at v2.6.15 607 lines 22 kB view raw
1#ifndef _ASM_IA64_PGTABLE_H 2#define _ASM_IA64_PGTABLE_H 3 4/* 5 * This file contains the functions and defines necessary to modify and use 6 * the IA-64 page table tree. 7 * 8 * This hopefully works with any (fixed) IA-64 page-size, as defined 9 * in <asm/page.h>. 10 * 11 * Copyright (C) 1998-2005 Hewlett-Packard Co 12 * David Mosberger-Tang <davidm@hpl.hp.com> 13 */ 14 15#include <linux/config.h> 16 17#include <asm/mman.h> 18#include <asm/page.h> 19#include <asm/processor.h> 20#include <asm/system.h> 21#include <asm/types.h> 22 23#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ 24 25/* 26 * First, define the various bits in a PTE. Note that the PTE format 27 * matches the VHPT short format, the firt doubleword of the VHPD long 28 * format, and the first doubleword of the TLB insertion format. 29 */ 30#define _PAGE_P_BIT 0 31#define _PAGE_A_BIT 5 32#define _PAGE_D_BIT 6 33 34#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ 35#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ 36#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ 37#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ 38#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ 39#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ 40#define _PAGE_MA_MASK (0x7 << 2) 41#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ 42#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ 43#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ 44#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ 45#define _PAGE_PL_MASK (3 << 7) 46#define _PAGE_AR_R (0 << 9) /* read only */ 47#define _PAGE_AR_RX (1 << 9) /* read & execute */ 48#define _PAGE_AR_RW (2 << 9) /* read & write */ 49#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ 50#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ 51#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ 52#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ 53#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ 54#define _PAGE_AR_MASK (7 << 9) 55#define _PAGE_AR_SHIFT 9 56#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ 57#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ 58#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) 59#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ 60#define _PAGE_PROTNONE (__IA64_UL(1) << 63) 61 62/* Valid only for a PTE with the present bit cleared: */ 63#define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */ 64 65#define _PFN_MASK _PAGE_PPN_MASK 66/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ 67#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) 68 69#define _PAGE_SIZE_4K 12 70#define _PAGE_SIZE_8K 13 71#define _PAGE_SIZE_16K 14 72#define _PAGE_SIZE_64K 16 73#define _PAGE_SIZE_256K 18 74#define _PAGE_SIZE_1M 20 75#define _PAGE_SIZE_4M 22 76#define _PAGE_SIZE_16M 24 77#define _PAGE_SIZE_64M 26 78#define _PAGE_SIZE_256M 28 79#define _PAGE_SIZE_1G 30 80#define _PAGE_SIZE_4G 32 81 82#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB 83#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB 84#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED 85 86/* 87 * How many pointers will a page table level hold expressed in shift 88 */ 89#define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3) 90 91/* 92 * Definitions for fourth level: 93 */ 94#define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT)) 95 96/* 97 * Definitions for third level: 98 * 99 * PMD_SHIFT determines the size of the area a third-level page table 100 * can map. 101 */ 102#define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT)) 103#define PMD_SIZE (1UL << PMD_SHIFT) 104#define PMD_MASK (~(PMD_SIZE-1)) 105#define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT)) 106 107#ifdef CONFIG_PGTABLE_4 108/* 109 * Definitions for second level: 110 * 111 * PUD_SHIFT determines the size of the area a second-level page table 112 * can map. 113 */ 114#define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 115#define PUD_SIZE (1UL << PUD_SHIFT) 116#define PUD_MASK (~(PUD_SIZE-1)) 117#define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT)) 118#endif 119 120/* 121 * Definitions for first level: 122 * 123 * PGDIR_SHIFT determines what a first-level page table entry can map. 124 */ 125#ifdef CONFIG_PGTABLE_4 126#define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT)) 127#else 128#define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 129#endif 130#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) 131#define PGDIR_MASK (~(PGDIR_SIZE-1)) 132#define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT 133#define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT) 134#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ 135#define FIRST_USER_ADDRESS 0 136 137/* 138 * All the normal masks have the "page accessed" bits on, as any time 139 * they are used, the page is accessed. They are cleared only by the 140 * page-out routines. 141 */ 142#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) 143#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) 144#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 145#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 146#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 147#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) 148#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) 149#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) 150 151# ifndef __ASSEMBLY__ 152 153#include <linux/sched.h> /* for mm_struct */ 154#include <asm/bitops.h> 155#include <asm/cacheflush.h> 156#include <asm/mmu_context.h> 157#include <asm/processor.h> 158 159/* 160 * Next come the mappings that determine how mmap() protection bits 161 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The 162 * _P version gets used for a private shared memory segment, the _S 163 * version gets used for a shared memory segment with MAP_SHARED on. 164 * In a private shared memory segment, we do a copy-on-write if a task 165 * attempts to write to the page. 166 */ 167 /* xwr */ 168#define __P000 PAGE_NONE 169#define __P001 PAGE_READONLY 170#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ 171#define __P011 PAGE_READONLY /* ditto */ 172#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 173#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 174#define __P110 PAGE_COPY_EXEC 175#define __P111 PAGE_COPY_EXEC 176 177#define __S000 PAGE_NONE 178#define __S001 PAGE_READONLY 179#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ 180#define __S011 PAGE_SHARED 181#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 182#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 183#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 184#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 185 186#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 187#ifdef CONFIG_PGTABLE_4 188#define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 189#endif 190#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 191#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 192 193 194/* 195 * Some definitions to translate between mem_map, PTEs, and page addresses: 196 */ 197 198 199/* Quick test to see if ADDR is a (potentially) valid physical address. */ 200static inline long 201ia64_phys_addr_valid (unsigned long addr) 202{ 203 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; 204} 205 206/* 207 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 208 * memory. For the return value to be meaningful, ADDR must be >= 209 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 210 * require a hash-, or multi-level tree-lookup or something of that 211 * sort) but it guarantees to return TRUE only if accessing the page 212 * at that address does not cause an error. Note that there may be 213 * addresses for which kern_addr_valid() returns FALSE even though an 214 * access would not cause an error (e.g., this is typically true for 215 * memory mapped I/O regions. 216 * 217 * XXX Need to implement this for IA-64. 218 */ 219#define kern_addr_valid(addr) (1) 220 221 222/* 223 * Now come the defines and routines to manage and access the three-level 224 * page table. 225 */ 226 227/* 228 * On some architectures, special things need to be done when setting 229 * the PTE in a page table. Nothing special needs to be on IA-64. 230 */ 231#define set_pte(ptep, pteval) (*(ptep) = (pteval)) 232#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 233 234#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) 235#ifdef CONFIG_VIRTUAL_MEM_MAP 236# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 237# define VMALLOC_END vmalloc_end 238 extern unsigned long vmalloc_end; 239#else 240# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 241#endif 242 243/* fs/proc/kcore.c */ 244#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) 245#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) 246 247#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3) 248#define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */ 249 250/* 251 * Conversion functions: convert page frame number (pfn) and a protection value to a page 252 * table entry (pte). 253 */ 254#define pfn_pte(pfn, pgprot) \ 255({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) 256 257/* Extract pfn from pte. */ 258#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) 259 260#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 261 262/* This takes a physical page address that is used by the remapping functions */ 263#define mk_pte_phys(physpage, pgprot) \ 264({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) 265 266#define pte_modify(_pte, newprot) \ 267 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) 268 269#define pte_none(pte) (!pte_val(pte)) 270#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) 271#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) 272/* pte_page() returns the "struct page *" corresponding to the PTE: */ 273#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) 274 275#define pmd_none(pmd) (!pmd_val(pmd)) 276#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) 277#define pmd_present(pmd) (pmd_val(pmd) != 0UL) 278#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) 279#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) 280#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) 281 282#define pud_none(pud) (!pud_val(pud)) 283#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) 284#define pud_present(pud) (pud_val(pud) != 0UL) 285#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) 286#define pud_page(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK)) 287 288#ifdef CONFIG_PGTABLE_4 289#define pgd_none(pgd) (!pgd_val(pgd)) 290#define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd))) 291#define pgd_present(pgd) (pgd_val(pgd) != 0UL) 292#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) 293#define pgd_page(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK)) 294#endif 295 296/* 297 * The following have defined behavior only work if pte_present() is true. 298 */ 299#define pte_user(pte) ((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3) 300#define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6) 301#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) 302#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) 303#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) 304#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) 305#define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0) 306/* 307 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the 308 * access rights: 309 */ 310#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) 311#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) 312#define pte_mkexec(pte) (__pte(pte_val(pte) | _PAGE_AR_RX)) 313#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) 314#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) 315#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) 316#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) 317#define pte_mkhuge(pte) (__pte(pte_val(pte) | _PAGE_P)) 318 319/* 320 * Macro to a page protection value as "uncacheable". Note that "protection" is really a 321 * misnomer here as the protection value contains the memory attribute bits, dirty bits, 322 * and various other bits as well. 323 */ 324#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) 325 326/* 327 * Macro to make mark a page protection value as "write-combining". 328 * Note that "protection" is really a misnomer here as the protection 329 * value contains the memory attribute bits, dirty bits, and various 330 * other bits as well. Accesses through a write-combining translation 331 * works bypasses the caches, but does allow for consecutive writes to 332 * be combined into single (but larger) write transactions. 333 */ 334#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) 335 336static inline unsigned long 337pgd_index (unsigned long address) 338{ 339 unsigned long region = address >> 61; 340 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); 341 342 return (region << (PAGE_SHIFT - 6)) | l1index; 343} 344 345/* The offset in the 1-level directory is given by the 3 region bits 346 (61..63) and the level-1 bits. */ 347static inline pgd_t* 348pgd_offset (struct mm_struct *mm, unsigned long address) 349{ 350 return mm->pgd + pgd_index(address); 351} 352 353/* In the kernel's mapped region we completely ignore the region number 354 (since we know it's in region number 5). */ 355#define pgd_offset_k(addr) \ 356 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) 357 358/* Look up a pgd entry in the gate area. On IA-64, the gate-area 359 resides in the kernel-mapped segment, hence we use pgd_offset_k() 360 here. */ 361#define pgd_offset_gate(mm, addr) pgd_offset_k(addr) 362 363#ifdef CONFIG_PGTABLE_4 364/* Find an entry in the second-level page table.. */ 365#define pud_offset(dir,addr) \ 366 ((pud_t *) pgd_page(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))) 367#endif 368 369/* Find an entry in the third-level page table.. */ 370#define pmd_offset(dir,addr) \ 371 ((pmd_t *) pud_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) 372 373/* 374 * Find an entry in the third-level page table. This looks more complicated than it 375 * should be because some platforms place page tables in high memory. 376 */ 377#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 378#define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) 379#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 380#define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr) 381#define pte_unmap(pte) do { } while (0) 382#define pte_unmap_nested(pte) do { } while (0) 383 384/* atomic versions of the some PTE manipulations: */ 385 386static inline int 387ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 388{ 389#ifdef CONFIG_SMP 390 if (!pte_young(*ptep)) 391 return 0; 392 return test_and_clear_bit(_PAGE_A_BIT, ptep); 393#else 394 pte_t pte = *ptep; 395 if (!pte_young(pte)) 396 return 0; 397 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 398 return 1; 399#endif 400} 401 402static inline int 403ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 404{ 405#ifdef CONFIG_SMP 406 if (!pte_dirty(*ptep)) 407 return 0; 408 return test_and_clear_bit(_PAGE_D_BIT, ptep); 409#else 410 pte_t pte = *ptep; 411 if (!pte_dirty(pte)) 412 return 0; 413 set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte)); 414 return 1; 415#endif 416} 417 418static inline pte_t 419ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 420{ 421#ifdef CONFIG_SMP 422 return __pte(xchg((long *) ptep, 0)); 423#else 424 pte_t pte = *ptep; 425 pte_clear(mm, addr, ptep); 426 return pte; 427#endif 428} 429 430static inline void 431ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 432{ 433#ifdef CONFIG_SMP 434 unsigned long new, old; 435 436 do { 437 old = pte_val(*ptep); 438 new = pte_val(pte_wrprotect(__pte (old))); 439 } while (cmpxchg((unsigned long *) ptep, old, new) != old); 440#else 441 pte_t old_pte = *ptep; 442 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 443#endif 444} 445 446static inline int 447pte_same (pte_t a, pte_t b) 448{ 449 return pte_val(a) == pte_val(b); 450} 451 452#define update_mmu_cache(vma, address, pte) do { } while (0) 453 454extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 455extern void paging_init (void); 456 457/* 458 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of 459 * bits in the swap-type field of the swap pte. It would be nice to 460 * enforce that, but we can't easily include <linux/swap.h> here. 461 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). 462 * 463 * Format of swap pte: 464 * bit 0 : present bit (must be zero) 465 * bit 1 : _PAGE_FILE (must be zero) 466 * bits 2- 8: swap-type 467 * bits 9-62: swap offset 468 * bit 63 : _PAGE_PROTNONE bit 469 * 470 * Format of file pte: 471 * bit 0 : present bit (must be zero) 472 * bit 1 : _PAGE_FILE (must be one) 473 * bits 2-62: file_offset/PAGE_SIZE 474 * bit 63 : _PAGE_PROTNONE bit 475 */ 476#define __swp_type(entry) (((entry).val >> 2) & 0x7f) 477#define __swp_offset(entry) (((entry).val << 1) >> 10) 478#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) }) 479#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 480#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 481 482#define PTE_FILE_MAX_BITS 61 483#define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3) 484#define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE }) 485 486#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 487 remap_pfn_range(vma, vaddr, pfn, size, prot) 488 489#define MK_IOSPACE_PFN(space, pfn) (pfn) 490#define GET_IOSPACE(pfn) 0 491#define GET_PFN(pfn) (pfn) 492 493/* 494 * ZERO_PAGE is a global shared page that is always zero: used 495 * for zero-mapped memory areas etc.. 496 */ 497extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 498extern struct page *zero_page_memmap_ptr; 499#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) 500 501/* We provide our own get_unmapped_area to cope with VA holes for userland */ 502#define HAVE_ARCH_UNMAPPED_AREA 503 504#ifdef CONFIG_HUGETLB_PAGE 505#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) 506#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) 507#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) 508struct mmu_gather; 509void hugetlb_free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 510 unsigned long end, unsigned long floor, unsigned long ceiling); 511#endif 512 513/* 514 * IA-64 doesn't have any external MMU info: the page tables contain all the necessary 515 * information. However, we use this routine to take care of any (delayed) i-cache 516 * flushing that may be necessary. 517 */ 518extern void lazy_mmu_prot_update (pte_t pte); 519 520#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 521/* 522 * Update PTEP with ENTRY, which is guaranteed to be a less 523 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and 524 * WRITABLE bits turned on, when the value at PTEP did not. The 525 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. 526 * 527 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without 528 * having to worry about races. On SMP machines, there are only two 529 * cases where this is true: 530 * 531 * (1) *PTEP has the PRESENT bit turned OFF 532 * (2) ENTRY has the DIRTY bit turned ON 533 * 534 * On ia64, we could implement this routine with a cmpxchg()-loop 535 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. 536 * However, like on x86, we can get a more streamlined version by 537 * observing that it is OK to drop ACCESSED bit updates when 538 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is 539 * result in an extra Access-bit fault, which would then turn on the 540 * ACCESSED bit in the low-level fault handler (iaccess_bit or 541 * daccess_bit in ivt.S). 542 */ 543#ifdef CONFIG_SMP 544# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 545do { \ 546 if (__safely_writable) { \ 547 set_pte(__ptep, __entry); \ 548 flush_tlb_page(__vma, __addr); \ 549 } \ 550} while (0) 551#else 552# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 553 ptep_establish(__vma, __addr, __ptep, __entry) 554#endif 555 556# ifdef CONFIG_VIRTUAL_MEM_MAP 557 /* arch mem_map init routine is needed due to holes in a virtual mem_map */ 558# define __HAVE_ARCH_MEMMAP_INIT 559 extern void memmap_init (unsigned long size, int nid, unsigned long zone, 560 unsigned long start_pfn); 561# endif /* CONFIG_VIRTUAL_MEM_MAP */ 562# endif /* !__ASSEMBLY__ */ 563 564/* 565 * Identity-mapped regions use a large page size. We'll call such large pages 566 * "granules". If you can think of a better name that's unambiguous, let me 567 * know... 568 */ 569#if defined(CONFIG_IA64_GRANULE_64MB) 570# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M 571#elif defined(CONFIG_IA64_GRANULE_16MB) 572# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M 573#endif 574#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) 575/* 576 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): 577 */ 578#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M 579#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) 580 581/* 582 * No page table caches to initialise 583 */ 584#define pgtable_cache_init() do { } while (0) 585 586/* These tell get_user_pages() that the first gate page is accessible from user-level. */ 587#define FIXADDR_USER_START GATE_ADDR 588#ifdef HAVE_BUGGY_SEGREL 589# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) 590#else 591# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) 592#endif 593 594#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 595#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 596#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 597#define __HAVE_ARCH_PTEP_SET_WRPROTECT 598#define __HAVE_ARCH_PTE_SAME 599#define __HAVE_ARCH_PGD_OFFSET_GATE 600#define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE 601 602#ifndef CONFIG_PGTABLE_4 603#include <asm-generic/pgtable-nopud.h> 604#endif 605#include <asm-generic/pgtable.h> 606 607#endif /* _ASM_IA64_PGTABLE_H */