at v2.6.15 289 lines 9.3 kB view raw
1#ifndef _ASM_IA64_SYSTEM_H 2#define _ASM_IA64_SYSTEM_H 3 4/* 5 * System defines. Note that this is included both from .c and .S 6 * files, so it does only defines, not any C code. This is based 7 * on information published in the Processor Abstraction Layer 8 * and the System Abstraction Layer manual. 9 * 10 * Copyright (C) 1998-2003 Hewlett-Packard Co 11 * David Mosberger-Tang <davidm@hpl.hp.com> 12 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> 13 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> 14 */ 15#include <linux/config.h> 16 17#include <asm/kregs.h> 18#include <asm/page.h> 19#include <asm/pal.h> 20#include <asm/percpu.h> 21 22#define GATE_ADDR RGN_BASE(RGN_GATE) 23 24/* 25 * 0xa000000000000000+2*PERCPU_PAGE_SIZE 26 * - 0xa000000000000000+3*PERCPU_PAGE_SIZE remain unmapped (guard page) 27 */ 28#define KERNEL_START (GATE_ADDR+0x100000000) 29#define PERCPU_ADDR (-PERCPU_PAGE_SIZE) 30 31#ifndef __ASSEMBLY__ 32 33#include <linux/kernel.h> 34#include <linux/types.h> 35 36struct pci_vector_struct { 37 __u16 segment; /* PCI Segment number */ 38 __u16 bus; /* PCI Bus number */ 39 __u32 pci_id; /* ACPI split 16 bits device, 16 bits function (see section 6.1.1) */ 40 __u8 pin; /* PCI PIN (0 = A, 1 = B, 2 = C, 3 = D) */ 41 __u32 irq; /* IRQ assigned */ 42}; 43 44extern struct ia64_boot_param { 45 __u64 command_line; /* physical address of command line arguments */ 46 __u64 efi_systab; /* physical address of EFI system table */ 47 __u64 efi_memmap; /* physical address of EFI memory map */ 48 __u64 efi_memmap_size; /* size of EFI memory map */ 49 __u64 efi_memdesc_size; /* size of an EFI memory map descriptor */ 50 __u32 efi_memdesc_version; /* memory descriptor version */ 51 struct { 52 __u16 num_cols; /* number of columns on console output device */ 53 __u16 num_rows; /* number of rows on console output device */ 54 __u16 orig_x; /* cursor's x position */ 55 __u16 orig_y; /* cursor's y position */ 56 } console_info; 57 __u64 fpswa; /* physical address of the fpswa interface */ 58 __u64 initrd_start; 59 __u64 initrd_size; 60} *ia64_boot_param; 61 62/* 63 * Macros to force memory ordering. In these descriptions, "previous" 64 * and "subsequent" refer to program order; "visible" means that all 65 * architecturally visible effects of a memory access have occurred 66 * (at a minimum, this means the memory has been read or written). 67 * 68 * wmb(): Guarantees that all preceding stores to memory- 69 * like regions are visible before any subsequent 70 * stores and that all following stores will be 71 * visible only after all previous stores. 72 * rmb(): Like wmb(), but for reads. 73 * mb(): wmb()/rmb() combo, i.e., all previous memory 74 * accesses are visible before all subsequent 75 * accesses and vice versa. This is also known as 76 * a "fence." 77 * 78 * Note: "mb()" and its variants cannot be used as a fence to order 79 * accesses to memory mapped I/O registers. For that, mf.a needs to 80 * be used. However, we don't want to always use mf.a because (a) 81 * it's (presumably) much slower than mf and (b) mf.a is supported for 82 * sequential memory pages only. 83 */ 84#define mb() ia64_mf() 85#define rmb() mb() 86#define wmb() mb() 87#define read_barrier_depends() do { } while(0) 88 89#ifdef CONFIG_SMP 90# define smp_mb() mb() 91# define smp_rmb() rmb() 92# define smp_wmb() wmb() 93# define smp_read_barrier_depends() read_barrier_depends() 94#else 95# define smp_mb() barrier() 96# define smp_rmb() barrier() 97# define smp_wmb() barrier() 98# define smp_read_barrier_depends() do { } while(0) 99#endif 100 101/* 102 * XXX check on these---I suspect what Linus really wants here is 103 * acquire vs release semantics but we can't discuss this stuff with 104 * Linus just yet. Grrr... 105 */ 106#define set_mb(var, value) do { (var) = (value); mb(); } while (0) 107#define set_wmb(var, value) do { (var) = (value); mb(); } while (0) 108 109#define safe_halt() ia64_pal_halt_light() /* PAL_HALT_LIGHT */ 110 111/* 112 * The group barrier in front of the rsm & ssm are necessary to ensure 113 * that none of the previous instructions in the same group are 114 * affected by the rsm/ssm. 115 */ 116/* For spinlocks etc */ 117 118/* 119 * - clearing psr.i is implicitly serialized (visible by next insn) 120 * - setting psr.i requires data serialization 121 * - we need a stop-bit before reading PSR because we sometimes 122 * write a floating-point register right before reading the PSR 123 * and that writes to PSR.mfl 124 */ 125#define __local_irq_save(x) \ 126do { \ 127 ia64_stop(); \ 128 (x) = ia64_getreg(_IA64_REG_PSR); \ 129 ia64_stop(); \ 130 ia64_rsm(IA64_PSR_I); \ 131} while (0) 132 133#define __local_irq_disable() \ 134do { \ 135 ia64_stop(); \ 136 ia64_rsm(IA64_PSR_I); \ 137} while (0) 138 139#define __local_irq_restore(x) ia64_intrin_local_irq_restore((x) & IA64_PSR_I) 140 141#ifdef CONFIG_IA64_DEBUG_IRQ 142 143 extern unsigned long last_cli_ip; 144 145# define __save_ip() last_cli_ip = ia64_getreg(_IA64_REG_IP) 146 147# define local_irq_save(x) \ 148do { \ 149 unsigned long psr; \ 150 \ 151 __local_irq_save(psr); \ 152 if (psr & IA64_PSR_I) \ 153 __save_ip(); \ 154 (x) = psr; \ 155} while (0) 156 157# define local_irq_disable() do { unsigned long x; local_irq_save(x); } while (0) 158 159# define local_irq_restore(x) \ 160do { \ 161 unsigned long old_psr, psr = (x); \ 162 \ 163 local_save_flags(old_psr); \ 164 __local_irq_restore(psr); \ 165 if ((old_psr & IA64_PSR_I) && !(psr & IA64_PSR_I)) \ 166 __save_ip(); \ 167} while (0) 168 169#else /* !CONFIG_IA64_DEBUG_IRQ */ 170# define local_irq_save(x) __local_irq_save(x) 171# define local_irq_disable() __local_irq_disable() 172# define local_irq_restore(x) __local_irq_restore(x) 173#endif /* !CONFIG_IA64_DEBUG_IRQ */ 174 175#define local_irq_enable() ({ ia64_stop(); ia64_ssm(IA64_PSR_I); ia64_srlz_d(); }) 176#define local_save_flags(flags) ({ ia64_stop(); (flags) = ia64_getreg(_IA64_REG_PSR); }) 177 178#define irqs_disabled() \ 179({ \ 180 unsigned long __ia64_id_flags; \ 181 local_save_flags(__ia64_id_flags); \ 182 (__ia64_id_flags & IA64_PSR_I) == 0; \ 183}) 184 185#ifdef __KERNEL__ 186 187#ifdef CONFIG_IA32_SUPPORT 188# define IS_IA32_PROCESS(regs) (ia64_psr(regs)->is != 0) 189#else 190# define IS_IA32_PROCESS(regs) 0 191struct task_struct; 192static inline void ia32_save_state(struct task_struct *t __attribute__((unused))){} 193static inline void ia32_load_state(struct task_struct *t __attribute__((unused))){} 194#endif 195 196/* 197 * Context switch from one thread to another. If the two threads have 198 * different address spaces, schedule() has already taken care of 199 * switching to the new address space by calling switch_mm(). 200 * 201 * Disabling access to the fph partition and the debug-register 202 * context switch MUST be done before calling ia64_switch_to() since a 203 * newly created thread returns directly to 204 * ia64_ret_from_syscall_clear_r8. 205 */ 206extern struct task_struct *ia64_switch_to (void *next_task); 207 208struct task_struct; 209 210extern void ia64_save_extra (struct task_struct *task); 211extern void ia64_load_extra (struct task_struct *task); 212 213#ifdef CONFIG_PERFMON 214 DECLARE_PER_CPU(unsigned long, pfm_syst_info); 215# define PERFMON_IS_SYSWIDE() (__get_cpu_var(pfm_syst_info) & 0x1) 216#else 217# define PERFMON_IS_SYSWIDE() (0) 218#endif 219 220#define IA64_HAS_EXTRA_STATE(t) \ 221 ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID) \ 222 || IS_IA32_PROCESS(ia64_task_regs(t)) || PERFMON_IS_SYSWIDE()) 223 224#define __switch_to(prev,next,last) do { \ 225 if (IA64_HAS_EXTRA_STATE(prev)) \ 226 ia64_save_extra(prev); \ 227 if (IA64_HAS_EXTRA_STATE(next)) \ 228 ia64_load_extra(next); \ 229 ia64_psr(ia64_task_regs(next))->dfh = !ia64_is_local_fpu_owner(next); \ 230 (last) = ia64_switch_to((next)); \ 231} while (0) 232 233#ifdef CONFIG_SMP 234/* 235 * In the SMP case, we save the fph state when context-switching away from a thread that 236 * modified fph. This way, when the thread gets scheduled on another CPU, the CPU can 237 * pick up the state from task->thread.fph, avoiding the complication of having to fetch 238 * the latest fph state from another CPU. In other words: eager save, lazy restore. 239 */ 240# define switch_to(prev,next,last) do { \ 241 if (ia64_psr(ia64_task_regs(prev))->mfh && ia64_is_local_fpu_owner(prev)) { \ 242 ia64_psr(ia64_task_regs(prev))->mfh = 0; \ 243 (prev)->thread.flags |= IA64_THREAD_FPH_VALID; \ 244 __ia64_save_fpu((prev)->thread.fph); \ 245 } \ 246 __switch_to(prev, next, last); \ 247} while (0) 248#else 249# define switch_to(prev,next,last) __switch_to(prev, next, last) 250#endif 251 252/* 253 * On IA-64, we don't want to hold the runqueue's lock during the low-level context-switch, 254 * because that could cause a deadlock. Here is an example by Erich Focht: 255 * 256 * Example: 257 * CPU#0: 258 * schedule() 259 * -> spin_lock_irq(&rq->lock) 260 * -> context_switch() 261 * -> wrap_mmu_context() 262 * -> read_lock(&tasklist_lock) 263 * 264 * CPU#1: 265 * sys_wait4() or release_task() or forget_original_parent() 266 * -> write_lock(&tasklist_lock) 267 * -> do_notify_parent() 268 * -> wake_up_parent() 269 * -> try_to_wake_up() 270 * -> spin_lock_irq(&parent_rq->lock) 271 * 272 * If the parent's rq happens to be on CPU#0, we'll wait for the rq->lock 273 * of that CPU which will not be released, because there we wait for the 274 * tasklist_lock to become available. 275 */ 276#define __ARCH_WANT_UNLOCKED_CTXSW 277 278#define ARCH_HAS_PREFETCH_SWITCH_STACK 279#define ia64_platform_is(x) (strcmp(x, platform_name) == 0) 280 281void cpu_idle_wait(void); 282 283#define arch_align_stack(x) (x) 284 285#endif /* __KERNEL__ */ 286 287#endif /* __ASSEMBLY__ */ 288 289#endif /* _ASM_IA64_SYSTEM_H */