117 * system, and mm's subscribe to these individually 118 */ 119struct vm_list_struct { 120 struct vm_list_struct *next; 121 struct vm_area_struct *vma; 122}; 123 124#ifndef CONFIG_MMU 125extern struct rb_root nommu_vma_tree; 126extern struct rw_semaphore nommu_vma_sem; 127 128extern unsigned int kobjsize(const void *objp); 129#endif 130 131/* 132 * vm_flags.. 133 */ 134#define VM_READ 0x00000001 /* currently active flags */ 135#define VM_WRITE 0x00000002 136#define VM_EXEC 0x00000004 137#define VM_SHARED 0x00000008 138 139/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 140#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 141#define VM_MAYWRITE 0x00000020 142#define VM_MAYEXEC 0x00000040 143#define VM_MAYSHARE 0x00000080 144 145#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 146#define VM_GROWSUP 0x00000200 147#define VM_SHM 0x00000000 /* Means nothing: delete it later */ 148#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 149#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 150 151#define VM_EXECUTABLE 0x00001000 152#define VM_LOCKED 0x00002000 153#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 154 155 /* Used by sys_madvise() */ 156#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 157#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 158 159#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 160#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 161#define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 162#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 163#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 164#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 165#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 166#define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 167 168#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 169#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 170#endif 171 172#ifdef CONFIG_STACK_GROWSUP 173#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 174#else 175#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 176#endif 177 178#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 179#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 180#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 181#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 182#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 183 184/* 185 * mapping from the currently active vm_flags protection bits (the 186 * low four bits) to a page protection mask.. 187 */ 188extern pgprot_t protection_map[16]; 189 190 191/* 192 * These are the virtual MM functions - opening of an area, closing and 193 * unmapping it (needed to keep files on disk up-to-date etc), pointer 194 * to the functions called when a no-page or a wp-page exception occurs. 195 */ 196struct vm_operations_struct { 197 void (*open)(struct vm_area_struct * area); 198 void (*close)(struct vm_area_struct * area); 199 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 200 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 201#ifdef CONFIG_NUMA 202 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 203 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 204 unsigned long addr); 205#endif 206}; 207 208struct mmu_gather; 209struct inode; 210 211/* 212 * Each physical page in the system has a struct page associated with 213 * it to keep track of whatever it is we are using the page for at the 214 * moment. Note that we have no way to track which tasks are using 215 * a page. 216 */ 217struct page { 218 unsigned long flags; /* Atomic flags, some possibly 219 * updated asynchronously */ 220 atomic_t _count; /* Usage count, see below. */ 221 atomic_t _mapcount; /* Count of ptes mapped in mms, 222 * to show when page is mapped 223 * & limit reverse map searches. 224 */ 225 union { 226 unsigned long private; /* Mapping-private opaque data: 227 * usually used for buffer_heads 228 * if PagePrivate set; used for 229 * swp_entry_t if PageSwapCache 230 * When page is free, this indicates 231 * order in the buddy system. 232 */ 233#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 234 spinlock_t ptl; 235#endif 236 } u; 237 struct address_space *mapping; /* If low bit clear, points to 238 * inode address_space, or NULL. 239 * If page mapped as anonymous 240 * memory, low bit is set, and 241 * it points to anon_vma object: 242 * see PAGE_MAPPING_ANON below. 243 */ 244 pgoff_t index; /* Our offset within mapping. */ 245 struct list_head lru; /* Pageout list, eg. active_list 246 * protected by zone->lru_lock ! 247 */ 248 /* 249 * On machines where all RAM is mapped into kernel address space, 250 * we can simply calculate the virtual address. On machines with 251 * highmem some memory is mapped into kernel virtual memory 252 * dynamically, so we need a place to store that address. 253 * Note that this field could be 16 bits on x86 ... ;) 254 * 255 * Architectures with slow multiplication can define 256 * WANT_PAGE_VIRTUAL in asm/page.h 257 */ 258#if defined(WANT_PAGE_VIRTUAL) 259 void *virtual; /* Kernel virtual address (NULL if 260 not kmapped, ie. highmem) */ 261#endif /* WANT_PAGE_VIRTUAL */ 262}; 263 264#define page_private(page) ((page)->u.private) 265#define set_page_private(page, v) ((page)->u.private = (v)) 266 267/* 268 * FIXME: take this include out, include page-flags.h in 269 * files which need it (119 of them) 270 */ 271#include <linux/page-flags.h> 272 273/* 274 * Methods to modify the page usage count. 275 * 276 * What counts for a page usage: 277 * - cache mapping (page->mapping) 278 * - private data (page->private) 279 * - page mapped in a task's page tables, each mapping 280 * is counted separately 281 * 282 * Also, many kernel routines increase the page count before a critical 283 * routine so they can be sure the page doesn't go away from under them. 284 * 285 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we 286 * can use atomic_add_negative(-1, page->_count) to detect when the page 287 * becomes free and so that we can also use atomic_inc_and_test to atomically 288 * detect when we just tried to grab a ref on a page which some other CPU has 289 * already deemed to be freeable. 290 * 291 * NO code should make assumptions about this internal detail! Use the provided 292 * macros which retain the old rules: page_count(page) == 0 is a free page. 293 */ 294 295/* 296 * Drop a ref, return true if the logical refcount fell to zero (the page has 297 * no users) 298 */ 299#define put_page_testzero(p) \ 300 ({ \ 301 BUG_ON(page_count(p) == 0); \ 302 atomic_add_negative(-1, &(p)->_count); \ 303 }) 304 305/* 306 * Grab a ref, return true if the page previously had a logical refcount of 307 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page 308 */ 309#define get_page_testone(p) atomic_inc_and_test(&(p)->_count) 310 311#define set_page_count(p,v) atomic_set(&(p)->_count, v - 1) 312#define __put_page(p) atomic_dec(&(p)->_count) 313 314extern void FASTCALL(__page_cache_release(struct page *)); 315 316static inline int page_count(struct page *page) 317{ 318 if (PageCompound(page)) 319 page = (struct page *)page_private(page); 320 return atomic_read(&page->_count) + 1; 321} 322 323static inline void get_page(struct page *page) 324{ 325 if (unlikely(PageCompound(page))) 326 page = (struct page *)page_private(page); 327 atomic_inc(&page->_count); 328} 329 330void put_page(struct page *page); 331 332/* 333 * Multiple processes may "see" the same page. E.g. for untouched 334 * mappings of /dev/null, all processes see the same page full of 335 * zeroes, and text pages of executables and shared libraries have 336 * only one copy in memory, at most, normally. 337 * 338 * For the non-reserved pages, page_count(page) denotes a reference count. 339 * page_count() == 0 means the page is free. page->lru is then used for 340 * freelist management in the buddy allocator. 341 * page_count() == 1 means the page is used for exactly one purpose 342 * (e.g. a private data page of one process). 343 * 344 * A page may be used for kmalloc() or anyone else who does a 345 * __get_free_page(). In this case the page_count() is at least 1, and 346 * all other fields are unused but should be 0 or NULL. The 347 * management of this page is the responsibility of the one who uses 348 * it. 349 * 350 * The other pages (we may call them "process pages") are completely 351 * managed by the Linux memory manager: I/O, buffers, swapping etc. 352 * The following discussion applies only to them. 353 * 354 * A page may belong to an inode's memory mapping. In this case, 355 * page->mapping is the pointer to the inode, and page->index is the 356 * file offset of the page, in units of PAGE_CACHE_SIZE. 357 * 358 * A page contains an opaque `private' member, which belongs to the 359 * page's address_space. Usually, this is the address of a circular 360 * list of the page's disk buffers. 361 * 362 * For pages belonging to inodes, the page_count() is the number of 363 * attaches, plus 1 if `private' contains something, plus one for 364 * the page cache itself. 365 * 366 * Instead of keeping dirty/clean pages in per address-space lists, we instead 367 * now tag pages as dirty/under writeback in the radix tree. 368 * 369 * There is also a per-mapping radix tree mapping index to the page 370 * in memory if present. The tree is rooted at mapping->root. 371 * 372 * All process pages can do I/O: 373 * - inode pages may need to be read from disk, 374 * - inode pages which have been modified and are MAP_SHARED may need 375 * to be written to disk, 376 * - private pages which have been modified may need to be swapped out 377 * to swap space and (later) to be read back into memory. 378 */ 379 380/* 381 * The zone field is never updated after free_area_init_core() 382 * sets it, so none of the operations on it need to be atomic. 383 */ 384 385 386/* 387 * page->flags layout: 388 * 389 * There are three possibilities for how page->flags get 390 * laid out. The first is for the normal case, without 391 * sparsemem. The second is for sparsemem when there is 392 * plenty of space for node and section. The last is when 393 * we have run out of space and have to fall back to an 394 * alternate (slower) way of determining the node. 395 * 396 * No sparsemem: | NODE | ZONE | ... | FLAGS | 397 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 398 * no space for node: | SECTION | ZONE | ... | FLAGS | 399 */ 400#ifdef CONFIG_SPARSEMEM 401#define SECTIONS_WIDTH SECTIONS_SHIFT 402#else 403#define SECTIONS_WIDTH 0 404#endif 405 406#define ZONES_WIDTH ZONES_SHIFT 407 408#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 409#define NODES_WIDTH NODES_SHIFT 410#else 411#define NODES_WIDTH 0 412#endif 413 414/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 415#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 416#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 417#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 418 419/* 420 * We are going to use the flags for the page to node mapping if its in 421 * there. This includes the case where there is no node, so it is implicit. 422 */ 423#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0) 424 425#ifndef PFN_SECTION_SHIFT 426#define PFN_SECTION_SHIFT 0 427#endif 428 429/* 430 * Define the bit shifts to access each section. For non-existant 431 * sections we define the shift as 0; that plus a 0 mask ensures 432 * the compiler will optimise away reference to them. 433 */ 434#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 435#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 436#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 437 438/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */ 439#if FLAGS_HAS_NODE 440#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT) 441#else 442#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 443#endif 444#define ZONETABLE_PGSHIFT ZONES_PGSHIFT 445 446#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 447#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 448#endif 449 450#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 451#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 452#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 453#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1) 454 455static inline unsigned long page_zonenum(struct page *page) 456{ 457 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 458} 459 460struct zone; 461extern struct zone *zone_table[]; 462 463static inline struct zone *page_zone(struct page *page) 464{ 465 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) & 466 ZONETABLE_MASK]; 467} 468 469static inline unsigned long page_to_nid(struct page *page) 470{ 471 if (FLAGS_HAS_NODE) 472 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 473 else 474 return page_zone(page)->zone_pgdat->node_id; 475} 476static inline unsigned long page_to_section(struct page *page) 477{ 478 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 479} 480 481static inline void set_page_zone(struct page *page, unsigned long zone) 482{ 483 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 484 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 485} 486static inline void set_page_node(struct page *page, unsigned long node) 487{ 488 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 489 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 490} 491static inline void set_page_section(struct page *page, unsigned long section) 492{ 493 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 494 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 495} 496 497static inline void set_page_links(struct page *page, unsigned long zone, 498 unsigned long node, unsigned long pfn) 499{ 500 set_page_zone(page, zone); 501 set_page_node(page, node); 502 set_page_section(page, pfn_to_section_nr(pfn)); 503} 504 505#ifndef CONFIG_DISCONTIGMEM 506/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 507extern struct page *mem_map; 508#endif 509 510static inline void *lowmem_page_address(struct page *page) 511{ 512 return __va(page_to_pfn(page) << PAGE_SHIFT); 513} 514 515#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 516#define HASHED_PAGE_VIRTUAL 517#endif 518 519#if defined(WANT_PAGE_VIRTUAL) 520#define page_address(page) ((page)->virtual) 521#define set_page_address(page, address) \ 522 do { \ 523 (page)->virtual = (address); \ 524 } while(0) 525#define page_address_init() do { } while(0) 526#endif 527 528#if defined(HASHED_PAGE_VIRTUAL) 529void *page_address(struct page *page); 530void set_page_address(struct page *page, void *virtual); 531void page_address_init(void); 532#endif 533 534#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 535#define page_address(page) lowmem_page_address(page) 536#define set_page_address(page, address) do { } while(0) 537#define page_address_init() do { } while(0) 538#endif 539 540/* 541 * On an anonymous page mapped into a user virtual memory area, 542 * page->mapping points to its anon_vma, not to a struct address_space; 543 * with the PAGE_MAPPING_ANON bit set to distinguish it. 544 * 545 * Please note that, confusingly, "page_mapping" refers to the inode 546 * address_space which maps the page from disk; whereas "page_mapped" 547 * refers to user virtual address space into which the page is mapped. 548 */ 549#define PAGE_MAPPING_ANON 1 550 551extern struct address_space swapper_space; 552static inline struct address_space *page_mapping(struct page *page) 553{ 554 struct address_space *mapping = page->mapping; 555 556 if (unlikely(PageSwapCache(page))) 557 mapping = &swapper_space; 558 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 559 mapping = NULL; 560 return mapping; 561} 562 563static inline int PageAnon(struct page *page) 564{ 565 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 566} 567 568/* 569 * Return the pagecache index of the passed page. Regular pagecache pages 570 * use ->index whereas swapcache pages use ->private 571 */ 572static inline pgoff_t page_index(struct page *page) 573{ 574 if (unlikely(PageSwapCache(page))) 575 return page_private(page); 576 return page->index; 577} 578 579/* 580 * The atomic page->_mapcount, like _count, starts from -1: 581 * so that transitions both from it and to it can be tracked, 582 * using atomic_inc_and_test and atomic_add_negative(-1). 583 */ 584static inline void reset_page_mapcount(struct page *page) 585{ 586 atomic_set(&(page)->_mapcount, -1); 587} 588 589static inline int page_mapcount(struct page *page) 590{ 591 return atomic_read(&(page)->_mapcount) + 1; 592} 593 594/* 595 * Return true if this page is mapped into pagetables. 596 */ 597static inline int page_mapped(struct page *page) 598{ 599 return atomic_read(&(page)->_mapcount) >= 0; 600} 601 602/* 603 * Error return values for the *_nopage functions 604 */ 605#define NOPAGE_SIGBUS (NULL) 606#define NOPAGE_OOM ((struct page *) (-1)) 607 608/* 609 * Different kinds of faults, as returned by handle_mm_fault(). 610 * Used to decide whether a process gets delivered SIGBUS or 611 * just gets major/minor fault counters bumped up. 612 */ 613#define VM_FAULT_OOM 0x00 614#define VM_FAULT_SIGBUS 0x01 615#define VM_FAULT_MINOR 0x02 616#define VM_FAULT_MAJOR 0x03 617 618/* 619 * Special case for get_user_pages. 620 * Must be in a distinct bit from the above VM_FAULT_ flags. 621 */ 622#define VM_FAULT_WRITE 0x10 623 624#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 625 626extern void show_free_areas(void); 627 628#ifdef CONFIG_SHMEM 629struct page *shmem_nopage(struct vm_area_struct *vma, 630 unsigned long address, int *type); 631int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 632struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 633 unsigned long addr); 634int shmem_lock(struct file *file, int lock, struct user_struct *user); 635#else 636#define shmem_nopage filemap_nopage 637#define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */ 638#define shmem_set_policy(a, b) (0) 639#define shmem_get_policy(a, b) (NULL) 640#endif 641struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 642 643int shmem_zero_setup(struct vm_area_struct *); 644 645static inline int can_do_mlock(void) 646{ 647 if (capable(CAP_IPC_LOCK)) 648 return 1; 649 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 650 return 1; 651 return 0; 652} 653extern int user_shm_lock(size_t, struct user_struct *); 654extern void user_shm_unlock(size_t, struct user_struct *); 655 656/* 657 * Parameter block passed down to zap_pte_range in exceptional cases. 658 */ 659struct zap_details { 660 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 661 struct address_space *check_mapping; /* Check page->mapping if set */ 662 pgoff_t first_index; /* Lowest page->index to unmap */ 663 pgoff_t last_index; /* Highest page->index to unmap */ 664 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 665 unsigned long truncate_count; /* Compare vm_truncate_count */ 666}; 667 668struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 669unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 670 unsigned long size, struct zap_details *); 671unsigned long unmap_vmas(struct mmu_gather **tlb, 672 struct vm_area_struct *start_vma, unsigned long start_addr, 673 unsigned long end_addr, unsigned long *nr_accounted, 674 struct zap_details *); 675void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 676 unsigned long end, unsigned long floor, unsigned long ceiling); 677void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 678 unsigned long floor, unsigned long ceiling); 679int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 680 struct vm_area_struct *vma); 681int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 682 unsigned long size, pgprot_t prot); 683void unmap_mapping_range(struct address_space *mapping, 684 loff_t const holebegin, loff_t const holelen, int even_cows); 685 686static inline void unmap_shared_mapping_range(struct address_space *mapping, 687 loff_t const holebegin, loff_t const holelen) 688{ 689 unmap_mapping_range(mapping, holebegin, holelen, 0); 690} 691 692extern int vmtruncate(struct inode * inode, loff_t offset); 693extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 694extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 695extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access); 696 697static inline int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access) 698{ 699 return __handle_mm_fault(mm, vma, address, write_access) & (~VM_FAULT_WRITE); 700} 701 702extern int make_pages_present(unsigned long addr, unsigned long end); 703extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 704void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 705 706int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 707 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 708void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 709 710int __set_page_dirty_buffers(struct page *page); 711int __set_page_dirty_nobuffers(struct page *page); 712int redirty_page_for_writepage(struct writeback_control *wbc, 713 struct page *page); 714int FASTCALL(set_page_dirty(struct page *page)); 715int set_page_dirty_lock(struct page *page); 716int clear_page_dirty_for_io(struct page *page); 717 718extern unsigned long do_mremap(unsigned long addr, 719 unsigned long old_len, unsigned long new_len, 720 unsigned long flags, unsigned long new_addr); 721 722/* 723 * Prototype to add a shrinker callback for ageable caches. 724 * 725 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 726 * scan `nr_to_scan' objects, attempting to free them. 727 * 728 * The callback must return the number of objects which remain in the cache. 729 * 730 * The callback will be passed nr_to_scan == 0 when the VM is querying the 731 * cache size, so a fastpath for that case is appropriate. 732 */ 733typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); 734 735/* 736 * Add an aging callback. The int is the number of 'seeks' it takes 737 * to recreate one of the objects that these functions age. 738 */ 739 740#define DEFAULT_SEEKS 2 741struct shrinker; 742extern struct shrinker *set_shrinker(int, shrinker_t); 743extern void remove_shrinker(struct shrinker *shrinker); 744 745extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); 746 747int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 748int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 749int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 750int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 751 752/* 753 * The following ifdef needed to get the 4level-fixup.h header to work. 754 * Remove it when 4level-fixup.h has been removed. 755 */ 756#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 757static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 758{ 759 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 760 NULL: pud_offset(pgd, address); 761} 762 763static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 764{ 765 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 766 NULL: pmd_offset(pud, address); 767} 768#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 769 770#if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 771/* 772 * We tuck a spinlock to guard each pagetable page into its struct page, 773 * at page->private, with BUILD_BUG_ON to make sure that this will not 774 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 775 * When freeing, reset page->mapping so free_pages_check won't complain. 776 */ 777#define __pte_lockptr(page) &((page)->u.ptl) 778#define pte_lock_init(_page) do { \ 779 spin_lock_init(__pte_lockptr(_page)); \ 780} while (0) 781#define pte_lock_deinit(page) ((page)->mapping = NULL) 782#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 783#else 784/* 785 * We use mm->page_table_lock to guard all pagetable pages of the mm. 786 */ 787#define pte_lock_init(page) do {} while (0) 788#define pte_lock_deinit(page) do {} while (0) 789#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 790#endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 791 792#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 793({ \ 794 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 795 pte_t *__pte = pte_offset_map(pmd, address); \ 796 *(ptlp) = __ptl; \ 797 spin_lock(__ptl); \ 798 __pte; \ 799}) 800 801#define pte_unmap_unlock(pte, ptl) do { \ 802 spin_unlock(ptl); \ 803 pte_unmap(pte); \ 804} while (0) 805 806#define pte_alloc_map(mm, pmd, address) \ 807 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 808 NULL: pte_offset_map(pmd, address)) 809 810#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 811 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 812 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 813 814#define pte_alloc_kernel(pmd, address) \ 815 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 816 NULL: pte_offset_kernel(pmd, address)) 817 818extern void free_area_init(unsigned long * zones_size); 819extern void free_area_init_node(int nid, pg_data_t *pgdat, 820 unsigned long * zones_size, unsigned long zone_start_pfn, 821 unsigned long *zholes_size); 822extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); 823extern void setup_per_zone_pages_min(void); 824extern void mem_init(void); 825extern void show_mem(void); 826extern void si_meminfo(struct sysinfo * val); 827extern void si_meminfo_node(struct sysinfo *val, int nid); 828 829#ifdef CONFIG_NUMA 830extern void setup_per_cpu_pageset(void); 831#else 832static inline void setup_per_cpu_pageset(void) {} 833#endif 834 835/* prio_tree.c */ 836void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 837void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 838void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 839struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 840 struct prio_tree_iter *iter); 841 842#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 843 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 844 (vma = vma_prio_tree_next(vma, iter)); ) 845 846static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 847 struct list_head *list) 848{ 849 vma->shared.vm_set.parent = NULL; 850 list_add_tail(&vma->shared.vm_set.list, list); 851} 852 853/* mmap.c */ 854extern int __vm_enough_memory(long pages, int cap_sys_admin); 855extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 856 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 857extern struct vm_area_struct *vma_merge(struct mm_struct *, 858 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 859 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 860 struct mempolicy *); 861extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 862extern int split_vma(struct mm_struct *, 863 struct vm_area_struct *, unsigned long addr, int new_below); 864extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 865extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 866 struct rb_node **, struct rb_node *); 867extern void unlink_file_vma(struct vm_area_struct *); 868extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 869 unsigned long addr, unsigned long len, pgoff_t pgoff); 870extern void exit_mmap(struct mm_struct *); 871extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 872 873extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 874 875extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 876 unsigned long len, unsigned long prot, 877 unsigned long flag, unsigned long pgoff); 878 879static inline unsigned long do_mmap(struct file *file, unsigned long addr, 880 unsigned long len, unsigned long prot, 881 unsigned long flag, unsigned long offset) 882{ 883 unsigned long ret = -EINVAL; 884 if ((offset + PAGE_ALIGN(len)) < offset) 885 goto out; 886 if (!(offset & ~PAGE_MASK)) 887 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 888out: 889 return ret; 890} 891 892extern int do_munmap(struct mm_struct *, unsigned long, size_t); 893 894extern unsigned long do_brk(unsigned long, unsigned long); 895 896/* filemap.c */ 897extern unsigned long page_unuse(struct page *); 898extern void truncate_inode_pages(struct address_space *, loff_t); 899 900/* generic vm_area_ops exported for stackable file systems */ 901extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 902extern int filemap_populate(struct vm_area_struct *, unsigned long, 903 unsigned long, pgprot_t, unsigned long, int); 904 905/* mm/page-writeback.c */ 906int write_one_page(struct page *page, int wait); 907 908/* readahead.c */ 909#define VM_MAX_READAHEAD 128 /* kbytes */ 910#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 911#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 912 * turning readahead off */ 913 914int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 915 pgoff_t offset, unsigned long nr_to_read); 916int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 917 pgoff_t offset, unsigned long nr_to_read); 918unsigned long page_cache_readahead(struct address_space *mapping, 919 struct file_ra_state *ra, 920 struct file *filp, 921 pgoff_t offset, 922 unsigned long size); 923void handle_ra_miss(struct address_space *mapping, 924 struct file_ra_state *ra, pgoff_t offset); 925unsigned long max_sane_readahead(unsigned long nr); 926 927/* Do stack extension */ 928extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 929#ifdef CONFIG_IA64 930extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 931#endif 932 933/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 934extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 935extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 936 struct vm_area_struct **pprev); 937 938/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 939 NULL if none. Assume start_addr < end_addr. */ 940static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 941{ 942 struct vm_area_struct * vma = find_vma(mm,start_addr); 943 944 if (vma && end_addr <= vma->vm_start) 945 vma = NULL; 946 return vma; 947} 948 949static inline unsigned long vma_pages(struct vm_area_struct *vma) 950{ 951 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 952} 953 954struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 955struct page *vmalloc_to_page(void *addr); 956unsigned long vmalloc_to_pfn(void *addr); 957int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 958 unsigned long pfn, unsigned long size, pgprot_t); 959int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 960 961struct page *follow_page(struct vm_area_struct *, unsigned long address, 962 unsigned int foll_flags); 963#define FOLL_WRITE 0x01 /* check pte is writable */ 964#define FOLL_TOUCH 0x02 /* mark page accessed */ 965#define FOLL_GET 0x04 /* do get_page on page */ 966#define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 967 968#ifdef CONFIG_PROC_FS 969void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 970#else 971static inline void vm_stat_account(struct mm_struct *mm, 972 unsigned long flags, struct file *file, long pages) 973{ 974} 975#endif /* CONFIG_PROC_FS */ 976 977#ifndef CONFIG_DEBUG_PAGEALLOC 978static inline void 979kernel_map_pages(struct page *page, int numpages, int enable) 980{ 981} 982#endif 983 984extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 985#ifdef __HAVE_ARCH_GATE_AREA 986int in_gate_area_no_task(unsigned long addr); 987int in_gate_area(struct task_struct *task, unsigned long addr); 988#else 989int in_gate_area_no_task(unsigned long addr); 990#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 991#endif /* __HAVE_ARCH_GATE_AREA */ 992 993/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */ 994#define OOM_DISABLE -17 995 996#endif /* __KERNEL__ */ 997#endif /* _LINUX_MM_H */