at v2.6.15 423 lines 11 kB view raw
1#ifndef _ASM_IA64_BITOPS_H 2#define _ASM_IA64_BITOPS_H 3 4/* 5 * Copyright (C) 1998-2003 Hewlett-Packard Co 6 * David Mosberger-Tang <davidm@hpl.hp.com> 7 * 8 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64 O(1) 9 * scheduler patch 10 */ 11 12#include <linux/compiler.h> 13#include <linux/types.h> 14#include <asm/bitops.h> 15#include <asm/intrinsics.h> 16 17/** 18 * set_bit - Atomically set a bit in memory 19 * @nr: the bit to set 20 * @addr: the address to start counting from 21 * 22 * This function is atomic and may not be reordered. See __set_bit() 23 * if you do not require the atomic guarantees. 24 * Note that @nr may be almost arbitrarily large; this function is not 25 * restricted to acting on a single-word quantity. 26 * 27 * The address must be (at least) "long" aligned. 28 * Note that there are driver (e.g., eepro100) which use these operations to operate on 29 * hw-defined data-structures, so we can't easily change these operations to force a 30 * bigger alignment. 31 * 32 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1). 33 */ 34static __inline__ void 35set_bit (int nr, volatile void *addr) 36{ 37 __u32 bit, old, new; 38 volatile __u32 *m; 39 CMPXCHG_BUGCHECK_DECL 40 41 m = (volatile __u32 *) addr + (nr >> 5); 42 bit = 1 << (nr & 31); 43 do { 44 CMPXCHG_BUGCHECK(m); 45 old = *m; 46 new = old | bit; 47 } while (cmpxchg_acq(m, old, new) != old); 48} 49 50/** 51 * __set_bit - Set a bit in memory 52 * @nr: the bit to set 53 * @addr: the address to start counting from 54 * 55 * Unlike set_bit(), this function is non-atomic and may be reordered. 56 * If it's called on the same region of memory simultaneously, the effect 57 * may be that only one operation succeeds. 58 */ 59static __inline__ void 60__set_bit (int nr, volatile void *addr) 61{ 62 *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31)); 63} 64 65/* 66 * clear_bit() has "acquire" semantics. 67 */ 68#define smp_mb__before_clear_bit() smp_mb() 69#define smp_mb__after_clear_bit() do { /* skip */; } while (0) 70 71/** 72 * clear_bit - Clears a bit in memory 73 * @nr: Bit to clear 74 * @addr: Address to start counting from 75 * 76 * clear_bit() is atomic and may not be reordered. However, it does 77 * not contain a memory barrier, so if it is used for locking purposes, 78 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() 79 * in order to ensure changes are visible on other processors. 80 */ 81static __inline__ void 82clear_bit (int nr, volatile void *addr) 83{ 84 __u32 mask, old, new; 85 volatile __u32 *m; 86 CMPXCHG_BUGCHECK_DECL 87 88 m = (volatile __u32 *) addr + (nr >> 5); 89 mask = ~(1 << (nr & 31)); 90 do { 91 CMPXCHG_BUGCHECK(m); 92 old = *m; 93 new = old & mask; 94 } while (cmpxchg_acq(m, old, new) != old); 95} 96 97/** 98 * __clear_bit - Clears a bit in memory (non-atomic version) 99 */ 100static __inline__ void 101__clear_bit (int nr, volatile void *addr) 102{ 103 volatile __u32 *p = (__u32 *) addr + (nr >> 5); 104 __u32 m = 1 << (nr & 31); 105 *p &= ~m; 106} 107 108/** 109 * change_bit - Toggle a bit in memory 110 * @nr: Bit to clear 111 * @addr: Address to start counting from 112 * 113 * change_bit() is atomic and may not be reordered. 114 * Note that @nr may be almost arbitrarily large; this function is not 115 * restricted to acting on a single-word quantity. 116 */ 117static __inline__ void 118change_bit (int nr, volatile void *addr) 119{ 120 __u32 bit, old, new; 121 volatile __u32 *m; 122 CMPXCHG_BUGCHECK_DECL 123 124 m = (volatile __u32 *) addr + (nr >> 5); 125 bit = (1 << (nr & 31)); 126 do { 127 CMPXCHG_BUGCHECK(m); 128 old = *m; 129 new = old ^ bit; 130 } while (cmpxchg_acq(m, old, new) != old); 131} 132 133/** 134 * __change_bit - Toggle a bit in memory 135 * @nr: the bit to set 136 * @addr: the address to start counting from 137 * 138 * Unlike change_bit(), this function is non-atomic and may be reordered. 139 * If it's called on the same region of memory simultaneously, the effect 140 * may be that only one operation succeeds. 141 */ 142static __inline__ void 143__change_bit (int nr, volatile void *addr) 144{ 145 *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31)); 146} 147 148/** 149 * test_and_set_bit - Set a bit and return its old value 150 * @nr: Bit to set 151 * @addr: Address to count from 152 * 153 * This operation is atomic and cannot be reordered. 154 * It also implies a memory barrier. 155 */ 156static __inline__ int 157test_and_set_bit (int nr, volatile void *addr) 158{ 159 __u32 bit, old, new; 160 volatile __u32 *m; 161 CMPXCHG_BUGCHECK_DECL 162 163 m = (volatile __u32 *) addr + (nr >> 5); 164 bit = 1 << (nr & 31); 165 do { 166 CMPXCHG_BUGCHECK(m); 167 old = *m; 168 new = old | bit; 169 } while (cmpxchg_acq(m, old, new) != old); 170 return (old & bit) != 0; 171} 172 173/** 174 * __test_and_set_bit - Set a bit and return its old value 175 * @nr: Bit to set 176 * @addr: Address to count from 177 * 178 * This operation is non-atomic and can be reordered. 179 * If two examples of this operation race, one can appear to succeed 180 * but actually fail. You must protect multiple accesses with a lock. 181 */ 182static __inline__ int 183__test_and_set_bit (int nr, volatile void *addr) 184{ 185 __u32 *p = (__u32 *) addr + (nr >> 5); 186 __u32 m = 1 << (nr & 31); 187 int oldbitset = (*p & m) != 0; 188 189 *p |= m; 190 return oldbitset; 191} 192 193/** 194 * test_and_clear_bit - Clear a bit and return its old value 195 * @nr: Bit to set 196 * @addr: Address to count from 197 * 198 * This operation is atomic and cannot be reordered. 199 * It also implies a memory barrier. 200 */ 201static __inline__ int 202test_and_clear_bit (int nr, volatile void *addr) 203{ 204 __u32 mask, old, new; 205 volatile __u32 *m; 206 CMPXCHG_BUGCHECK_DECL 207 208 m = (volatile __u32 *) addr + (nr >> 5); 209 mask = ~(1 << (nr & 31)); 210 do { 211 CMPXCHG_BUGCHECK(m); 212 old = *m; 213 new = old & mask; 214 } while (cmpxchg_acq(m, old, new) != old); 215 return (old & ~mask) != 0; 216} 217 218/** 219 * __test_and_clear_bit - Clear a bit and return its old value 220 * @nr: Bit to set 221 * @addr: Address to count from 222 * 223 * This operation is non-atomic and can be reordered. 224 * If two examples of this operation race, one can appear to succeed 225 * but actually fail. You must protect multiple accesses with a lock. 226 */ 227static __inline__ int 228__test_and_clear_bit(int nr, volatile void * addr) 229{ 230 __u32 *p = (__u32 *) addr + (nr >> 5); 231 __u32 m = 1 << (nr & 31); 232 int oldbitset = *p & m; 233 234 *p &= ~m; 235 return oldbitset; 236} 237 238/** 239 * test_and_change_bit - Change a bit and return its old value 240 * @nr: Bit to set 241 * @addr: Address to count from 242 * 243 * This operation is atomic and cannot be reordered. 244 * It also implies a memory barrier. 245 */ 246static __inline__ int 247test_and_change_bit (int nr, volatile void *addr) 248{ 249 __u32 bit, old, new; 250 volatile __u32 *m; 251 CMPXCHG_BUGCHECK_DECL 252 253 m = (volatile __u32 *) addr + (nr >> 5); 254 bit = (1 << (nr & 31)); 255 do { 256 CMPXCHG_BUGCHECK(m); 257 old = *m; 258 new = old ^ bit; 259 } while (cmpxchg_acq(m, old, new) != old); 260 return (old & bit) != 0; 261} 262 263/* 264 * WARNING: non atomic version. 265 */ 266static __inline__ int 267__test_and_change_bit (int nr, void *addr) 268{ 269 __u32 old, bit = (1 << (nr & 31)); 270 __u32 *m = (__u32 *) addr + (nr >> 5); 271 272 old = *m; 273 *m = old ^ bit; 274 return (old & bit) != 0; 275} 276 277static __inline__ int 278test_bit (int nr, const volatile void *addr) 279{ 280 return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31)); 281} 282 283/** 284 * ffz - find the first zero bit in a long word 285 * @x: The long word to find the bit in 286 * 287 * Returns the bit-number (0..63) of the first (least significant) zero bit. Undefined if 288 * no zero exists, so code should check against ~0UL first... 289 */ 290static inline unsigned long 291ffz (unsigned long x) 292{ 293 unsigned long result; 294 295 result = ia64_popcnt(x & (~x - 1)); 296 return result; 297} 298 299/** 300 * __ffs - find first bit in word. 301 * @x: The word to search 302 * 303 * Undefined if no bit exists, so code should check against 0 first. 304 */ 305static __inline__ unsigned long 306__ffs (unsigned long x) 307{ 308 unsigned long result; 309 310 result = ia64_popcnt((x-1) & ~x); 311 return result; 312} 313 314#ifdef __KERNEL__ 315 316/* 317 * Return bit number of last (most-significant) bit set. Undefined 318 * for x==0. Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3). 319 */ 320static inline unsigned long 321ia64_fls (unsigned long x) 322{ 323 long double d = x; 324 long exp; 325 326 exp = ia64_getf_exp(d); 327 return exp - 0xffff; 328} 329 330/* 331 * Find the last (most significant) bit set. Returns 0 for x==0 and 332 * bits are numbered from 1..32 (e.g., fls(9) == 4). 333 */ 334static inline int 335fls (int t) 336{ 337 unsigned long x = t & 0xffffffffu; 338 339 if (!x) 340 return 0; 341 x |= x >> 1; 342 x |= x >> 2; 343 x |= x >> 4; 344 x |= x >> 8; 345 x |= x >> 16; 346 return ia64_popcnt(x); 347} 348 349/* 350 * ffs: find first bit set. This is defined the same way as the libc and compiler builtin 351 * ffs routines, therefore differs in spirit from the above ffz (man ffs): it operates on 352 * "int" values only and the result value is the bit number + 1. ffs(0) is defined to 353 * return zero. 354 */ 355#define ffs(x) __builtin_ffs(x) 356 357/* 358 * hweightN: returns the hamming weight (i.e. the number 359 * of bits set) of a N-bit word 360 */ 361static __inline__ unsigned long 362hweight64 (unsigned long x) 363{ 364 unsigned long result; 365 result = ia64_popcnt(x); 366 return result; 367} 368 369#define hweight32(x) (unsigned int) hweight64((x) & 0xfffffffful) 370#define hweight16(x) (unsigned int) hweight64((x) & 0xfffful) 371#define hweight8(x) (unsigned int) hweight64((x) & 0xfful) 372 373#endif /* __KERNEL__ */ 374 375extern int __find_next_zero_bit (const void *addr, unsigned long size, 376 unsigned long offset); 377extern int __find_next_bit(const void *addr, unsigned long size, 378 unsigned long offset); 379 380#define find_next_zero_bit(addr, size, offset) \ 381 __find_next_zero_bit((addr), (size), (offset)) 382#define find_next_bit(addr, size, offset) \ 383 __find_next_bit((addr), (size), (offset)) 384 385/* 386 * The optimizer actually does good code for this case.. 387 */ 388#define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0) 389 390#define find_first_bit(addr, size) find_next_bit((addr), (size), 0) 391 392#ifdef __KERNEL__ 393 394#define __clear_bit(nr, addr) clear_bit(nr, addr) 395 396#define ext2_set_bit test_and_set_bit 397#define ext2_set_bit_atomic(l,n,a) test_and_set_bit(n,a) 398#define ext2_clear_bit test_and_clear_bit 399#define ext2_clear_bit_atomic(l,n,a) test_and_clear_bit(n,a) 400#define ext2_test_bit test_bit 401#define ext2_find_first_zero_bit find_first_zero_bit 402#define ext2_find_next_zero_bit find_next_zero_bit 403 404/* Bitmap functions for the minix filesystem. */ 405#define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) 406#define minix_set_bit(nr,addr) set_bit(nr,addr) 407#define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) 408#define minix_test_bit(nr,addr) test_bit(nr,addr) 409#define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) 410 411static inline int 412sched_find_first_bit (unsigned long *b) 413{ 414 if (unlikely(b[0])) 415 return __ffs(b[0]); 416 if (unlikely(b[1])) 417 return 64 + __ffs(b[1]); 418 return __ffs(b[2]) + 128; 419} 420 421#endif /* __KERNEL__ */ 422 423#endif /* _ASM_IA64_BITOPS_H */