at v2.6.15-rc7 5220 lines 149 kB view raw
1/* SCTP kernel reference Implementation 2 * (C) Copyright IBM Corp. 2001, 2004 3 * Copyright (c) 1999-2000 Cisco, Inc. 4 * Copyright (c) 1999-2001 Motorola, Inc. 5 * Copyright (c) 2001-2003 Intel Corp. 6 * Copyright (c) 2001-2002 Nokia, Inc. 7 * Copyright (c) 2001 La Monte H.P. Yarroll 8 * 9 * This file is part of the SCTP kernel reference Implementation 10 * 11 * These functions interface with the sockets layer to implement the 12 * SCTP Extensions for the Sockets API. 13 * 14 * Note that the descriptions from the specification are USER level 15 * functions--this file is the functions which populate the struct proto 16 * for SCTP which is the BOTTOM of the sockets interface. 17 * 18 * The SCTP reference implementation is free software; 19 * you can redistribute it and/or modify it under the terms of 20 * the GNU General Public License as published by 21 * the Free Software Foundation; either version 2, or (at your option) 22 * any later version. 23 * 24 * The SCTP reference implementation is distributed in the hope that it 25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied 26 * ************************ 27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 28 * See the GNU General Public License for more details. 29 * 30 * You should have received a copy of the GNU General Public License 31 * along with GNU CC; see the file COPYING. If not, write to 32 * the Free Software Foundation, 59 Temple Place - Suite 330, 33 * Boston, MA 02111-1307, USA. 34 * 35 * Please send any bug reports or fixes you make to the 36 * email address(es): 37 * lksctp developers <lksctp-developers@lists.sourceforge.net> 38 * 39 * Or submit a bug report through the following website: 40 * http://www.sf.net/projects/lksctp 41 * 42 * Written or modified by: 43 * La Monte H.P. Yarroll <piggy@acm.org> 44 * Narasimha Budihal <narsi@refcode.org> 45 * Karl Knutson <karl@athena.chicago.il.us> 46 * Jon Grimm <jgrimm@us.ibm.com> 47 * Xingang Guo <xingang.guo@intel.com> 48 * Daisy Chang <daisyc@us.ibm.com> 49 * Sridhar Samudrala <samudrala@us.ibm.com> 50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com> 51 * Ardelle Fan <ardelle.fan@intel.com> 52 * Ryan Layer <rmlayer@us.ibm.com> 53 * Anup Pemmaiah <pemmaiah@cc.usu.edu> 54 * Kevin Gao <kevin.gao@intel.com> 55 * 56 * Any bugs reported given to us we will try to fix... any fixes shared will 57 * be incorporated into the next SCTP release. 58 */ 59 60#include <linux/config.h> 61#include <linux/types.h> 62#include <linux/kernel.h> 63#include <linux/wait.h> 64#include <linux/time.h> 65#include <linux/ip.h> 66#include <linux/fcntl.h> 67#include <linux/poll.h> 68#include <linux/init.h> 69#include <linux/crypto.h> 70 71#include <net/ip.h> 72#include <net/icmp.h> 73#include <net/route.h> 74#include <net/ipv6.h> 75#include <net/inet_common.h> 76 77#include <linux/socket.h> /* for sa_family_t */ 78#include <net/sock.h> 79#include <net/sctp/sctp.h> 80#include <net/sctp/sm.h> 81 82/* WARNING: Please do not remove the SCTP_STATIC attribute to 83 * any of the functions below as they are used to export functions 84 * used by a project regression testsuite. 85 */ 86 87/* Forward declarations for internal helper functions. */ 88static int sctp_writeable(struct sock *sk); 89static void sctp_wfree(struct sk_buff *skb); 90static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p, 91 size_t msg_len); 92static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p); 93static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p); 94static int sctp_wait_for_accept(struct sock *sk, long timeo); 95static void sctp_wait_for_close(struct sock *sk, long timeo); 96static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 97 union sctp_addr *addr, int len); 98static int sctp_bindx_add(struct sock *, struct sockaddr *, int); 99static int sctp_bindx_rem(struct sock *, struct sockaddr *, int); 100static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int); 101static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int); 102static int sctp_send_asconf(struct sctp_association *asoc, 103 struct sctp_chunk *chunk); 104static int sctp_do_bind(struct sock *, union sctp_addr *, int); 105static int sctp_autobind(struct sock *sk); 106static void sctp_sock_migrate(struct sock *, struct sock *, 107 struct sctp_association *, sctp_socket_type_t); 108static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG; 109 110extern kmem_cache_t *sctp_bucket_cachep; 111 112/* Get the sndbuf space available at the time on the association. */ 113static inline int sctp_wspace(struct sctp_association *asoc) 114{ 115 struct sock *sk = asoc->base.sk; 116 int amt = 0; 117 118 if (asoc->ep->sndbuf_policy) { 119 /* make sure that no association uses more than sk_sndbuf */ 120 amt = sk->sk_sndbuf - asoc->sndbuf_used; 121 } else { 122 /* do socket level accounting */ 123 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 124 } 125 126 if (amt < 0) 127 amt = 0; 128 129 return amt; 130} 131 132/* Increment the used sndbuf space count of the corresponding association by 133 * the size of the outgoing data chunk. 134 * Also, set the skb destructor for sndbuf accounting later. 135 * 136 * Since it is always 1-1 between chunk and skb, and also a new skb is always 137 * allocated for chunk bundling in sctp_packet_transmit(), we can use the 138 * destructor in the data chunk skb for the purpose of the sndbuf space 139 * tracking. 140 */ 141static inline void sctp_set_owner_w(struct sctp_chunk *chunk) 142{ 143 struct sctp_association *asoc = chunk->asoc; 144 struct sock *sk = asoc->base.sk; 145 146 /* The sndbuf space is tracked per association. */ 147 sctp_association_hold(asoc); 148 149 skb_set_owner_w(chunk->skb, sk); 150 151 chunk->skb->destructor = sctp_wfree; 152 /* Save the chunk pointer in skb for sctp_wfree to use later. */ 153 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk; 154 155 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) + 156 sizeof(struct sk_buff) + 157 sizeof(struct sctp_chunk); 158 159 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 160} 161 162/* Verify that this is a valid address. */ 163static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr, 164 int len) 165{ 166 struct sctp_af *af; 167 168 /* Verify basic sockaddr. */ 169 af = sctp_sockaddr_af(sctp_sk(sk), addr, len); 170 if (!af) 171 return -EINVAL; 172 173 /* Is this a valid SCTP address? */ 174 if (!af->addr_valid(addr, sctp_sk(sk))) 175 return -EINVAL; 176 177 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr))) 178 return -EINVAL; 179 180 return 0; 181} 182 183/* Look up the association by its id. If this is not a UDP-style 184 * socket, the ID field is always ignored. 185 */ 186struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id) 187{ 188 struct sctp_association *asoc = NULL; 189 190 /* If this is not a UDP-style socket, assoc id should be ignored. */ 191 if (!sctp_style(sk, UDP)) { 192 /* Return NULL if the socket state is not ESTABLISHED. It 193 * could be a TCP-style listening socket or a socket which 194 * hasn't yet called connect() to establish an association. 195 */ 196 if (!sctp_sstate(sk, ESTABLISHED)) 197 return NULL; 198 199 /* Get the first and the only association from the list. */ 200 if (!list_empty(&sctp_sk(sk)->ep->asocs)) 201 asoc = list_entry(sctp_sk(sk)->ep->asocs.next, 202 struct sctp_association, asocs); 203 return asoc; 204 } 205 206 /* Otherwise this is a UDP-style socket. */ 207 if (!id || (id == (sctp_assoc_t)-1)) 208 return NULL; 209 210 spin_lock_bh(&sctp_assocs_id_lock); 211 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id); 212 spin_unlock_bh(&sctp_assocs_id_lock); 213 214 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead) 215 return NULL; 216 217 return asoc; 218} 219 220/* Look up the transport from an address and an assoc id. If both address and 221 * id are specified, the associations matching the address and the id should be 222 * the same. 223 */ 224static struct sctp_transport *sctp_addr_id2transport(struct sock *sk, 225 struct sockaddr_storage *addr, 226 sctp_assoc_t id) 227{ 228 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL; 229 struct sctp_transport *transport; 230 union sctp_addr *laddr = (union sctp_addr *)addr; 231 232 laddr->v4.sin_port = ntohs(laddr->v4.sin_port); 233 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep, 234 (union sctp_addr *)addr, 235 &transport); 236 laddr->v4.sin_port = htons(laddr->v4.sin_port); 237 238 if (!addr_asoc) 239 return NULL; 240 241 id_asoc = sctp_id2assoc(sk, id); 242 if (id_asoc && (id_asoc != addr_asoc)) 243 return NULL; 244 245 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 246 (union sctp_addr *)addr); 247 248 return transport; 249} 250 251/* API 3.1.2 bind() - UDP Style Syntax 252 * The syntax of bind() is, 253 * 254 * ret = bind(int sd, struct sockaddr *addr, int addrlen); 255 * 256 * sd - the socket descriptor returned by socket(). 257 * addr - the address structure (struct sockaddr_in or struct 258 * sockaddr_in6 [RFC 2553]), 259 * addr_len - the size of the address structure. 260 */ 261SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len) 262{ 263 int retval = 0; 264 265 sctp_lock_sock(sk); 266 267 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n", 268 sk, addr, addr_len); 269 270 /* Disallow binding twice. */ 271 if (!sctp_sk(sk)->ep->base.bind_addr.port) 272 retval = sctp_do_bind(sk, (union sctp_addr *)addr, 273 addr_len); 274 else 275 retval = -EINVAL; 276 277 sctp_release_sock(sk); 278 279 return retval; 280} 281 282static long sctp_get_port_local(struct sock *, union sctp_addr *); 283 284/* Verify this is a valid sockaddr. */ 285static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt, 286 union sctp_addr *addr, int len) 287{ 288 struct sctp_af *af; 289 290 /* Check minimum size. */ 291 if (len < sizeof (struct sockaddr)) 292 return NULL; 293 294 /* Does this PF support this AF? */ 295 if (!opt->pf->af_supported(addr->sa.sa_family, opt)) 296 return NULL; 297 298 /* If we get this far, af is valid. */ 299 af = sctp_get_af_specific(addr->sa.sa_family); 300 301 if (len < af->sockaddr_len) 302 return NULL; 303 304 return af; 305} 306 307/* Bind a local address either to an endpoint or to an association. */ 308SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len) 309{ 310 struct sctp_sock *sp = sctp_sk(sk); 311 struct sctp_endpoint *ep = sp->ep; 312 struct sctp_bind_addr *bp = &ep->base.bind_addr; 313 struct sctp_af *af; 314 unsigned short snum; 315 int ret = 0; 316 317 /* Common sockaddr verification. */ 318 af = sctp_sockaddr_af(sp, addr, len); 319 if (!af) { 320 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n", 321 sk, addr, len); 322 return -EINVAL; 323 } 324 325 snum = ntohs(addr->v4.sin_port); 326 327 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ", 328 ", port: %d, new port: %d, len: %d)\n", 329 sk, 330 addr, 331 bp->port, snum, 332 len); 333 334 /* PF specific bind() address verification. */ 335 if (!sp->pf->bind_verify(sp, addr)) 336 return -EADDRNOTAVAIL; 337 338 /* We must either be unbound, or bind to the same port. */ 339 if (bp->port && (snum != bp->port)) { 340 SCTP_DEBUG_PRINTK("sctp_do_bind:" 341 " New port %d does not match existing port " 342 "%d.\n", snum, bp->port); 343 return -EINVAL; 344 } 345 346 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 347 return -EACCES; 348 349 /* Make sure we are allowed to bind here. 350 * The function sctp_get_port_local() does duplicate address 351 * detection. 352 */ 353 if ((ret = sctp_get_port_local(sk, addr))) { 354 if (ret == (long) sk) { 355 /* This endpoint has a conflicting address. */ 356 return -EINVAL; 357 } else { 358 return -EADDRINUSE; 359 } 360 } 361 362 /* Refresh ephemeral port. */ 363 if (!bp->port) 364 bp->port = inet_sk(sk)->num; 365 366 /* Add the address to the bind address list. */ 367 sctp_local_bh_disable(); 368 sctp_write_lock(&ep->base.addr_lock); 369 370 /* Use GFP_ATOMIC since BHs are disabled. */ 371 addr->v4.sin_port = ntohs(addr->v4.sin_port); 372 ret = sctp_add_bind_addr(bp, addr, GFP_ATOMIC); 373 addr->v4.sin_port = htons(addr->v4.sin_port); 374 sctp_write_unlock(&ep->base.addr_lock); 375 sctp_local_bh_enable(); 376 377 /* Copy back into socket for getsockname() use. */ 378 if (!ret) { 379 inet_sk(sk)->sport = htons(inet_sk(sk)->num); 380 af->to_sk_saddr(addr, sk); 381 } 382 383 return ret; 384} 385 386 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks 387 * 388 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged 389 * at any one time. If a sender, after sending an ASCONF chunk, decides 390 * it needs to transfer another ASCONF Chunk, it MUST wait until the 391 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a 392 * subsequent ASCONF. Note this restriction binds each side, so at any 393 * time two ASCONF may be in-transit on any given association (one sent 394 * from each endpoint). 395 */ 396static int sctp_send_asconf(struct sctp_association *asoc, 397 struct sctp_chunk *chunk) 398{ 399 int retval = 0; 400 401 /* If there is an outstanding ASCONF chunk, queue it for later 402 * transmission. 403 */ 404 if (asoc->addip_last_asconf) { 405 list_add_tail(&chunk->list, &asoc->addip_chunk_list); 406 goto out; 407 } 408 409 /* Hold the chunk until an ASCONF_ACK is received. */ 410 sctp_chunk_hold(chunk); 411 retval = sctp_primitive_ASCONF(asoc, chunk); 412 if (retval) 413 sctp_chunk_free(chunk); 414 else 415 asoc->addip_last_asconf = chunk; 416 417out: 418 return retval; 419} 420 421/* Add a list of addresses as bind addresses to local endpoint or 422 * association. 423 * 424 * Basically run through each address specified in the addrs/addrcnt 425 * array/length pair, determine if it is IPv6 or IPv4 and call 426 * sctp_do_bind() on it. 427 * 428 * If any of them fails, then the operation will be reversed and the 429 * ones that were added will be removed. 430 * 431 * Only sctp_setsockopt_bindx() is supposed to call this function. 432 */ 433int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt) 434{ 435 int cnt; 436 int retval = 0; 437 void *addr_buf; 438 struct sockaddr *sa_addr; 439 struct sctp_af *af; 440 441 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n", 442 sk, addrs, addrcnt); 443 444 addr_buf = addrs; 445 for (cnt = 0; cnt < addrcnt; cnt++) { 446 /* The list may contain either IPv4 or IPv6 address; 447 * determine the address length for walking thru the list. 448 */ 449 sa_addr = (struct sockaddr *)addr_buf; 450 af = sctp_get_af_specific(sa_addr->sa_family); 451 if (!af) { 452 retval = -EINVAL; 453 goto err_bindx_add; 454 } 455 456 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr, 457 af->sockaddr_len); 458 459 addr_buf += af->sockaddr_len; 460 461err_bindx_add: 462 if (retval < 0) { 463 /* Failed. Cleanup the ones that have been added */ 464 if (cnt > 0) 465 sctp_bindx_rem(sk, addrs, cnt); 466 return retval; 467 } 468 } 469 470 return retval; 471} 472 473/* Send an ASCONF chunk with Add IP address parameters to all the peers of the 474 * associations that are part of the endpoint indicating that a list of local 475 * addresses are added to the endpoint. 476 * 477 * If any of the addresses is already in the bind address list of the 478 * association, we do not send the chunk for that association. But it will not 479 * affect other associations. 480 * 481 * Only sctp_setsockopt_bindx() is supposed to call this function. 482 */ 483static int sctp_send_asconf_add_ip(struct sock *sk, 484 struct sockaddr *addrs, 485 int addrcnt) 486{ 487 struct sctp_sock *sp; 488 struct sctp_endpoint *ep; 489 struct sctp_association *asoc; 490 struct sctp_bind_addr *bp; 491 struct sctp_chunk *chunk; 492 struct sctp_sockaddr_entry *laddr; 493 union sctp_addr *addr; 494 void *addr_buf; 495 struct sctp_af *af; 496 struct list_head *pos; 497 struct list_head *p; 498 int i; 499 int retval = 0; 500 501 if (!sctp_addip_enable) 502 return retval; 503 504 sp = sctp_sk(sk); 505 ep = sp->ep; 506 507 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 508 __FUNCTION__, sk, addrs, addrcnt); 509 510 list_for_each(pos, &ep->asocs) { 511 asoc = list_entry(pos, struct sctp_association, asocs); 512 513 if (!asoc->peer.asconf_capable) 514 continue; 515 516 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP) 517 continue; 518 519 if (!sctp_state(asoc, ESTABLISHED)) 520 continue; 521 522 /* Check if any address in the packed array of addresses is 523 * in the bind address list of the association. If so, 524 * do not send the asconf chunk to its peer, but continue with 525 * other associations. 526 */ 527 addr_buf = addrs; 528 for (i = 0; i < addrcnt; i++) { 529 addr = (union sctp_addr *)addr_buf; 530 af = sctp_get_af_specific(addr->v4.sin_family); 531 if (!af) { 532 retval = -EINVAL; 533 goto out; 534 } 535 536 if (sctp_assoc_lookup_laddr(asoc, addr)) 537 break; 538 539 addr_buf += af->sockaddr_len; 540 } 541 if (i < addrcnt) 542 continue; 543 544 /* Use the first address in bind addr list of association as 545 * Address Parameter of ASCONF CHUNK. 546 */ 547 sctp_read_lock(&asoc->base.addr_lock); 548 bp = &asoc->base.bind_addr; 549 p = bp->address_list.next; 550 laddr = list_entry(p, struct sctp_sockaddr_entry, list); 551 sctp_read_unlock(&asoc->base.addr_lock); 552 553 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs, 554 addrcnt, SCTP_PARAM_ADD_IP); 555 if (!chunk) { 556 retval = -ENOMEM; 557 goto out; 558 } 559 560 retval = sctp_send_asconf(asoc, chunk); 561 562 /* FIXME: After sending the add address ASCONF chunk, we 563 * cannot append the address to the association's binding 564 * address list, because the new address may be used as the 565 * source of a message sent to the peer before the ASCONF 566 * chunk is received by the peer. So we should wait until 567 * ASCONF_ACK is received. 568 */ 569 } 570 571out: 572 return retval; 573} 574 575/* Remove a list of addresses from bind addresses list. Do not remove the 576 * last address. 577 * 578 * Basically run through each address specified in the addrs/addrcnt 579 * array/length pair, determine if it is IPv6 or IPv4 and call 580 * sctp_del_bind() on it. 581 * 582 * If any of them fails, then the operation will be reversed and the 583 * ones that were removed will be added back. 584 * 585 * At least one address has to be left; if only one address is 586 * available, the operation will return -EBUSY. 587 * 588 * Only sctp_setsockopt_bindx() is supposed to call this function. 589 */ 590int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt) 591{ 592 struct sctp_sock *sp = sctp_sk(sk); 593 struct sctp_endpoint *ep = sp->ep; 594 int cnt; 595 struct sctp_bind_addr *bp = &ep->base.bind_addr; 596 int retval = 0; 597 union sctp_addr saveaddr; 598 void *addr_buf; 599 struct sockaddr *sa_addr; 600 struct sctp_af *af; 601 602 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n", 603 sk, addrs, addrcnt); 604 605 addr_buf = addrs; 606 for (cnt = 0; cnt < addrcnt; cnt++) { 607 /* If the bind address list is empty or if there is only one 608 * bind address, there is nothing more to be removed (we need 609 * at least one address here). 610 */ 611 if (list_empty(&bp->address_list) || 612 (sctp_list_single_entry(&bp->address_list))) { 613 retval = -EBUSY; 614 goto err_bindx_rem; 615 } 616 617 /* The list may contain either IPv4 or IPv6 address; 618 * determine the address length to copy the address to 619 * saveaddr. 620 */ 621 sa_addr = (struct sockaddr *)addr_buf; 622 af = sctp_get_af_specific(sa_addr->sa_family); 623 if (!af) { 624 retval = -EINVAL; 625 goto err_bindx_rem; 626 } 627 memcpy(&saveaddr, sa_addr, af->sockaddr_len); 628 saveaddr.v4.sin_port = ntohs(saveaddr.v4.sin_port); 629 if (saveaddr.v4.sin_port != bp->port) { 630 retval = -EINVAL; 631 goto err_bindx_rem; 632 } 633 634 /* FIXME - There is probably a need to check if sk->sk_saddr and 635 * sk->sk_rcv_addr are currently set to one of the addresses to 636 * be removed. This is something which needs to be looked into 637 * when we are fixing the outstanding issues with multi-homing 638 * socket routing and failover schemes. Refer to comments in 639 * sctp_do_bind(). -daisy 640 */ 641 sctp_local_bh_disable(); 642 sctp_write_lock(&ep->base.addr_lock); 643 644 retval = sctp_del_bind_addr(bp, &saveaddr); 645 646 sctp_write_unlock(&ep->base.addr_lock); 647 sctp_local_bh_enable(); 648 649 addr_buf += af->sockaddr_len; 650err_bindx_rem: 651 if (retval < 0) { 652 /* Failed. Add the ones that has been removed back */ 653 if (cnt > 0) 654 sctp_bindx_add(sk, addrs, cnt); 655 return retval; 656 } 657 } 658 659 return retval; 660} 661 662/* Send an ASCONF chunk with Delete IP address parameters to all the peers of 663 * the associations that are part of the endpoint indicating that a list of 664 * local addresses are removed from the endpoint. 665 * 666 * If any of the addresses is already in the bind address list of the 667 * association, we do not send the chunk for that association. But it will not 668 * affect other associations. 669 * 670 * Only sctp_setsockopt_bindx() is supposed to call this function. 671 */ 672static int sctp_send_asconf_del_ip(struct sock *sk, 673 struct sockaddr *addrs, 674 int addrcnt) 675{ 676 struct sctp_sock *sp; 677 struct sctp_endpoint *ep; 678 struct sctp_association *asoc; 679 struct sctp_bind_addr *bp; 680 struct sctp_chunk *chunk; 681 union sctp_addr *laddr; 682 void *addr_buf; 683 struct sctp_af *af; 684 struct list_head *pos; 685 int i; 686 int retval = 0; 687 688 if (!sctp_addip_enable) 689 return retval; 690 691 sp = sctp_sk(sk); 692 ep = sp->ep; 693 694 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n", 695 __FUNCTION__, sk, addrs, addrcnt); 696 697 list_for_each(pos, &ep->asocs) { 698 asoc = list_entry(pos, struct sctp_association, asocs); 699 700 if (!asoc->peer.asconf_capable) 701 continue; 702 703 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP) 704 continue; 705 706 if (!sctp_state(asoc, ESTABLISHED)) 707 continue; 708 709 /* Check if any address in the packed array of addresses is 710 * not present in the bind address list of the association. 711 * If so, do not send the asconf chunk to its peer, but 712 * continue with other associations. 713 */ 714 addr_buf = addrs; 715 for (i = 0; i < addrcnt; i++) { 716 laddr = (union sctp_addr *)addr_buf; 717 af = sctp_get_af_specific(laddr->v4.sin_family); 718 if (!af) { 719 retval = -EINVAL; 720 goto out; 721 } 722 723 if (!sctp_assoc_lookup_laddr(asoc, laddr)) 724 break; 725 726 addr_buf += af->sockaddr_len; 727 } 728 if (i < addrcnt) 729 continue; 730 731 /* Find one address in the association's bind address list 732 * that is not in the packed array of addresses. This is to 733 * make sure that we do not delete all the addresses in the 734 * association. 735 */ 736 sctp_read_lock(&asoc->base.addr_lock); 737 bp = &asoc->base.bind_addr; 738 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs, 739 addrcnt, sp); 740 sctp_read_unlock(&asoc->base.addr_lock); 741 if (!laddr) 742 continue; 743 744 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt, 745 SCTP_PARAM_DEL_IP); 746 if (!chunk) { 747 retval = -ENOMEM; 748 goto out; 749 } 750 751 retval = sctp_send_asconf(asoc, chunk); 752 753 /* FIXME: After sending the delete address ASCONF chunk, we 754 * cannot remove the addresses from the association's bind 755 * address list, because there maybe some packet send to 756 * the delete addresses, so we should wait until ASCONF_ACK 757 * packet is received. 758 */ 759 } 760out: 761 return retval; 762} 763 764/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt() 765 * 766 * API 8.1 767 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt, 768 * int flags); 769 * 770 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 771 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 772 * or IPv6 addresses. 773 * 774 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 775 * Section 3.1.2 for this usage. 776 * 777 * addrs is a pointer to an array of one or more socket addresses. Each 778 * address is contained in its appropriate structure (i.e. struct 779 * sockaddr_in or struct sockaddr_in6) the family of the address type 780 * must be used to distengish the address length (note that this 781 * representation is termed a "packed array" of addresses). The caller 782 * specifies the number of addresses in the array with addrcnt. 783 * 784 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns 785 * -1, and sets errno to the appropriate error code. 786 * 787 * For SCTP, the port given in each socket address must be the same, or 788 * sctp_bindx() will fail, setting errno to EINVAL. 789 * 790 * The flags parameter is formed from the bitwise OR of zero or more of 791 * the following currently defined flags: 792 * 793 * SCTP_BINDX_ADD_ADDR 794 * 795 * SCTP_BINDX_REM_ADDR 796 * 797 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the 798 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given 799 * addresses from the association. The two flags are mutually exclusive; 800 * if both are given, sctp_bindx() will fail with EINVAL. A caller may 801 * not remove all addresses from an association; sctp_bindx() will 802 * reject such an attempt with EINVAL. 803 * 804 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate 805 * additional addresses with an endpoint after calling bind(). Or use 806 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening 807 * socket is associated with so that no new association accepted will be 808 * associated with those addresses. If the endpoint supports dynamic 809 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a 810 * endpoint to send the appropriate message to the peer to change the 811 * peers address lists. 812 * 813 * Adding and removing addresses from a connected association is 814 * optional functionality. Implementations that do not support this 815 * functionality should return EOPNOTSUPP. 816 * 817 * Basically do nothing but copying the addresses from user to kernel 818 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk. 819 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt() 820 * from userspace. 821 * 822 * We don't use copy_from_user() for optimization: we first do the 823 * sanity checks (buffer size -fast- and access check-healthy 824 * pointer); if all of those succeed, then we can alloc the memory 825 * (expensive operation) needed to copy the data to kernel. Then we do 826 * the copying without checking the user space area 827 * (__copy_from_user()). 828 * 829 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 830 * it. 831 * 832 * sk The sk of the socket 833 * addrs The pointer to the addresses in user land 834 * addrssize Size of the addrs buffer 835 * op Operation to perform (add or remove, see the flags of 836 * sctp_bindx) 837 * 838 * Returns 0 if ok, <0 errno code on error. 839 */ 840SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk, 841 struct sockaddr __user *addrs, 842 int addrs_size, int op) 843{ 844 struct sockaddr *kaddrs; 845 int err; 846 int addrcnt = 0; 847 int walk_size = 0; 848 struct sockaddr *sa_addr; 849 void *addr_buf; 850 struct sctp_af *af; 851 852 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p" 853 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op); 854 855 if (unlikely(addrs_size <= 0)) 856 return -EINVAL; 857 858 /* Check the user passed a healthy pointer. */ 859 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 860 return -EFAULT; 861 862 /* Alloc space for the address array in kernel memory. */ 863 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL); 864 if (unlikely(!kaddrs)) 865 return -ENOMEM; 866 867 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 868 kfree(kaddrs); 869 return -EFAULT; 870 } 871 872 /* Walk through the addrs buffer and count the number of addresses. */ 873 addr_buf = kaddrs; 874 while (walk_size < addrs_size) { 875 sa_addr = (struct sockaddr *)addr_buf; 876 af = sctp_get_af_specific(sa_addr->sa_family); 877 878 /* If the address family is not supported or if this address 879 * causes the address buffer to overflow return EINVAL. 880 */ 881 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 882 kfree(kaddrs); 883 return -EINVAL; 884 } 885 addrcnt++; 886 addr_buf += af->sockaddr_len; 887 walk_size += af->sockaddr_len; 888 } 889 890 /* Do the work. */ 891 switch (op) { 892 case SCTP_BINDX_ADD_ADDR: 893 err = sctp_bindx_add(sk, kaddrs, addrcnt); 894 if (err) 895 goto out; 896 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt); 897 break; 898 899 case SCTP_BINDX_REM_ADDR: 900 err = sctp_bindx_rem(sk, kaddrs, addrcnt); 901 if (err) 902 goto out; 903 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt); 904 break; 905 906 default: 907 err = -EINVAL; 908 break; 909 }; 910 911out: 912 kfree(kaddrs); 913 914 return err; 915} 916 917/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size) 918 * 919 * Common routine for handling connect() and sctp_connectx(). 920 * Connect will come in with just a single address. 921 */ 922static int __sctp_connect(struct sock* sk, 923 struct sockaddr *kaddrs, 924 int addrs_size) 925{ 926 struct sctp_sock *sp; 927 struct sctp_endpoint *ep; 928 struct sctp_association *asoc = NULL; 929 struct sctp_association *asoc2; 930 struct sctp_transport *transport; 931 union sctp_addr to; 932 struct sctp_af *af; 933 sctp_scope_t scope; 934 long timeo; 935 int err = 0; 936 int addrcnt = 0; 937 int walk_size = 0; 938 struct sockaddr *sa_addr; 939 void *addr_buf; 940 941 sp = sctp_sk(sk); 942 ep = sp->ep; 943 944 /* connect() cannot be done on a socket that is already in ESTABLISHED 945 * state - UDP-style peeled off socket or a TCP-style socket that 946 * is already connected. 947 * It cannot be done even on a TCP-style listening socket. 948 */ 949 if (sctp_sstate(sk, ESTABLISHED) || 950 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) { 951 err = -EISCONN; 952 goto out_free; 953 } 954 955 /* Walk through the addrs buffer and count the number of addresses. */ 956 addr_buf = kaddrs; 957 while (walk_size < addrs_size) { 958 sa_addr = (struct sockaddr *)addr_buf; 959 af = sctp_get_af_specific(sa_addr->sa_family); 960 961 /* If the address family is not supported or if this address 962 * causes the address buffer to overflow return EINVAL. 963 */ 964 if (!af || (walk_size + af->sockaddr_len) > addrs_size) { 965 err = -EINVAL; 966 goto out_free; 967 } 968 969 err = sctp_verify_addr(sk, (union sctp_addr *)sa_addr, 970 af->sockaddr_len); 971 if (err) 972 goto out_free; 973 974 memcpy(&to, sa_addr, af->sockaddr_len); 975 to.v4.sin_port = ntohs(to.v4.sin_port); 976 977 /* Check if there already is a matching association on the 978 * endpoint (other than the one created here). 979 */ 980 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport); 981 if (asoc2 && asoc2 != asoc) { 982 if (asoc2->state >= SCTP_STATE_ESTABLISHED) 983 err = -EISCONN; 984 else 985 err = -EALREADY; 986 goto out_free; 987 } 988 989 /* If we could not find a matching association on the endpoint, 990 * make sure that there is no peeled-off association matching 991 * the peer address even on another socket. 992 */ 993 if (sctp_endpoint_is_peeled_off(ep, &to)) { 994 err = -EADDRNOTAVAIL; 995 goto out_free; 996 } 997 998 if (!asoc) { 999 /* If a bind() or sctp_bindx() is not called prior to 1000 * an sctp_connectx() call, the system picks an 1001 * ephemeral port and will choose an address set 1002 * equivalent to binding with a wildcard address. 1003 */ 1004 if (!ep->base.bind_addr.port) { 1005 if (sctp_autobind(sk)) { 1006 err = -EAGAIN; 1007 goto out_free; 1008 } 1009 } else { 1010 /* 1011 * If an unprivileged user inherits a 1-many 1012 * style socket with open associations on a 1013 * privileged port, it MAY be permitted to 1014 * accept new associations, but it SHOULD NOT 1015 * be permitted to open new associations. 1016 */ 1017 if (ep->base.bind_addr.port < PROT_SOCK && 1018 !capable(CAP_NET_BIND_SERVICE)) { 1019 err = -EACCES; 1020 goto out_free; 1021 } 1022 } 1023 1024 scope = sctp_scope(&to); 1025 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1026 if (!asoc) { 1027 err = -ENOMEM; 1028 goto out_free; 1029 } 1030 } 1031 1032 /* Prime the peer's transport structures. */ 1033 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, 1034 SCTP_UNKNOWN); 1035 if (!transport) { 1036 err = -ENOMEM; 1037 goto out_free; 1038 } 1039 1040 addrcnt++; 1041 addr_buf += af->sockaddr_len; 1042 walk_size += af->sockaddr_len; 1043 } 1044 1045 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1046 if (err < 0) { 1047 goto out_free; 1048 } 1049 1050 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1051 if (err < 0) { 1052 goto out_free; 1053 } 1054 1055 /* Initialize sk's dport and daddr for getpeername() */ 1056 inet_sk(sk)->dport = htons(asoc->peer.port); 1057 af = sctp_get_af_specific(to.sa.sa_family); 1058 af->to_sk_daddr(&to, sk); 1059 1060 timeo = sock_sndtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 1061 err = sctp_wait_for_connect(asoc, &timeo); 1062 1063 /* Don't free association on exit. */ 1064 asoc = NULL; 1065 1066out_free: 1067 1068 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p" 1069 " kaddrs: %p err: %d\n", 1070 asoc, kaddrs, err); 1071 if (asoc) 1072 sctp_association_free(asoc); 1073 return err; 1074} 1075 1076/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt() 1077 * 1078 * API 8.9 1079 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt); 1080 * 1081 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses. 1082 * If the sd is an IPv6 socket, the addresses passed can either be IPv4 1083 * or IPv6 addresses. 1084 * 1085 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see 1086 * Section 3.1.2 for this usage. 1087 * 1088 * addrs is a pointer to an array of one or more socket addresses. Each 1089 * address is contained in its appropriate structure (i.e. struct 1090 * sockaddr_in or struct sockaddr_in6) the family of the address type 1091 * must be used to distengish the address length (note that this 1092 * representation is termed a "packed array" of addresses). The caller 1093 * specifies the number of addresses in the array with addrcnt. 1094 * 1095 * On success, sctp_connectx() returns 0. On failure, sctp_connectx() returns 1096 * -1, and sets errno to the appropriate error code. 1097 * 1098 * For SCTP, the port given in each socket address must be the same, or 1099 * sctp_connectx() will fail, setting errno to EINVAL. 1100 * 1101 * An application can use sctp_connectx to initiate an association with 1102 * an endpoint that is multi-homed. Much like sctp_bindx() this call 1103 * allows a caller to specify multiple addresses at which a peer can be 1104 * reached. The way the SCTP stack uses the list of addresses to set up 1105 * the association is implementation dependant. This function only 1106 * specifies that the stack will try to make use of all the addresses in 1107 * the list when needed. 1108 * 1109 * Note that the list of addresses passed in is only used for setting up 1110 * the association. It does not necessarily equal the set of addresses 1111 * the peer uses for the resulting association. If the caller wants to 1112 * find out the set of peer addresses, it must use sctp_getpaddrs() to 1113 * retrieve them after the association has been set up. 1114 * 1115 * Basically do nothing but copying the addresses from user to kernel 1116 * land and invoking either sctp_connectx(). This is used for tunneling 1117 * the sctp_connectx() request through sctp_setsockopt() from userspace. 1118 * 1119 * We don't use copy_from_user() for optimization: we first do the 1120 * sanity checks (buffer size -fast- and access check-healthy 1121 * pointer); if all of those succeed, then we can alloc the memory 1122 * (expensive operation) needed to copy the data to kernel. Then we do 1123 * the copying without checking the user space area 1124 * (__copy_from_user()). 1125 * 1126 * On exit there is no need to do sockfd_put(), sys_setsockopt() does 1127 * it. 1128 * 1129 * sk The sk of the socket 1130 * addrs The pointer to the addresses in user land 1131 * addrssize Size of the addrs buffer 1132 * 1133 * Returns 0 if ok, <0 errno code on error. 1134 */ 1135SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk, 1136 struct sockaddr __user *addrs, 1137 int addrs_size) 1138{ 1139 int err = 0; 1140 struct sockaddr *kaddrs; 1141 1142 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n", 1143 __FUNCTION__, sk, addrs, addrs_size); 1144 1145 if (unlikely(addrs_size <= 0)) 1146 return -EINVAL; 1147 1148 /* Check the user passed a healthy pointer. */ 1149 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size))) 1150 return -EFAULT; 1151 1152 /* Alloc space for the address array in kernel memory. */ 1153 kaddrs = (struct sockaddr *)kmalloc(addrs_size, GFP_KERNEL); 1154 if (unlikely(!kaddrs)) 1155 return -ENOMEM; 1156 1157 if (__copy_from_user(kaddrs, addrs, addrs_size)) { 1158 err = -EFAULT; 1159 } else { 1160 err = __sctp_connect(sk, kaddrs, addrs_size); 1161 } 1162 1163 kfree(kaddrs); 1164 return err; 1165} 1166 1167/* API 3.1.4 close() - UDP Style Syntax 1168 * Applications use close() to perform graceful shutdown (as described in 1169 * Section 10.1 of [SCTP]) on ALL the associations currently represented 1170 * by a UDP-style socket. 1171 * 1172 * The syntax is 1173 * 1174 * ret = close(int sd); 1175 * 1176 * sd - the socket descriptor of the associations to be closed. 1177 * 1178 * To gracefully shutdown a specific association represented by the 1179 * UDP-style socket, an application should use the sendmsg() call, 1180 * passing no user data, but including the appropriate flag in the 1181 * ancillary data (see Section xxxx). 1182 * 1183 * If sd in the close() call is a branched-off socket representing only 1184 * one association, the shutdown is performed on that association only. 1185 * 1186 * 4.1.6 close() - TCP Style Syntax 1187 * 1188 * Applications use close() to gracefully close down an association. 1189 * 1190 * The syntax is: 1191 * 1192 * int close(int sd); 1193 * 1194 * sd - the socket descriptor of the association to be closed. 1195 * 1196 * After an application calls close() on a socket descriptor, no further 1197 * socket operations will succeed on that descriptor. 1198 * 1199 * API 7.1.4 SO_LINGER 1200 * 1201 * An application using the TCP-style socket can use this option to 1202 * perform the SCTP ABORT primitive. The linger option structure is: 1203 * 1204 * struct linger { 1205 * int l_onoff; // option on/off 1206 * int l_linger; // linger time 1207 * }; 1208 * 1209 * To enable the option, set l_onoff to 1. If the l_linger value is set 1210 * to 0, calling close() is the same as the ABORT primitive. If the 1211 * value is set to a negative value, the setsockopt() call will return 1212 * an error. If the value is set to a positive value linger_time, the 1213 * close() can be blocked for at most linger_time ms. If the graceful 1214 * shutdown phase does not finish during this period, close() will 1215 * return but the graceful shutdown phase continues in the system. 1216 */ 1217SCTP_STATIC void sctp_close(struct sock *sk, long timeout) 1218{ 1219 struct sctp_endpoint *ep; 1220 struct sctp_association *asoc; 1221 struct list_head *pos, *temp; 1222 1223 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout); 1224 1225 sctp_lock_sock(sk); 1226 sk->sk_shutdown = SHUTDOWN_MASK; 1227 1228 ep = sctp_sk(sk)->ep; 1229 1230 /* Walk all associations on a socket, not on an endpoint. */ 1231 list_for_each_safe(pos, temp, &ep->asocs) { 1232 asoc = list_entry(pos, struct sctp_association, asocs); 1233 1234 if (sctp_style(sk, TCP)) { 1235 /* A closed association can still be in the list if 1236 * it belongs to a TCP-style listening socket that is 1237 * not yet accepted. If so, free it. If not, send an 1238 * ABORT or SHUTDOWN based on the linger options. 1239 */ 1240 if (sctp_state(asoc, CLOSED)) { 1241 sctp_unhash_established(asoc); 1242 sctp_association_free(asoc); 1243 1244 } else if (sock_flag(sk, SOCK_LINGER) && 1245 !sk->sk_lingertime) 1246 sctp_primitive_ABORT(asoc, NULL); 1247 else 1248 sctp_primitive_SHUTDOWN(asoc, NULL); 1249 } else 1250 sctp_primitive_SHUTDOWN(asoc, NULL); 1251 } 1252 1253 /* Clean up any skbs sitting on the receive queue. */ 1254 sctp_queue_purge_ulpevents(&sk->sk_receive_queue); 1255 sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby); 1256 1257 /* On a TCP-style socket, block for at most linger_time if set. */ 1258 if (sctp_style(sk, TCP) && timeout) 1259 sctp_wait_for_close(sk, timeout); 1260 1261 /* This will run the backlog queue. */ 1262 sctp_release_sock(sk); 1263 1264 /* Supposedly, no process has access to the socket, but 1265 * the net layers still may. 1266 */ 1267 sctp_local_bh_disable(); 1268 sctp_bh_lock_sock(sk); 1269 1270 /* Hold the sock, since sk_common_release() will put sock_put() 1271 * and we have just a little more cleanup. 1272 */ 1273 sock_hold(sk); 1274 sk_common_release(sk); 1275 1276 sctp_bh_unlock_sock(sk); 1277 sctp_local_bh_enable(); 1278 1279 sock_put(sk); 1280 1281 SCTP_DBG_OBJCNT_DEC(sock); 1282} 1283 1284/* Handle EPIPE error. */ 1285static int sctp_error(struct sock *sk, int flags, int err) 1286{ 1287 if (err == -EPIPE) 1288 err = sock_error(sk) ? : -EPIPE; 1289 if (err == -EPIPE && !(flags & MSG_NOSIGNAL)) 1290 send_sig(SIGPIPE, current, 0); 1291 return err; 1292} 1293 1294/* API 3.1.3 sendmsg() - UDP Style Syntax 1295 * 1296 * An application uses sendmsg() and recvmsg() calls to transmit data to 1297 * and receive data from its peer. 1298 * 1299 * ssize_t sendmsg(int socket, const struct msghdr *message, 1300 * int flags); 1301 * 1302 * socket - the socket descriptor of the endpoint. 1303 * message - pointer to the msghdr structure which contains a single 1304 * user message and possibly some ancillary data. 1305 * 1306 * See Section 5 for complete description of the data 1307 * structures. 1308 * 1309 * flags - flags sent or received with the user message, see Section 1310 * 5 for complete description of the flags. 1311 * 1312 * Note: This function could use a rewrite especially when explicit 1313 * connect support comes in. 1314 */ 1315/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */ 1316 1317SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *); 1318 1319SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk, 1320 struct msghdr *msg, size_t msg_len) 1321{ 1322 struct sctp_sock *sp; 1323 struct sctp_endpoint *ep; 1324 struct sctp_association *new_asoc=NULL, *asoc=NULL; 1325 struct sctp_transport *transport, *chunk_tp; 1326 struct sctp_chunk *chunk; 1327 union sctp_addr to; 1328 struct sockaddr *msg_name = NULL; 1329 struct sctp_sndrcvinfo default_sinfo = { 0 }; 1330 struct sctp_sndrcvinfo *sinfo; 1331 struct sctp_initmsg *sinit; 1332 sctp_assoc_t associd = 0; 1333 sctp_cmsgs_t cmsgs = { NULL }; 1334 int err; 1335 sctp_scope_t scope; 1336 long timeo; 1337 __u16 sinfo_flags = 0; 1338 struct sctp_datamsg *datamsg; 1339 struct list_head *pos; 1340 int msg_flags = msg->msg_flags; 1341 1342 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n", 1343 sk, msg, msg_len); 1344 1345 err = 0; 1346 sp = sctp_sk(sk); 1347 ep = sp->ep; 1348 1349 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep); 1350 1351 /* We cannot send a message over a TCP-style listening socket. */ 1352 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) { 1353 err = -EPIPE; 1354 goto out_nounlock; 1355 } 1356 1357 /* Parse out the SCTP CMSGs. */ 1358 err = sctp_msghdr_parse(msg, &cmsgs); 1359 1360 if (err) { 1361 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err); 1362 goto out_nounlock; 1363 } 1364 1365 /* Fetch the destination address for this packet. This 1366 * address only selects the association--it is not necessarily 1367 * the address we will send to. 1368 * For a peeled-off socket, msg_name is ignored. 1369 */ 1370 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) { 1371 int msg_namelen = msg->msg_namelen; 1372 1373 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name, 1374 msg_namelen); 1375 if (err) 1376 return err; 1377 1378 if (msg_namelen > sizeof(to)) 1379 msg_namelen = sizeof(to); 1380 memcpy(&to, msg->msg_name, msg_namelen); 1381 SCTP_DEBUG_PRINTK("Just memcpy'd. msg_name is " 1382 "0x%x:%u.\n", 1383 to.v4.sin_addr.s_addr, to.v4.sin_port); 1384 1385 to.v4.sin_port = ntohs(to.v4.sin_port); 1386 msg_name = msg->msg_name; 1387 } 1388 1389 sinfo = cmsgs.info; 1390 sinit = cmsgs.init; 1391 1392 /* Did the user specify SNDRCVINFO? */ 1393 if (sinfo) { 1394 sinfo_flags = sinfo->sinfo_flags; 1395 associd = sinfo->sinfo_assoc_id; 1396 } 1397 1398 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n", 1399 msg_len, sinfo_flags); 1400 1401 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */ 1402 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) { 1403 err = -EINVAL; 1404 goto out_nounlock; 1405 } 1406 1407 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero 1408 * length messages when SCTP_EOF|SCTP_ABORT is not set. 1409 * If SCTP_ABORT is set, the message length could be non zero with 1410 * the msg_iov set to the user abort reason. 1411 */ 1412 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) || 1413 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) { 1414 err = -EINVAL; 1415 goto out_nounlock; 1416 } 1417 1418 /* If SCTP_ADDR_OVER is set, there must be an address 1419 * specified in msg_name. 1420 */ 1421 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) { 1422 err = -EINVAL; 1423 goto out_nounlock; 1424 } 1425 1426 transport = NULL; 1427 1428 SCTP_DEBUG_PRINTK("About to look up association.\n"); 1429 1430 sctp_lock_sock(sk); 1431 1432 /* If a msg_name has been specified, assume this is to be used. */ 1433 if (msg_name) { 1434 /* Look for a matching association on the endpoint. */ 1435 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport); 1436 if (!asoc) { 1437 /* If we could not find a matching association on the 1438 * endpoint, make sure that it is not a TCP-style 1439 * socket that already has an association or there is 1440 * no peeled-off association on another socket. 1441 */ 1442 if ((sctp_style(sk, TCP) && 1443 sctp_sstate(sk, ESTABLISHED)) || 1444 sctp_endpoint_is_peeled_off(ep, &to)) { 1445 err = -EADDRNOTAVAIL; 1446 goto out_unlock; 1447 } 1448 } 1449 } else { 1450 asoc = sctp_id2assoc(sk, associd); 1451 if (!asoc) { 1452 err = -EPIPE; 1453 goto out_unlock; 1454 } 1455 } 1456 1457 if (asoc) { 1458 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc); 1459 1460 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED 1461 * socket that has an association in CLOSED state. This can 1462 * happen when an accepted socket has an association that is 1463 * already CLOSED. 1464 */ 1465 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) { 1466 err = -EPIPE; 1467 goto out_unlock; 1468 } 1469 1470 if (sinfo_flags & SCTP_EOF) { 1471 SCTP_DEBUG_PRINTK("Shutting down association: %p\n", 1472 asoc); 1473 sctp_primitive_SHUTDOWN(asoc, NULL); 1474 err = 0; 1475 goto out_unlock; 1476 } 1477 if (sinfo_flags & SCTP_ABORT) { 1478 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc); 1479 sctp_primitive_ABORT(asoc, msg); 1480 err = 0; 1481 goto out_unlock; 1482 } 1483 } 1484 1485 /* Do we need to create the association? */ 1486 if (!asoc) { 1487 SCTP_DEBUG_PRINTK("There is no association yet.\n"); 1488 1489 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) { 1490 err = -EINVAL; 1491 goto out_unlock; 1492 } 1493 1494 /* Check for invalid stream against the stream counts, 1495 * either the default or the user specified stream counts. 1496 */ 1497 if (sinfo) { 1498 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) { 1499 /* Check against the defaults. */ 1500 if (sinfo->sinfo_stream >= 1501 sp->initmsg.sinit_num_ostreams) { 1502 err = -EINVAL; 1503 goto out_unlock; 1504 } 1505 } else { 1506 /* Check against the requested. */ 1507 if (sinfo->sinfo_stream >= 1508 sinit->sinit_num_ostreams) { 1509 err = -EINVAL; 1510 goto out_unlock; 1511 } 1512 } 1513 } 1514 1515 /* 1516 * API 3.1.2 bind() - UDP Style Syntax 1517 * If a bind() or sctp_bindx() is not called prior to a 1518 * sendmsg() call that initiates a new association, the 1519 * system picks an ephemeral port and will choose an address 1520 * set equivalent to binding with a wildcard address. 1521 */ 1522 if (!ep->base.bind_addr.port) { 1523 if (sctp_autobind(sk)) { 1524 err = -EAGAIN; 1525 goto out_unlock; 1526 } 1527 } else { 1528 /* 1529 * If an unprivileged user inherits a one-to-many 1530 * style socket with open associations on a privileged 1531 * port, it MAY be permitted to accept new associations, 1532 * but it SHOULD NOT be permitted to open new 1533 * associations. 1534 */ 1535 if (ep->base.bind_addr.port < PROT_SOCK && 1536 !capable(CAP_NET_BIND_SERVICE)) { 1537 err = -EACCES; 1538 goto out_unlock; 1539 } 1540 } 1541 1542 scope = sctp_scope(&to); 1543 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL); 1544 if (!new_asoc) { 1545 err = -ENOMEM; 1546 goto out_unlock; 1547 } 1548 asoc = new_asoc; 1549 1550 /* If the SCTP_INIT ancillary data is specified, set all 1551 * the association init values accordingly. 1552 */ 1553 if (sinit) { 1554 if (sinit->sinit_num_ostreams) { 1555 asoc->c.sinit_num_ostreams = 1556 sinit->sinit_num_ostreams; 1557 } 1558 if (sinit->sinit_max_instreams) { 1559 asoc->c.sinit_max_instreams = 1560 sinit->sinit_max_instreams; 1561 } 1562 if (sinit->sinit_max_attempts) { 1563 asoc->max_init_attempts 1564 = sinit->sinit_max_attempts; 1565 } 1566 if (sinit->sinit_max_init_timeo) { 1567 asoc->max_init_timeo = 1568 msecs_to_jiffies(sinit->sinit_max_init_timeo); 1569 } 1570 } 1571 1572 /* Prime the peer's transport structures. */ 1573 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN); 1574 if (!transport) { 1575 err = -ENOMEM; 1576 goto out_free; 1577 } 1578 err = sctp_assoc_set_bind_addr_from_ep(asoc, GFP_KERNEL); 1579 if (err < 0) { 1580 err = -ENOMEM; 1581 goto out_free; 1582 } 1583 } 1584 1585 /* ASSERT: we have a valid association at this point. */ 1586 SCTP_DEBUG_PRINTK("We have a valid association.\n"); 1587 1588 if (!sinfo) { 1589 /* If the user didn't specify SNDRCVINFO, make up one with 1590 * some defaults. 1591 */ 1592 default_sinfo.sinfo_stream = asoc->default_stream; 1593 default_sinfo.sinfo_flags = asoc->default_flags; 1594 default_sinfo.sinfo_ppid = asoc->default_ppid; 1595 default_sinfo.sinfo_context = asoc->default_context; 1596 default_sinfo.sinfo_timetolive = asoc->default_timetolive; 1597 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc); 1598 sinfo = &default_sinfo; 1599 } 1600 1601 /* API 7.1.7, the sndbuf size per association bounds the 1602 * maximum size of data that can be sent in a single send call. 1603 */ 1604 if (msg_len > sk->sk_sndbuf) { 1605 err = -EMSGSIZE; 1606 goto out_free; 1607 } 1608 1609 /* If fragmentation is disabled and the message length exceeds the 1610 * association fragmentation point, return EMSGSIZE. The I-D 1611 * does not specify what this error is, but this looks like 1612 * a great fit. 1613 */ 1614 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) { 1615 err = -EMSGSIZE; 1616 goto out_free; 1617 } 1618 1619 if (sinfo) { 1620 /* Check for invalid stream. */ 1621 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) { 1622 err = -EINVAL; 1623 goto out_free; 1624 } 1625 } 1626 1627 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); 1628 if (!sctp_wspace(asoc)) { 1629 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len); 1630 if (err) 1631 goto out_free; 1632 } 1633 1634 /* If an address is passed with the sendto/sendmsg call, it is used 1635 * to override the primary destination address in the TCP model, or 1636 * when SCTP_ADDR_OVER flag is set in the UDP model. 1637 */ 1638 if ((sctp_style(sk, TCP) && msg_name) || 1639 (sinfo_flags & SCTP_ADDR_OVER)) { 1640 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to); 1641 if (!chunk_tp) { 1642 err = -EINVAL; 1643 goto out_free; 1644 } 1645 } else 1646 chunk_tp = NULL; 1647 1648 /* Auto-connect, if we aren't connected already. */ 1649 if (sctp_state(asoc, CLOSED)) { 1650 err = sctp_primitive_ASSOCIATE(asoc, NULL); 1651 if (err < 0) 1652 goto out_free; 1653 SCTP_DEBUG_PRINTK("We associated primitively.\n"); 1654 } 1655 1656 /* Break the message into multiple chunks of maximum size. */ 1657 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len); 1658 if (!datamsg) { 1659 err = -ENOMEM; 1660 goto out_free; 1661 } 1662 1663 /* Now send the (possibly) fragmented message. */ 1664 list_for_each(pos, &datamsg->chunks) { 1665 chunk = list_entry(pos, struct sctp_chunk, frag_list); 1666 sctp_datamsg_track(chunk); 1667 1668 /* Do accounting for the write space. */ 1669 sctp_set_owner_w(chunk); 1670 1671 chunk->transport = chunk_tp; 1672 1673 /* Send it to the lower layers. Note: all chunks 1674 * must either fail or succeed. The lower layer 1675 * works that way today. Keep it that way or this 1676 * breaks. 1677 */ 1678 err = sctp_primitive_SEND(asoc, chunk); 1679 /* Did the lower layer accept the chunk? */ 1680 if (err) 1681 sctp_chunk_free(chunk); 1682 SCTP_DEBUG_PRINTK("We sent primitively.\n"); 1683 } 1684 1685 sctp_datamsg_free(datamsg); 1686 if (err) 1687 goto out_free; 1688 else 1689 err = msg_len; 1690 1691 /* If we are already past ASSOCIATE, the lower 1692 * layers are responsible for association cleanup. 1693 */ 1694 goto out_unlock; 1695 1696out_free: 1697 if (new_asoc) 1698 sctp_association_free(asoc); 1699out_unlock: 1700 sctp_release_sock(sk); 1701 1702out_nounlock: 1703 return sctp_error(sk, msg_flags, err); 1704 1705#if 0 1706do_sock_err: 1707 if (msg_len) 1708 err = msg_len; 1709 else 1710 err = sock_error(sk); 1711 goto out; 1712 1713do_interrupted: 1714 if (msg_len) 1715 err = msg_len; 1716 goto out; 1717#endif /* 0 */ 1718} 1719 1720/* This is an extended version of skb_pull() that removes the data from the 1721 * start of a skb even when data is spread across the list of skb's in the 1722 * frag_list. len specifies the total amount of data that needs to be removed. 1723 * when 'len' bytes could be removed from the skb, it returns 0. 1724 * If 'len' exceeds the total skb length, it returns the no. of bytes that 1725 * could not be removed. 1726 */ 1727static int sctp_skb_pull(struct sk_buff *skb, int len) 1728{ 1729 struct sk_buff *list; 1730 int skb_len = skb_headlen(skb); 1731 int rlen; 1732 1733 if (len <= skb_len) { 1734 __skb_pull(skb, len); 1735 return 0; 1736 } 1737 len -= skb_len; 1738 __skb_pull(skb, skb_len); 1739 1740 for (list = skb_shinfo(skb)->frag_list; list; list = list->next) { 1741 rlen = sctp_skb_pull(list, len); 1742 skb->len -= (len-rlen); 1743 skb->data_len -= (len-rlen); 1744 1745 if (!rlen) 1746 return 0; 1747 1748 len = rlen; 1749 } 1750 1751 return len; 1752} 1753 1754/* API 3.1.3 recvmsg() - UDP Style Syntax 1755 * 1756 * ssize_t recvmsg(int socket, struct msghdr *message, 1757 * int flags); 1758 * 1759 * socket - the socket descriptor of the endpoint. 1760 * message - pointer to the msghdr structure which contains a single 1761 * user message and possibly some ancillary data. 1762 * 1763 * See Section 5 for complete description of the data 1764 * structures. 1765 * 1766 * flags - flags sent or received with the user message, see Section 1767 * 5 for complete description of the flags. 1768 */ 1769static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *); 1770 1771SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk, 1772 struct msghdr *msg, size_t len, int noblock, 1773 int flags, int *addr_len) 1774{ 1775 struct sctp_ulpevent *event = NULL; 1776 struct sctp_sock *sp = sctp_sk(sk); 1777 struct sk_buff *skb; 1778 int copied; 1779 int err = 0; 1780 int skb_len; 1781 1782 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: " 1783 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg, 1784 "len", len, "knoblauch", noblock, 1785 "flags", flags, "addr_len", addr_len); 1786 1787 sctp_lock_sock(sk); 1788 1789 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) { 1790 err = -ENOTCONN; 1791 goto out; 1792 } 1793 1794 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err); 1795 if (!skb) 1796 goto out; 1797 1798 /* Get the total length of the skb including any skb's in the 1799 * frag_list. 1800 */ 1801 skb_len = skb->len; 1802 1803 copied = skb_len; 1804 if (copied > len) 1805 copied = len; 1806 1807 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied); 1808 1809 event = sctp_skb2event(skb); 1810 1811 if (err) 1812 goto out_free; 1813 1814 sock_recv_timestamp(msg, sk, skb); 1815 if (sctp_ulpevent_is_notification(event)) { 1816 msg->msg_flags |= MSG_NOTIFICATION; 1817 sp->pf->event_msgname(event, msg->msg_name, addr_len); 1818 } else { 1819 sp->pf->skb_msgname(skb, msg->msg_name, addr_len); 1820 } 1821 1822 /* Check if we allow SCTP_SNDRCVINFO. */ 1823 if (sp->subscribe.sctp_data_io_event) 1824 sctp_ulpevent_read_sndrcvinfo(event, msg); 1825#if 0 1826 /* FIXME: we should be calling IP/IPv6 layers. */ 1827 if (sk->sk_protinfo.af_inet.cmsg_flags) 1828 ip_cmsg_recv(msg, skb); 1829#endif 1830 1831 err = copied; 1832 1833 /* If skb's length exceeds the user's buffer, update the skb and 1834 * push it back to the receive_queue so that the next call to 1835 * recvmsg() will return the remaining data. Don't set MSG_EOR. 1836 */ 1837 if (skb_len > copied) { 1838 msg->msg_flags &= ~MSG_EOR; 1839 if (flags & MSG_PEEK) 1840 goto out_free; 1841 sctp_skb_pull(skb, copied); 1842 skb_queue_head(&sk->sk_receive_queue, skb); 1843 1844 /* When only partial message is copied to the user, increase 1845 * rwnd by that amount. If all the data in the skb is read, 1846 * rwnd is updated when the event is freed. 1847 */ 1848 sctp_assoc_rwnd_increase(event->asoc, copied); 1849 goto out; 1850 } else if ((event->msg_flags & MSG_NOTIFICATION) || 1851 (event->msg_flags & MSG_EOR)) 1852 msg->msg_flags |= MSG_EOR; 1853 else 1854 msg->msg_flags &= ~MSG_EOR; 1855 1856out_free: 1857 if (flags & MSG_PEEK) { 1858 /* Release the skb reference acquired after peeking the skb in 1859 * sctp_skb_recv_datagram(). 1860 */ 1861 kfree_skb(skb); 1862 } else { 1863 /* Free the event which includes releasing the reference to 1864 * the owner of the skb, freeing the skb and updating the 1865 * rwnd. 1866 */ 1867 sctp_ulpevent_free(event); 1868 } 1869out: 1870 sctp_release_sock(sk); 1871 return err; 1872} 1873 1874/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 1875 * 1876 * This option is a on/off flag. If enabled no SCTP message 1877 * fragmentation will be performed. Instead if a message being sent 1878 * exceeds the current PMTU size, the message will NOT be sent and 1879 * instead a error will be indicated to the user. 1880 */ 1881static int sctp_setsockopt_disable_fragments(struct sock *sk, 1882 char __user *optval, int optlen) 1883{ 1884 int val; 1885 1886 if (optlen < sizeof(int)) 1887 return -EINVAL; 1888 1889 if (get_user(val, (int __user *)optval)) 1890 return -EFAULT; 1891 1892 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1; 1893 1894 return 0; 1895} 1896 1897static int sctp_setsockopt_events(struct sock *sk, char __user *optval, 1898 int optlen) 1899{ 1900 if (optlen != sizeof(struct sctp_event_subscribe)) 1901 return -EINVAL; 1902 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen)) 1903 return -EFAULT; 1904 return 0; 1905} 1906 1907/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 1908 * 1909 * This socket option is applicable to the UDP-style socket only. When 1910 * set it will cause associations that are idle for more than the 1911 * specified number of seconds to automatically close. An association 1912 * being idle is defined an association that has NOT sent or received 1913 * user data. The special value of '0' indicates that no automatic 1914 * close of any associations should be performed. The option expects an 1915 * integer defining the number of seconds of idle time before an 1916 * association is closed. 1917 */ 1918static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval, 1919 int optlen) 1920{ 1921 struct sctp_sock *sp = sctp_sk(sk); 1922 1923 /* Applicable to UDP-style socket only */ 1924 if (sctp_style(sk, TCP)) 1925 return -EOPNOTSUPP; 1926 if (optlen != sizeof(int)) 1927 return -EINVAL; 1928 if (copy_from_user(&sp->autoclose, optval, optlen)) 1929 return -EFAULT; 1930 1931 return 0; 1932} 1933 1934/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 1935 * 1936 * Applications can enable or disable heartbeats for any peer address of 1937 * an association, modify an address's heartbeat interval, force a 1938 * heartbeat to be sent immediately, and adjust the address's maximum 1939 * number of retransmissions sent before an address is considered 1940 * unreachable. The following structure is used to access and modify an 1941 * address's parameters: 1942 * 1943 * struct sctp_paddrparams { 1944 * sctp_assoc_t spp_assoc_id; 1945 * struct sockaddr_storage spp_address; 1946 * uint32_t spp_hbinterval; 1947 * uint16_t spp_pathmaxrxt; 1948 * }; 1949 * 1950 * spp_assoc_id - (UDP style socket) This is filled in the application, 1951 * and identifies the association for this query. 1952 * spp_address - This specifies which address is of interest. 1953 * spp_hbinterval - This contains the value of the heartbeat interval, 1954 * in milliseconds. A value of 0, when modifying the 1955 * parameter, specifies that the heartbeat on this 1956 * address should be disabled. A value of UINT32_MAX 1957 * (4294967295), when modifying the parameter, 1958 * specifies that a heartbeat should be sent 1959 * immediately to the peer address, and the current 1960 * interval should remain unchanged. 1961 * spp_pathmaxrxt - This contains the maximum number of 1962 * retransmissions before this address shall be 1963 * considered unreachable. 1964 */ 1965static int sctp_setsockopt_peer_addr_params(struct sock *sk, 1966 char __user *optval, int optlen) 1967{ 1968 struct sctp_paddrparams params; 1969 struct sctp_transport *trans; 1970 int error; 1971 1972 if (optlen != sizeof(struct sctp_paddrparams)) 1973 return -EINVAL; 1974 if (copy_from_user(&params, optval, optlen)) 1975 return -EFAULT; 1976 1977 /* 1978 * API 7. Socket Options (setting the default value for the endpoint) 1979 * All options that support specific settings on an association by 1980 * filling in either an association id variable or a sockaddr_storage 1981 * SHOULD also support setting of the same value for the entire endpoint 1982 * (i.e. future associations). To accomplish this the following logic is 1983 * used when setting one of these options: 1984 1985 * c) If neither the sockaddr_storage or association identification is 1986 * set i.e. the sockaddr_storage is set to all 0's (INADDR_ANY) and 1987 * the association identification is 0, the settings are a default 1988 * and to be applied to the endpoint (all future associations). 1989 */ 1990 1991 /* update default value for endpoint (all future associations) */ 1992 if (!params.spp_assoc_id && 1993 sctp_is_any(( union sctp_addr *)&params.spp_address)) { 1994 /* Manual heartbeat on an endpoint is invalid. */ 1995 if (0xffffffff == params.spp_hbinterval) 1996 return -EINVAL; 1997 else if (params.spp_hbinterval) 1998 sctp_sk(sk)->paddrparam.spp_hbinterval = 1999 params.spp_hbinterval; 2000 if (params.spp_pathmaxrxt) 2001 sctp_sk(sk)->paddrparam.spp_pathmaxrxt = 2002 params.spp_pathmaxrxt; 2003 return 0; 2004 } 2005 2006 trans = sctp_addr_id2transport(sk, &params.spp_address, 2007 params.spp_assoc_id); 2008 if (!trans) 2009 return -EINVAL; 2010 2011 /* Applications can enable or disable heartbeats for any peer address 2012 * of an association, modify an address's heartbeat interval, force a 2013 * heartbeat to be sent immediately, and adjust the address's maximum 2014 * number of retransmissions sent before an address is considered 2015 * unreachable. 2016 * 2017 * The value of the heartbeat interval, in milliseconds. A value of 2018 * UINT32_MAX (4294967295), when modifying the parameter, specifies 2019 * that a heartbeat should be sent immediately to the peer address, 2020 * and the current interval should remain unchanged. 2021 */ 2022 if (0xffffffff == params.spp_hbinterval) { 2023 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans); 2024 if (error) 2025 return error; 2026 } else { 2027 /* The value of the heartbeat interval, in milliseconds. A value of 0, 2028 * when modifying the parameter, specifies that the heartbeat on this 2029 * address should be disabled. 2030 */ 2031 if (params.spp_hbinterval) { 2032 trans->hb_allowed = 1; 2033 trans->hb_interval = 2034 msecs_to_jiffies(params.spp_hbinterval); 2035 } else 2036 trans->hb_allowed = 0; 2037 } 2038 2039 /* spp_pathmaxrxt contains the maximum number of retransmissions 2040 * before this address shall be considered unreachable. 2041 */ 2042 if (params.spp_pathmaxrxt) 2043 trans->max_retrans = params.spp_pathmaxrxt; 2044 2045 return 0; 2046} 2047 2048/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 2049 * 2050 * Applications can specify protocol parameters for the default association 2051 * initialization. The option name argument to setsockopt() and getsockopt() 2052 * is SCTP_INITMSG. 2053 * 2054 * Setting initialization parameters is effective only on an unconnected 2055 * socket (for UDP-style sockets only future associations are effected 2056 * by the change). With TCP-style sockets, this option is inherited by 2057 * sockets derived from a listener socket. 2058 */ 2059static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, int optlen) 2060{ 2061 struct sctp_initmsg sinit; 2062 struct sctp_sock *sp = sctp_sk(sk); 2063 2064 if (optlen != sizeof(struct sctp_initmsg)) 2065 return -EINVAL; 2066 if (copy_from_user(&sinit, optval, optlen)) 2067 return -EFAULT; 2068 2069 if (sinit.sinit_num_ostreams) 2070 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams; 2071 if (sinit.sinit_max_instreams) 2072 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams; 2073 if (sinit.sinit_max_attempts) 2074 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts; 2075 if (sinit.sinit_max_init_timeo) 2076 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo; 2077 2078 return 0; 2079} 2080 2081/* 2082 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 2083 * 2084 * Applications that wish to use the sendto() system call may wish to 2085 * specify a default set of parameters that would normally be supplied 2086 * through the inclusion of ancillary data. This socket option allows 2087 * such an application to set the default sctp_sndrcvinfo structure. 2088 * The application that wishes to use this socket option simply passes 2089 * in to this call the sctp_sndrcvinfo structure defined in Section 2090 * 5.2.2) The input parameters accepted by this call include 2091 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 2092 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 2093 * to this call if the caller is using the UDP model. 2094 */ 2095static int sctp_setsockopt_default_send_param(struct sock *sk, 2096 char __user *optval, int optlen) 2097{ 2098 struct sctp_sndrcvinfo info; 2099 struct sctp_association *asoc; 2100 struct sctp_sock *sp = sctp_sk(sk); 2101 2102 if (optlen != sizeof(struct sctp_sndrcvinfo)) 2103 return -EINVAL; 2104 if (copy_from_user(&info, optval, optlen)) 2105 return -EFAULT; 2106 2107 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 2108 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 2109 return -EINVAL; 2110 2111 if (asoc) { 2112 asoc->default_stream = info.sinfo_stream; 2113 asoc->default_flags = info.sinfo_flags; 2114 asoc->default_ppid = info.sinfo_ppid; 2115 asoc->default_context = info.sinfo_context; 2116 asoc->default_timetolive = info.sinfo_timetolive; 2117 } else { 2118 sp->default_stream = info.sinfo_stream; 2119 sp->default_flags = info.sinfo_flags; 2120 sp->default_ppid = info.sinfo_ppid; 2121 sp->default_context = info.sinfo_context; 2122 sp->default_timetolive = info.sinfo_timetolive; 2123 } 2124 2125 return 0; 2126} 2127 2128/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 2129 * 2130 * Requests that the local SCTP stack use the enclosed peer address as 2131 * the association primary. The enclosed address must be one of the 2132 * association peer's addresses. 2133 */ 2134static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval, 2135 int optlen) 2136{ 2137 struct sctp_prim prim; 2138 struct sctp_transport *trans; 2139 2140 if (optlen != sizeof(struct sctp_prim)) 2141 return -EINVAL; 2142 2143 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 2144 return -EFAULT; 2145 2146 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id); 2147 if (!trans) 2148 return -EINVAL; 2149 2150 sctp_assoc_set_primary(trans->asoc, trans); 2151 2152 return 0; 2153} 2154 2155/* 2156 * 7.1.5 SCTP_NODELAY 2157 * 2158 * Turn on/off any Nagle-like algorithm. This means that packets are 2159 * generally sent as soon as possible and no unnecessary delays are 2160 * introduced, at the cost of more packets in the network. Expects an 2161 * integer boolean flag. 2162 */ 2163static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval, 2164 int optlen) 2165{ 2166 int val; 2167 2168 if (optlen < sizeof(int)) 2169 return -EINVAL; 2170 if (get_user(val, (int __user *)optval)) 2171 return -EFAULT; 2172 2173 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1; 2174 return 0; 2175} 2176 2177/* 2178 * 2179 * 7.1.1 SCTP_RTOINFO 2180 * 2181 * The protocol parameters used to initialize and bound retransmission 2182 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 2183 * and modify these parameters. 2184 * All parameters are time values, in milliseconds. A value of 0, when 2185 * modifying the parameters, indicates that the current value should not 2186 * be changed. 2187 * 2188 */ 2189static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, int optlen) { 2190 struct sctp_rtoinfo rtoinfo; 2191 struct sctp_association *asoc; 2192 2193 if (optlen != sizeof (struct sctp_rtoinfo)) 2194 return -EINVAL; 2195 2196 if (copy_from_user(&rtoinfo, optval, optlen)) 2197 return -EFAULT; 2198 2199 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 2200 2201 /* Set the values to the specific association */ 2202 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 2203 return -EINVAL; 2204 2205 if (asoc) { 2206 if (rtoinfo.srto_initial != 0) 2207 asoc->rto_initial = 2208 msecs_to_jiffies(rtoinfo.srto_initial); 2209 if (rtoinfo.srto_max != 0) 2210 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max); 2211 if (rtoinfo.srto_min != 0) 2212 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min); 2213 } else { 2214 /* If there is no association or the association-id = 0 2215 * set the values to the endpoint. 2216 */ 2217 struct sctp_sock *sp = sctp_sk(sk); 2218 2219 if (rtoinfo.srto_initial != 0) 2220 sp->rtoinfo.srto_initial = rtoinfo.srto_initial; 2221 if (rtoinfo.srto_max != 0) 2222 sp->rtoinfo.srto_max = rtoinfo.srto_max; 2223 if (rtoinfo.srto_min != 0) 2224 sp->rtoinfo.srto_min = rtoinfo.srto_min; 2225 } 2226 2227 return 0; 2228} 2229 2230/* 2231 * 2232 * 7.1.2 SCTP_ASSOCINFO 2233 * 2234 * This option is used to tune the the maximum retransmission attempts 2235 * of the association. 2236 * Returns an error if the new association retransmission value is 2237 * greater than the sum of the retransmission value of the peer. 2238 * See [SCTP] for more information. 2239 * 2240 */ 2241static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, int optlen) 2242{ 2243 2244 struct sctp_assocparams assocparams; 2245 struct sctp_association *asoc; 2246 2247 if (optlen != sizeof(struct sctp_assocparams)) 2248 return -EINVAL; 2249 if (copy_from_user(&assocparams, optval, optlen)) 2250 return -EFAULT; 2251 2252 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 2253 2254 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 2255 return -EINVAL; 2256 2257 /* Set the values to the specific association */ 2258 if (asoc) { 2259 if (assocparams.sasoc_asocmaxrxt != 0) 2260 asoc->max_retrans = assocparams.sasoc_asocmaxrxt; 2261 if (assocparams.sasoc_cookie_life != 0) { 2262 asoc->cookie_life.tv_sec = 2263 assocparams.sasoc_cookie_life / 1000; 2264 asoc->cookie_life.tv_usec = 2265 (assocparams.sasoc_cookie_life % 1000) 2266 * 1000; 2267 } 2268 } else { 2269 /* Set the values to the endpoint */ 2270 struct sctp_sock *sp = sctp_sk(sk); 2271 2272 if (assocparams.sasoc_asocmaxrxt != 0) 2273 sp->assocparams.sasoc_asocmaxrxt = 2274 assocparams.sasoc_asocmaxrxt; 2275 if (assocparams.sasoc_cookie_life != 0) 2276 sp->assocparams.sasoc_cookie_life = 2277 assocparams.sasoc_cookie_life; 2278 } 2279 return 0; 2280} 2281 2282/* 2283 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 2284 * 2285 * This socket option is a boolean flag which turns on or off mapped V4 2286 * addresses. If this option is turned on and the socket is type 2287 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 2288 * If this option is turned off, then no mapping will be done of V4 2289 * addresses and a user will receive both PF_INET6 and PF_INET type 2290 * addresses on the socket. 2291 */ 2292static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, int optlen) 2293{ 2294 int val; 2295 struct sctp_sock *sp = sctp_sk(sk); 2296 2297 if (optlen < sizeof(int)) 2298 return -EINVAL; 2299 if (get_user(val, (int __user *)optval)) 2300 return -EFAULT; 2301 if (val) 2302 sp->v4mapped = 1; 2303 else 2304 sp->v4mapped = 0; 2305 2306 return 0; 2307} 2308 2309/* 2310 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 2311 * 2312 * This socket option specifies the maximum size to put in any outgoing 2313 * SCTP chunk. If a message is larger than this size it will be 2314 * fragmented by SCTP into the specified size. Note that the underlying 2315 * SCTP implementation may fragment into smaller sized chunks when the 2316 * PMTU of the underlying association is smaller than the value set by 2317 * the user. 2318 */ 2319static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, int optlen) 2320{ 2321 struct sctp_association *asoc; 2322 struct list_head *pos; 2323 struct sctp_sock *sp = sctp_sk(sk); 2324 int val; 2325 2326 if (optlen < sizeof(int)) 2327 return -EINVAL; 2328 if (get_user(val, (int __user *)optval)) 2329 return -EFAULT; 2330 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN))) 2331 return -EINVAL; 2332 sp->user_frag = val; 2333 2334 /* Update the frag_point of the existing associations. */ 2335 list_for_each(pos, &(sp->ep->asocs)) { 2336 asoc = list_entry(pos, struct sctp_association, asocs); 2337 asoc->frag_point = sctp_frag_point(sp, asoc->pmtu); 2338 } 2339 2340 return 0; 2341} 2342 2343 2344/* 2345 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR) 2346 * 2347 * Requests that the peer mark the enclosed address as the association 2348 * primary. The enclosed address must be one of the association's 2349 * locally bound addresses. The following structure is used to make a 2350 * set primary request: 2351 */ 2352static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval, 2353 int optlen) 2354{ 2355 struct sctp_sock *sp; 2356 struct sctp_endpoint *ep; 2357 struct sctp_association *asoc = NULL; 2358 struct sctp_setpeerprim prim; 2359 struct sctp_chunk *chunk; 2360 int err; 2361 2362 sp = sctp_sk(sk); 2363 ep = sp->ep; 2364 2365 if (!sctp_addip_enable) 2366 return -EPERM; 2367 2368 if (optlen != sizeof(struct sctp_setpeerprim)) 2369 return -EINVAL; 2370 2371 if (copy_from_user(&prim, optval, optlen)) 2372 return -EFAULT; 2373 2374 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id); 2375 if (!asoc) 2376 return -EINVAL; 2377 2378 if (!asoc->peer.asconf_capable) 2379 return -EPERM; 2380 2381 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY) 2382 return -EPERM; 2383 2384 if (!sctp_state(asoc, ESTABLISHED)) 2385 return -ENOTCONN; 2386 2387 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr)) 2388 return -EADDRNOTAVAIL; 2389 2390 /* Create an ASCONF chunk with SET_PRIMARY parameter */ 2391 chunk = sctp_make_asconf_set_prim(asoc, 2392 (union sctp_addr *)&prim.sspp_addr); 2393 if (!chunk) 2394 return -ENOMEM; 2395 2396 err = sctp_send_asconf(asoc, chunk); 2397 2398 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n"); 2399 2400 return err; 2401} 2402 2403static int sctp_setsockopt_adaption_layer(struct sock *sk, char __user *optval, 2404 int optlen) 2405{ 2406 struct sctp_setadaption adaption; 2407 2408 if (optlen != sizeof(struct sctp_setadaption)) 2409 return -EINVAL; 2410 if (copy_from_user(&adaption, optval, optlen)) 2411 return -EFAULT; 2412 2413 sctp_sk(sk)->adaption_ind = adaption.ssb_adaption_ind; 2414 2415 return 0; 2416} 2417 2418/* API 6.2 setsockopt(), getsockopt() 2419 * 2420 * Applications use setsockopt() and getsockopt() to set or retrieve 2421 * socket options. Socket options are used to change the default 2422 * behavior of sockets calls. They are described in Section 7. 2423 * 2424 * The syntax is: 2425 * 2426 * ret = getsockopt(int sd, int level, int optname, void __user *optval, 2427 * int __user *optlen); 2428 * ret = setsockopt(int sd, int level, int optname, const void __user *optval, 2429 * int optlen); 2430 * 2431 * sd - the socket descript. 2432 * level - set to IPPROTO_SCTP for all SCTP options. 2433 * optname - the option name. 2434 * optval - the buffer to store the value of the option. 2435 * optlen - the size of the buffer. 2436 */ 2437SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname, 2438 char __user *optval, int optlen) 2439{ 2440 int retval = 0; 2441 2442 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n", 2443 sk, optname); 2444 2445 /* I can hardly begin to describe how wrong this is. This is 2446 * so broken as to be worse than useless. The API draft 2447 * REALLY is NOT helpful here... I am not convinced that the 2448 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP 2449 * are at all well-founded. 2450 */ 2451 if (level != SOL_SCTP) { 2452 struct sctp_af *af = sctp_sk(sk)->pf->af; 2453 retval = af->setsockopt(sk, level, optname, optval, optlen); 2454 goto out_nounlock; 2455 } 2456 2457 sctp_lock_sock(sk); 2458 2459 switch (optname) { 2460 case SCTP_SOCKOPT_BINDX_ADD: 2461 /* 'optlen' is the size of the addresses buffer. */ 2462 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2463 optlen, SCTP_BINDX_ADD_ADDR); 2464 break; 2465 2466 case SCTP_SOCKOPT_BINDX_REM: 2467 /* 'optlen' is the size of the addresses buffer. */ 2468 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval, 2469 optlen, SCTP_BINDX_REM_ADDR); 2470 break; 2471 2472 case SCTP_SOCKOPT_CONNECTX: 2473 /* 'optlen' is the size of the addresses buffer. */ 2474 retval = sctp_setsockopt_connectx(sk, (struct sockaddr __user *)optval, 2475 optlen); 2476 break; 2477 2478 case SCTP_DISABLE_FRAGMENTS: 2479 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen); 2480 break; 2481 2482 case SCTP_EVENTS: 2483 retval = sctp_setsockopt_events(sk, optval, optlen); 2484 break; 2485 2486 case SCTP_AUTOCLOSE: 2487 retval = sctp_setsockopt_autoclose(sk, optval, optlen); 2488 break; 2489 2490 case SCTP_PEER_ADDR_PARAMS: 2491 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen); 2492 break; 2493 2494 case SCTP_INITMSG: 2495 retval = sctp_setsockopt_initmsg(sk, optval, optlen); 2496 break; 2497 case SCTP_DEFAULT_SEND_PARAM: 2498 retval = sctp_setsockopt_default_send_param(sk, optval, 2499 optlen); 2500 break; 2501 case SCTP_PRIMARY_ADDR: 2502 retval = sctp_setsockopt_primary_addr(sk, optval, optlen); 2503 break; 2504 case SCTP_SET_PEER_PRIMARY_ADDR: 2505 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen); 2506 break; 2507 case SCTP_NODELAY: 2508 retval = sctp_setsockopt_nodelay(sk, optval, optlen); 2509 break; 2510 case SCTP_RTOINFO: 2511 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen); 2512 break; 2513 case SCTP_ASSOCINFO: 2514 retval = sctp_setsockopt_associnfo(sk, optval, optlen); 2515 break; 2516 case SCTP_I_WANT_MAPPED_V4_ADDR: 2517 retval = sctp_setsockopt_mappedv4(sk, optval, optlen); 2518 break; 2519 case SCTP_MAXSEG: 2520 retval = sctp_setsockopt_maxseg(sk, optval, optlen); 2521 break; 2522 case SCTP_ADAPTION_LAYER: 2523 retval = sctp_setsockopt_adaption_layer(sk, optval, optlen); 2524 break; 2525 2526 default: 2527 retval = -ENOPROTOOPT; 2528 break; 2529 }; 2530 2531 sctp_release_sock(sk); 2532 2533out_nounlock: 2534 return retval; 2535} 2536 2537/* API 3.1.6 connect() - UDP Style Syntax 2538 * 2539 * An application may use the connect() call in the UDP model to initiate an 2540 * association without sending data. 2541 * 2542 * The syntax is: 2543 * 2544 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len); 2545 * 2546 * sd: the socket descriptor to have a new association added to. 2547 * 2548 * nam: the address structure (either struct sockaddr_in or struct 2549 * sockaddr_in6 defined in RFC2553 [7]). 2550 * 2551 * len: the size of the address. 2552 */ 2553SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr, 2554 int addr_len) 2555{ 2556 int err = 0; 2557 struct sctp_af *af; 2558 2559 sctp_lock_sock(sk); 2560 2561 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n", 2562 __FUNCTION__, sk, addr, addr_len); 2563 2564 /* Validate addr_len before calling common connect/connectx routine. */ 2565 af = sctp_get_af_specific(addr->sa_family); 2566 if (!af || addr_len < af->sockaddr_len) { 2567 err = -EINVAL; 2568 } else { 2569 /* Pass correct addr len to common routine (so it knows there 2570 * is only one address being passed. 2571 */ 2572 err = __sctp_connect(sk, addr, af->sockaddr_len); 2573 } 2574 2575 sctp_release_sock(sk); 2576 return err; 2577} 2578 2579/* FIXME: Write comments. */ 2580SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags) 2581{ 2582 return -EOPNOTSUPP; /* STUB */ 2583} 2584 2585/* 4.1.4 accept() - TCP Style Syntax 2586 * 2587 * Applications use accept() call to remove an established SCTP 2588 * association from the accept queue of the endpoint. A new socket 2589 * descriptor will be returned from accept() to represent the newly 2590 * formed association. 2591 */ 2592SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err) 2593{ 2594 struct sctp_sock *sp; 2595 struct sctp_endpoint *ep; 2596 struct sock *newsk = NULL; 2597 struct sctp_association *asoc; 2598 long timeo; 2599 int error = 0; 2600 2601 sctp_lock_sock(sk); 2602 2603 sp = sctp_sk(sk); 2604 ep = sp->ep; 2605 2606 if (!sctp_style(sk, TCP)) { 2607 error = -EOPNOTSUPP; 2608 goto out; 2609 } 2610 2611 if (!sctp_sstate(sk, LISTENING)) { 2612 error = -EINVAL; 2613 goto out; 2614 } 2615 2616 timeo = sock_rcvtimeo(sk, sk->sk_socket->file->f_flags & O_NONBLOCK); 2617 2618 error = sctp_wait_for_accept(sk, timeo); 2619 if (error) 2620 goto out; 2621 2622 /* We treat the list of associations on the endpoint as the accept 2623 * queue and pick the first association on the list. 2624 */ 2625 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs); 2626 2627 newsk = sp->pf->create_accept_sk(sk, asoc); 2628 if (!newsk) { 2629 error = -ENOMEM; 2630 goto out; 2631 } 2632 2633 /* Populate the fields of the newsk from the oldsk and migrate the 2634 * asoc to the newsk. 2635 */ 2636 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP); 2637 2638out: 2639 sctp_release_sock(sk); 2640 *err = error; 2641 return newsk; 2642} 2643 2644/* The SCTP ioctl handler. */ 2645SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg) 2646{ 2647 return -ENOIOCTLCMD; 2648} 2649 2650/* This is the function which gets called during socket creation to 2651 * initialized the SCTP-specific portion of the sock. 2652 * The sock structure should already be zero-filled memory. 2653 */ 2654SCTP_STATIC int sctp_init_sock(struct sock *sk) 2655{ 2656 struct sctp_endpoint *ep; 2657 struct sctp_sock *sp; 2658 2659 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk); 2660 2661 sp = sctp_sk(sk); 2662 2663 /* Initialize the SCTP per socket area. */ 2664 switch (sk->sk_type) { 2665 case SOCK_SEQPACKET: 2666 sp->type = SCTP_SOCKET_UDP; 2667 break; 2668 case SOCK_STREAM: 2669 sp->type = SCTP_SOCKET_TCP; 2670 break; 2671 default: 2672 return -ESOCKTNOSUPPORT; 2673 } 2674 2675 /* Initialize default send parameters. These parameters can be 2676 * modified with the SCTP_DEFAULT_SEND_PARAM socket option. 2677 */ 2678 sp->default_stream = 0; 2679 sp->default_ppid = 0; 2680 sp->default_flags = 0; 2681 sp->default_context = 0; 2682 sp->default_timetolive = 0; 2683 2684 /* Initialize default setup parameters. These parameters 2685 * can be modified with the SCTP_INITMSG socket option or 2686 * overridden by the SCTP_INIT CMSG. 2687 */ 2688 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams; 2689 sp->initmsg.sinit_max_instreams = sctp_max_instreams; 2690 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init; 2691 sp->initmsg.sinit_max_init_timeo = jiffies_to_msecs(sctp_rto_max); 2692 2693 /* Initialize default RTO related parameters. These parameters can 2694 * be modified for with the SCTP_RTOINFO socket option. 2695 */ 2696 sp->rtoinfo.srto_initial = jiffies_to_msecs(sctp_rto_initial); 2697 sp->rtoinfo.srto_max = jiffies_to_msecs(sctp_rto_max); 2698 sp->rtoinfo.srto_min = jiffies_to_msecs(sctp_rto_min); 2699 2700 /* Initialize default association related parameters. These parameters 2701 * can be modified with the SCTP_ASSOCINFO socket option. 2702 */ 2703 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association; 2704 sp->assocparams.sasoc_number_peer_destinations = 0; 2705 sp->assocparams.sasoc_peer_rwnd = 0; 2706 sp->assocparams.sasoc_local_rwnd = 0; 2707 sp->assocparams.sasoc_cookie_life = 2708 jiffies_to_msecs(sctp_valid_cookie_life); 2709 2710 /* Initialize default event subscriptions. By default, all the 2711 * options are off. 2712 */ 2713 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe)); 2714 2715 /* Default Peer Address Parameters. These defaults can 2716 * be modified via SCTP_PEER_ADDR_PARAMS 2717 */ 2718 sp->paddrparam.spp_hbinterval = jiffies_to_msecs(sctp_hb_interval); 2719 sp->paddrparam.spp_pathmaxrxt = sctp_max_retrans_path; 2720 2721 /* If enabled no SCTP message fragmentation will be performed. 2722 * Configure through SCTP_DISABLE_FRAGMENTS socket option. 2723 */ 2724 sp->disable_fragments = 0; 2725 2726 /* Turn on/off any Nagle-like algorithm. */ 2727 sp->nodelay = 1; 2728 2729 /* Enable by default. */ 2730 sp->v4mapped = 1; 2731 2732 /* Auto-close idle associations after the configured 2733 * number of seconds. A value of 0 disables this 2734 * feature. Configure through the SCTP_AUTOCLOSE socket option, 2735 * for UDP-style sockets only. 2736 */ 2737 sp->autoclose = 0; 2738 2739 /* User specified fragmentation limit. */ 2740 sp->user_frag = 0; 2741 2742 sp->adaption_ind = 0; 2743 2744 sp->pf = sctp_get_pf_specific(sk->sk_family); 2745 2746 /* Control variables for partial data delivery. */ 2747 sp->pd_mode = 0; 2748 skb_queue_head_init(&sp->pd_lobby); 2749 2750 /* Create a per socket endpoint structure. Even if we 2751 * change the data structure relationships, this may still 2752 * be useful for storing pre-connect address information. 2753 */ 2754 ep = sctp_endpoint_new(sk, GFP_KERNEL); 2755 if (!ep) 2756 return -ENOMEM; 2757 2758 sp->ep = ep; 2759 sp->hmac = NULL; 2760 2761 SCTP_DBG_OBJCNT_INC(sock); 2762 return 0; 2763} 2764 2765/* Cleanup any SCTP per socket resources. */ 2766SCTP_STATIC int sctp_destroy_sock(struct sock *sk) 2767{ 2768 struct sctp_endpoint *ep; 2769 2770 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk); 2771 2772 /* Release our hold on the endpoint. */ 2773 ep = sctp_sk(sk)->ep; 2774 sctp_endpoint_free(ep); 2775 2776 return 0; 2777} 2778 2779/* API 4.1.7 shutdown() - TCP Style Syntax 2780 * int shutdown(int socket, int how); 2781 * 2782 * sd - the socket descriptor of the association to be closed. 2783 * how - Specifies the type of shutdown. The values are 2784 * as follows: 2785 * SHUT_RD 2786 * Disables further receive operations. No SCTP 2787 * protocol action is taken. 2788 * SHUT_WR 2789 * Disables further send operations, and initiates 2790 * the SCTP shutdown sequence. 2791 * SHUT_RDWR 2792 * Disables further send and receive operations 2793 * and initiates the SCTP shutdown sequence. 2794 */ 2795SCTP_STATIC void sctp_shutdown(struct sock *sk, int how) 2796{ 2797 struct sctp_endpoint *ep; 2798 struct sctp_association *asoc; 2799 2800 if (!sctp_style(sk, TCP)) 2801 return; 2802 2803 if (how & SEND_SHUTDOWN) { 2804 ep = sctp_sk(sk)->ep; 2805 if (!list_empty(&ep->asocs)) { 2806 asoc = list_entry(ep->asocs.next, 2807 struct sctp_association, asocs); 2808 sctp_primitive_SHUTDOWN(asoc, NULL); 2809 } 2810 } 2811} 2812 2813/* 7.2.1 Association Status (SCTP_STATUS) 2814 2815 * Applications can retrieve current status information about an 2816 * association, including association state, peer receiver window size, 2817 * number of unacked data chunks, and number of data chunks pending 2818 * receipt. This information is read-only. 2819 */ 2820static int sctp_getsockopt_sctp_status(struct sock *sk, int len, 2821 char __user *optval, 2822 int __user *optlen) 2823{ 2824 struct sctp_status status; 2825 struct sctp_association *asoc = NULL; 2826 struct sctp_transport *transport; 2827 sctp_assoc_t associd; 2828 int retval = 0; 2829 2830 if (len != sizeof(status)) { 2831 retval = -EINVAL; 2832 goto out; 2833 } 2834 2835 if (copy_from_user(&status, optval, sizeof(status))) { 2836 retval = -EFAULT; 2837 goto out; 2838 } 2839 2840 associd = status.sstat_assoc_id; 2841 asoc = sctp_id2assoc(sk, associd); 2842 if (!asoc) { 2843 retval = -EINVAL; 2844 goto out; 2845 } 2846 2847 transport = asoc->peer.primary_path; 2848 2849 status.sstat_assoc_id = sctp_assoc2id(asoc); 2850 status.sstat_state = asoc->state; 2851 status.sstat_rwnd = asoc->peer.rwnd; 2852 status.sstat_unackdata = asoc->unack_data; 2853 2854 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map); 2855 status.sstat_instrms = asoc->c.sinit_max_instreams; 2856 status.sstat_outstrms = asoc->c.sinit_num_ostreams; 2857 status.sstat_fragmentation_point = asoc->frag_point; 2858 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 2859 memcpy(&status.sstat_primary.spinfo_address, 2860 &(transport->ipaddr), sizeof(union sctp_addr)); 2861 /* Map ipv4 address into v4-mapped-on-v6 address. */ 2862 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 2863 (union sctp_addr *)&status.sstat_primary.spinfo_address); 2864 status.sstat_primary.spinfo_state = transport->state; 2865 status.sstat_primary.spinfo_cwnd = transport->cwnd; 2866 status.sstat_primary.spinfo_srtt = transport->srtt; 2867 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto); 2868 status.sstat_primary.spinfo_mtu = transport->pmtu; 2869 2870 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN) 2871 status.sstat_primary.spinfo_state = SCTP_ACTIVE; 2872 2873 if (put_user(len, optlen)) { 2874 retval = -EFAULT; 2875 goto out; 2876 } 2877 2878 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n", 2879 len, status.sstat_state, status.sstat_rwnd, 2880 status.sstat_assoc_id); 2881 2882 if (copy_to_user(optval, &status, len)) { 2883 retval = -EFAULT; 2884 goto out; 2885 } 2886 2887out: 2888 return (retval); 2889} 2890 2891 2892/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO) 2893 * 2894 * Applications can retrieve information about a specific peer address 2895 * of an association, including its reachability state, congestion 2896 * window, and retransmission timer values. This information is 2897 * read-only. 2898 */ 2899static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len, 2900 char __user *optval, 2901 int __user *optlen) 2902{ 2903 struct sctp_paddrinfo pinfo; 2904 struct sctp_transport *transport; 2905 int retval = 0; 2906 2907 if (len != sizeof(pinfo)) { 2908 retval = -EINVAL; 2909 goto out; 2910 } 2911 2912 if (copy_from_user(&pinfo, optval, sizeof(pinfo))) { 2913 retval = -EFAULT; 2914 goto out; 2915 } 2916 2917 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address, 2918 pinfo.spinfo_assoc_id); 2919 if (!transport) 2920 return -EINVAL; 2921 2922 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc); 2923 pinfo.spinfo_state = transport->state; 2924 pinfo.spinfo_cwnd = transport->cwnd; 2925 pinfo.spinfo_srtt = transport->srtt; 2926 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto); 2927 pinfo.spinfo_mtu = transport->pmtu; 2928 2929 if (pinfo.spinfo_state == SCTP_UNKNOWN) 2930 pinfo.spinfo_state = SCTP_ACTIVE; 2931 2932 if (put_user(len, optlen)) { 2933 retval = -EFAULT; 2934 goto out; 2935 } 2936 2937 if (copy_to_user(optval, &pinfo, len)) { 2938 retval = -EFAULT; 2939 goto out; 2940 } 2941 2942out: 2943 return (retval); 2944} 2945 2946/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS) 2947 * 2948 * This option is a on/off flag. If enabled no SCTP message 2949 * fragmentation will be performed. Instead if a message being sent 2950 * exceeds the current PMTU size, the message will NOT be sent and 2951 * instead a error will be indicated to the user. 2952 */ 2953static int sctp_getsockopt_disable_fragments(struct sock *sk, int len, 2954 char __user *optval, int __user *optlen) 2955{ 2956 int val; 2957 2958 if (len < sizeof(int)) 2959 return -EINVAL; 2960 2961 len = sizeof(int); 2962 val = (sctp_sk(sk)->disable_fragments == 1); 2963 if (put_user(len, optlen)) 2964 return -EFAULT; 2965 if (copy_to_user(optval, &val, len)) 2966 return -EFAULT; 2967 return 0; 2968} 2969 2970/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS) 2971 * 2972 * This socket option is used to specify various notifications and 2973 * ancillary data the user wishes to receive. 2974 */ 2975static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval, 2976 int __user *optlen) 2977{ 2978 if (len != sizeof(struct sctp_event_subscribe)) 2979 return -EINVAL; 2980 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len)) 2981 return -EFAULT; 2982 return 0; 2983} 2984 2985/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE) 2986 * 2987 * This socket option is applicable to the UDP-style socket only. When 2988 * set it will cause associations that are idle for more than the 2989 * specified number of seconds to automatically close. An association 2990 * being idle is defined an association that has NOT sent or received 2991 * user data. The special value of '0' indicates that no automatic 2992 * close of any associations should be performed. The option expects an 2993 * integer defining the number of seconds of idle time before an 2994 * association is closed. 2995 */ 2996static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen) 2997{ 2998 /* Applicable to UDP-style socket only */ 2999 if (sctp_style(sk, TCP)) 3000 return -EOPNOTSUPP; 3001 if (len != sizeof(int)) 3002 return -EINVAL; 3003 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, len)) 3004 return -EFAULT; 3005 return 0; 3006} 3007 3008/* Helper routine to branch off an association to a new socket. */ 3009SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc, 3010 struct socket **sockp) 3011{ 3012 struct sock *sk = asoc->base.sk; 3013 struct socket *sock; 3014 int err = 0; 3015 3016 /* An association cannot be branched off from an already peeled-off 3017 * socket, nor is this supported for tcp style sockets. 3018 */ 3019 if (!sctp_style(sk, UDP)) 3020 return -EINVAL; 3021 3022 /* Create a new socket. */ 3023 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock); 3024 if (err < 0) 3025 return err; 3026 3027 /* Populate the fields of the newsk from the oldsk and migrate the 3028 * asoc to the newsk. 3029 */ 3030 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH); 3031 *sockp = sock; 3032 3033 return err; 3034} 3035 3036static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen) 3037{ 3038 sctp_peeloff_arg_t peeloff; 3039 struct socket *newsock; 3040 int retval = 0; 3041 struct sctp_association *asoc; 3042 3043 if (len != sizeof(sctp_peeloff_arg_t)) 3044 return -EINVAL; 3045 if (copy_from_user(&peeloff, optval, len)) 3046 return -EFAULT; 3047 3048 asoc = sctp_id2assoc(sk, peeloff.associd); 3049 if (!asoc) { 3050 retval = -EINVAL; 3051 goto out; 3052 } 3053 3054 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __FUNCTION__, sk, asoc); 3055 3056 retval = sctp_do_peeloff(asoc, &newsock); 3057 if (retval < 0) 3058 goto out; 3059 3060 /* Map the socket to an unused fd that can be returned to the user. */ 3061 retval = sock_map_fd(newsock); 3062 if (retval < 0) { 3063 sock_release(newsock); 3064 goto out; 3065 } 3066 3067 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n", 3068 __FUNCTION__, sk, asoc, newsock->sk, retval); 3069 3070 /* Return the fd mapped to the new socket. */ 3071 peeloff.sd = retval; 3072 if (copy_to_user(optval, &peeloff, len)) 3073 retval = -EFAULT; 3074 3075out: 3076 return retval; 3077} 3078 3079/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS) 3080 * 3081 * Applications can enable or disable heartbeats for any peer address of 3082 * an association, modify an address's heartbeat interval, force a 3083 * heartbeat to be sent immediately, and adjust the address's maximum 3084 * number of retransmissions sent before an address is considered 3085 * unreachable. The following structure is used to access and modify an 3086 * address's parameters: 3087 * 3088 * struct sctp_paddrparams { 3089 * sctp_assoc_t spp_assoc_id; 3090 * struct sockaddr_storage spp_address; 3091 * uint32_t spp_hbinterval; 3092 * uint16_t spp_pathmaxrxt; 3093 * }; 3094 * 3095 * spp_assoc_id - (UDP style socket) This is filled in the application, 3096 * and identifies the association for this query. 3097 * spp_address - This specifies which address is of interest. 3098 * spp_hbinterval - This contains the value of the heartbeat interval, 3099 * in milliseconds. A value of 0, when modifying the 3100 * parameter, specifies that the heartbeat on this 3101 * address should be disabled. A value of UINT32_MAX 3102 * (4294967295), when modifying the parameter, 3103 * specifies that a heartbeat should be sent 3104 * immediately to the peer address, and the current 3105 * interval should remain unchanged. 3106 * spp_pathmaxrxt - This contains the maximum number of 3107 * retransmissions before this address shall be 3108 * considered unreachable. 3109 */ 3110static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len, 3111 char __user *optval, int __user *optlen) 3112{ 3113 struct sctp_paddrparams params; 3114 struct sctp_transport *trans; 3115 3116 if (len != sizeof(struct sctp_paddrparams)) 3117 return -EINVAL; 3118 if (copy_from_user(&params, optval, len)) 3119 return -EFAULT; 3120 3121 /* If no association id is specified retrieve the default value 3122 * for the endpoint that will be used for all future associations 3123 */ 3124 if (!params.spp_assoc_id && 3125 sctp_is_any(( union sctp_addr *)&params.spp_address)) { 3126 params.spp_hbinterval = sctp_sk(sk)->paddrparam.spp_hbinterval; 3127 params.spp_pathmaxrxt = sctp_sk(sk)->paddrparam.spp_pathmaxrxt; 3128 3129 goto done; 3130 } 3131 3132 trans = sctp_addr_id2transport(sk, &params.spp_address, 3133 params.spp_assoc_id); 3134 if (!trans) 3135 return -EINVAL; 3136 3137 /* The value of the heartbeat interval, in milliseconds. A value of 0, 3138 * when modifying the parameter, specifies that the heartbeat on this 3139 * address should be disabled. 3140 */ 3141 if (!trans->hb_allowed) 3142 params.spp_hbinterval = 0; 3143 else 3144 params.spp_hbinterval = jiffies_to_msecs(trans->hb_interval); 3145 3146 /* spp_pathmaxrxt contains the maximum number of retransmissions 3147 * before this address shall be considered unreachable. 3148 */ 3149 params.spp_pathmaxrxt = trans->max_retrans; 3150 3151done: 3152 if (copy_to_user(optval, &params, len)) 3153 return -EFAULT; 3154 3155 if (put_user(len, optlen)) 3156 return -EFAULT; 3157 3158 return 0; 3159} 3160 3161/* 7.1.3 Initialization Parameters (SCTP_INITMSG) 3162 * 3163 * Applications can specify protocol parameters for the default association 3164 * initialization. The option name argument to setsockopt() and getsockopt() 3165 * is SCTP_INITMSG. 3166 * 3167 * Setting initialization parameters is effective only on an unconnected 3168 * socket (for UDP-style sockets only future associations are effected 3169 * by the change). With TCP-style sockets, this option is inherited by 3170 * sockets derived from a listener socket. 3171 */ 3172static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen) 3173{ 3174 if (len != sizeof(struct sctp_initmsg)) 3175 return -EINVAL; 3176 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len)) 3177 return -EFAULT; 3178 return 0; 3179} 3180 3181static int sctp_getsockopt_peer_addrs_num_old(struct sock *sk, int len, 3182 char __user *optval, 3183 int __user *optlen) 3184{ 3185 sctp_assoc_t id; 3186 struct sctp_association *asoc; 3187 struct list_head *pos; 3188 int cnt = 0; 3189 3190 if (len != sizeof(sctp_assoc_t)) 3191 return -EINVAL; 3192 3193 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3194 return -EFAULT; 3195 3196 /* For UDP-style sockets, id specifies the association to query. */ 3197 asoc = sctp_id2assoc(sk, id); 3198 if (!asoc) 3199 return -EINVAL; 3200 3201 list_for_each(pos, &asoc->peer.transport_addr_list) { 3202 cnt ++; 3203 } 3204 3205 return cnt; 3206} 3207 3208/* 3209 * Old API for getting list of peer addresses. Does not work for 32-bit 3210 * programs running on a 64-bit kernel 3211 */ 3212static int sctp_getsockopt_peer_addrs_old(struct sock *sk, int len, 3213 char __user *optval, 3214 int __user *optlen) 3215{ 3216 struct sctp_association *asoc; 3217 struct list_head *pos; 3218 int cnt = 0; 3219 struct sctp_getaddrs_old getaddrs; 3220 struct sctp_transport *from; 3221 void __user *to; 3222 union sctp_addr temp; 3223 struct sctp_sock *sp = sctp_sk(sk); 3224 int addrlen; 3225 3226 if (len != sizeof(struct sctp_getaddrs_old)) 3227 return -EINVAL; 3228 3229 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3230 return -EFAULT; 3231 3232 if (getaddrs.addr_num <= 0) return -EINVAL; 3233 3234 /* For UDP-style sockets, id specifies the association to query. */ 3235 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3236 if (!asoc) 3237 return -EINVAL; 3238 3239 to = (void __user *)getaddrs.addrs; 3240 list_for_each(pos, &asoc->peer.transport_addr_list) { 3241 from = list_entry(pos, struct sctp_transport, transports); 3242 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3243 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3244 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3245 temp.v4.sin_port = htons(temp.v4.sin_port); 3246 if (copy_to_user(to, &temp, addrlen)) 3247 return -EFAULT; 3248 to += addrlen ; 3249 cnt ++; 3250 if (cnt >= getaddrs.addr_num) break; 3251 } 3252 getaddrs.addr_num = cnt; 3253 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 3254 return -EFAULT; 3255 3256 return 0; 3257} 3258 3259static int sctp_getsockopt_peer_addrs(struct sock *sk, int len, 3260 char __user *optval, int __user *optlen) 3261{ 3262 struct sctp_association *asoc; 3263 struct list_head *pos; 3264 int cnt = 0; 3265 struct sctp_getaddrs getaddrs; 3266 struct sctp_transport *from; 3267 void __user *to; 3268 union sctp_addr temp; 3269 struct sctp_sock *sp = sctp_sk(sk); 3270 int addrlen; 3271 size_t space_left; 3272 int bytes_copied; 3273 3274 if (len < sizeof(struct sctp_getaddrs)) 3275 return -EINVAL; 3276 3277 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 3278 return -EFAULT; 3279 3280 /* For UDP-style sockets, id specifies the association to query. */ 3281 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3282 if (!asoc) 3283 return -EINVAL; 3284 3285 to = optval + offsetof(struct sctp_getaddrs,addrs); 3286 space_left = len - sizeof(struct sctp_getaddrs) - 3287 offsetof(struct sctp_getaddrs,addrs); 3288 3289 list_for_each(pos, &asoc->peer.transport_addr_list) { 3290 from = list_entry(pos, struct sctp_transport, transports); 3291 memcpy(&temp, &from->ipaddr, sizeof(temp)); 3292 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3293 addrlen = sctp_get_af_specific(sk->sk_family)->sockaddr_len; 3294 if(space_left < addrlen) 3295 return -ENOMEM; 3296 temp.v4.sin_port = htons(temp.v4.sin_port); 3297 if (copy_to_user(to, &temp, addrlen)) 3298 return -EFAULT; 3299 to += addrlen; 3300 cnt++; 3301 space_left -= addrlen; 3302 } 3303 3304 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 3305 return -EFAULT; 3306 bytes_copied = ((char __user *)to) - optval; 3307 if (put_user(bytes_copied, optlen)) 3308 return -EFAULT; 3309 3310 return 0; 3311} 3312 3313static int sctp_getsockopt_local_addrs_num_old(struct sock *sk, int len, 3314 char __user *optval, 3315 int __user *optlen) 3316{ 3317 sctp_assoc_t id; 3318 struct sctp_bind_addr *bp; 3319 struct sctp_association *asoc; 3320 struct list_head *pos; 3321 struct sctp_sockaddr_entry *addr; 3322 rwlock_t *addr_lock; 3323 unsigned long flags; 3324 int cnt = 0; 3325 3326 if (len != sizeof(sctp_assoc_t)) 3327 return -EINVAL; 3328 3329 if (copy_from_user(&id, optval, sizeof(sctp_assoc_t))) 3330 return -EFAULT; 3331 3332 /* 3333 * For UDP-style sockets, id specifies the association to query. 3334 * If the id field is set to the value '0' then the locally bound 3335 * addresses are returned without regard to any particular 3336 * association. 3337 */ 3338 if (0 == id) { 3339 bp = &sctp_sk(sk)->ep->base.bind_addr; 3340 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3341 } else { 3342 asoc = sctp_id2assoc(sk, id); 3343 if (!asoc) 3344 return -EINVAL; 3345 bp = &asoc->base.bind_addr; 3346 addr_lock = &asoc->base.addr_lock; 3347 } 3348 3349 sctp_read_lock(addr_lock); 3350 3351 /* If the endpoint is bound to 0.0.0.0 or ::0, count the valid 3352 * addresses from the global local address list. 3353 */ 3354 if (sctp_list_single_entry(&bp->address_list)) { 3355 addr = list_entry(bp->address_list.next, 3356 struct sctp_sockaddr_entry, list); 3357 if (sctp_is_any(&addr->a)) { 3358 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3359 list_for_each(pos, &sctp_local_addr_list) { 3360 addr = list_entry(pos, 3361 struct sctp_sockaddr_entry, 3362 list); 3363 if ((PF_INET == sk->sk_family) && 3364 (AF_INET6 == addr->a.sa.sa_family)) 3365 continue; 3366 cnt++; 3367 } 3368 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3369 flags); 3370 } else { 3371 cnt = 1; 3372 } 3373 goto done; 3374 } 3375 3376 list_for_each(pos, &bp->address_list) { 3377 cnt ++; 3378 } 3379 3380done: 3381 sctp_read_unlock(addr_lock); 3382 return cnt; 3383} 3384 3385/* Helper function that copies local addresses to user and returns the number 3386 * of addresses copied. 3387 */ 3388static int sctp_copy_laddrs_to_user_old(struct sock *sk, __u16 port, int max_addrs, 3389 void __user *to) 3390{ 3391 struct list_head *pos; 3392 struct sctp_sockaddr_entry *addr; 3393 unsigned long flags; 3394 union sctp_addr temp; 3395 int cnt = 0; 3396 int addrlen; 3397 3398 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3399 list_for_each(pos, &sctp_local_addr_list) { 3400 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3401 if ((PF_INET == sk->sk_family) && 3402 (AF_INET6 == addr->a.sa.sa_family)) 3403 continue; 3404 memcpy(&temp, &addr->a, sizeof(temp)); 3405 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3406 &temp); 3407 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3408 temp.v4.sin_port = htons(port); 3409 if (copy_to_user(to, &temp, addrlen)) { 3410 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3411 flags); 3412 return -EFAULT; 3413 } 3414 to += addrlen; 3415 cnt ++; 3416 if (cnt >= max_addrs) break; 3417 } 3418 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3419 3420 return cnt; 3421} 3422 3423static int sctp_copy_laddrs_to_user(struct sock *sk, __u16 port, 3424 void __user **to, size_t space_left) 3425{ 3426 struct list_head *pos; 3427 struct sctp_sockaddr_entry *addr; 3428 unsigned long flags; 3429 union sctp_addr temp; 3430 int cnt = 0; 3431 int addrlen; 3432 3433 sctp_spin_lock_irqsave(&sctp_local_addr_lock, flags); 3434 list_for_each(pos, &sctp_local_addr_list) { 3435 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3436 if ((PF_INET == sk->sk_family) && 3437 (AF_INET6 == addr->a.sa.sa_family)) 3438 continue; 3439 memcpy(&temp, &addr->a, sizeof(temp)); 3440 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk), 3441 &temp); 3442 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3443 if(space_left<addrlen) 3444 return -ENOMEM; 3445 temp.v4.sin_port = htons(port); 3446 if (copy_to_user(*to, &temp, addrlen)) { 3447 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, 3448 flags); 3449 return -EFAULT; 3450 } 3451 *to += addrlen; 3452 cnt ++; 3453 space_left -= addrlen; 3454 } 3455 sctp_spin_unlock_irqrestore(&sctp_local_addr_lock, flags); 3456 3457 return cnt; 3458} 3459 3460/* Old API for getting list of local addresses. Does not work for 32-bit 3461 * programs running on a 64-bit kernel 3462 */ 3463static int sctp_getsockopt_local_addrs_old(struct sock *sk, int len, 3464 char __user *optval, int __user *optlen) 3465{ 3466 struct sctp_bind_addr *bp; 3467 struct sctp_association *asoc; 3468 struct list_head *pos; 3469 int cnt = 0; 3470 struct sctp_getaddrs_old getaddrs; 3471 struct sctp_sockaddr_entry *addr; 3472 void __user *to; 3473 union sctp_addr temp; 3474 struct sctp_sock *sp = sctp_sk(sk); 3475 int addrlen; 3476 rwlock_t *addr_lock; 3477 int err = 0; 3478 3479 if (len != sizeof(struct sctp_getaddrs_old)) 3480 return -EINVAL; 3481 3482 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs_old))) 3483 return -EFAULT; 3484 3485 if (getaddrs.addr_num <= 0) return -EINVAL; 3486 /* 3487 * For UDP-style sockets, id specifies the association to query. 3488 * If the id field is set to the value '0' then the locally bound 3489 * addresses are returned without regard to any particular 3490 * association. 3491 */ 3492 if (0 == getaddrs.assoc_id) { 3493 bp = &sctp_sk(sk)->ep->base.bind_addr; 3494 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3495 } else { 3496 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3497 if (!asoc) 3498 return -EINVAL; 3499 bp = &asoc->base.bind_addr; 3500 addr_lock = &asoc->base.addr_lock; 3501 } 3502 3503 to = getaddrs.addrs; 3504 3505 sctp_read_lock(addr_lock); 3506 3507 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 3508 * addresses from the global local address list. 3509 */ 3510 if (sctp_list_single_entry(&bp->address_list)) { 3511 addr = list_entry(bp->address_list.next, 3512 struct sctp_sockaddr_entry, list); 3513 if (sctp_is_any(&addr->a)) { 3514 cnt = sctp_copy_laddrs_to_user_old(sk, bp->port, 3515 getaddrs.addr_num, 3516 to); 3517 if (cnt < 0) { 3518 err = cnt; 3519 goto unlock; 3520 } 3521 goto copy_getaddrs; 3522 } 3523 } 3524 3525 list_for_each(pos, &bp->address_list) { 3526 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3527 memcpy(&temp, &addr->a, sizeof(temp)); 3528 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3529 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3530 temp.v4.sin_port = htons(temp.v4.sin_port); 3531 if (copy_to_user(to, &temp, addrlen)) { 3532 err = -EFAULT; 3533 goto unlock; 3534 } 3535 to += addrlen; 3536 cnt ++; 3537 if (cnt >= getaddrs.addr_num) break; 3538 } 3539 3540copy_getaddrs: 3541 getaddrs.addr_num = cnt; 3542 if (copy_to_user(optval, &getaddrs, sizeof(struct sctp_getaddrs_old))) 3543 err = -EFAULT; 3544 3545unlock: 3546 sctp_read_unlock(addr_lock); 3547 return err; 3548} 3549 3550static int sctp_getsockopt_local_addrs(struct sock *sk, int len, 3551 char __user *optval, int __user *optlen) 3552{ 3553 struct sctp_bind_addr *bp; 3554 struct sctp_association *asoc; 3555 struct list_head *pos; 3556 int cnt = 0; 3557 struct sctp_getaddrs getaddrs; 3558 struct sctp_sockaddr_entry *addr; 3559 void __user *to; 3560 union sctp_addr temp; 3561 struct sctp_sock *sp = sctp_sk(sk); 3562 int addrlen; 3563 rwlock_t *addr_lock; 3564 int err = 0; 3565 size_t space_left; 3566 int bytes_copied; 3567 3568 if (len <= sizeof(struct sctp_getaddrs)) 3569 return -EINVAL; 3570 3571 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs))) 3572 return -EFAULT; 3573 3574 /* 3575 * For UDP-style sockets, id specifies the association to query. 3576 * If the id field is set to the value '0' then the locally bound 3577 * addresses are returned without regard to any particular 3578 * association. 3579 */ 3580 if (0 == getaddrs.assoc_id) { 3581 bp = &sctp_sk(sk)->ep->base.bind_addr; 3582 addr_lock = &sctp_sk(sk)->ep->base.addr_lock; 3583 } else { 3584 asoc = sctp_id2assoc(sk, getaddrs.assoc_id); 3585 if (!asoc) 3586 return -EINVAL; 3587 bp = &asoc->base.bind_addr; 3588 addr_lock = &asoc->base.addr_lock; 3589 } 3590 3591 to = optval + offsetof(struct sctp_getaddrs,addrs); 3592 space_left = len - sizeof(struct sctp_getaddrs) - 3593 offsetof(struct sctp_getaddrs,addrs); 3594 3595 sctp_read_lock(addr_lock); 3596 3597 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid 3598 * addresses from the global local address list. 3599 */ 3600 if (sctp_list_single_entry(&bp->address_list)) { 3601 addr = list_entry(bp->address_list.next, 3602 struct sctp_sockaddr_entry, list); 3603 if (sctp_is_any(&addr->a)) { 3604 cnt = sctp_copy_laddrs_to_user(sk, bp->port, 3605 &to, space_left); 3606 if (cnt < 0) { 3607 err = cnt; 3608 goto unlock; 3609 } 3610 goto copy_getaddrs; 3611 } 3612 } 3613 3614 list_for_each(pos, &bp->address_list) { 3615 addr = list_entry(pos, struct sctp_sockaddr_entry, list); 3616 memcpy(&temp, &addr->a, sizeof(temp)); 3617 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp); 3618 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len; 3619 if(space_left < addrlen) 3620 return -ENOMEM; /*fixme: right error?*/ 3621 temp.v4.sin_port = htons(temp.v4.sin_port); 3622 if (copy_to_user(to, &temp, addrlen)) { 3623 err = -EFAULT; 3624 goto unlock; 3625 } 3626 to += addrlen; 3627 cnt ++; 3628 space_left -= addrlen; 3629 } 3630 3631copy_getaddrs: 3632 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) 3633 return -EFAULT; 3634 bytes_copied = ((char __user *)to) - optval; 3635 if (put_user(bytes_copied, optlen)) 3636 return -EFAULT; 3637 3638unlock: 3639 sctp_read_unlock(addr_lock); 3640 return err; 3641} 3642 3643/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR) 3644 * 3645 * Requests that the local SCTP stack use the enclosed peer address as 3646 * the association primary. The enclosed address must be one of the 3647 * association peer's addresses. 3648 */ 3649static int sctp_getsockopt_primary_addr(struct sock *sk, int len, 3650 char __user *optval, int __user *optlen) 3651{ 3652 struct sctp_prim prim; 3653 struct sctp_association *asoc; 3654 struct sctp_sock *sp = sctp_sk(sk); 3655 3656 if (len != sizeof(struct sctp_prim)) 3657 return -EINVAL; 3658 3659 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim))) 3660 return -EFAULT; 3661 3662 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id); 3663 if (!asoc) 3664 return -EINVAL; 3665 3666 if (!asoc->peer.primary_path) 3667 return -ENOTCONN; 3668 3669 asoc->peer.primary_path->ipaddr.v4.sin_port = 3670 htons(asoc->peer.primary_path->ipaddr.v4.sin_port); 3671 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr, 3672 sizeof(union sctp_addr)); 3673 asoc->peer.primary_path->ipaddr.v4.sin_port = 3674 ntohs(asoc->peer.primary_path->ipaddr.v4.sin_port); 3675 3676 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, 3677 (union sctp_addr *)&prim.ssp_addr); 3678 3679 if (copy_to_user(optval, &prim, sizeof(struct sctp_prim))) 3680 return -EFAULT; 3681 3682 return 0; 3683} 3684 3685/* 3686 * 7.1.11 Set Adaption Layer Indicator (SCTP_ADAPTION_LAYER) 3687 * 3688 * Requests that the local endpoint set the specified Adaption Layer 3689 * Indication parameter for all future INIT and INIT-ACK exchanges. 3690 */ 3691static int sctp_getsockopt_adaption_layer(struct sock *sk, int len, 3692 char __user *optval, int __user *optlen) 3693{ 3694 struct sctp_setadaption adaption; 3695 3696 if (len != sizeof(struct sctp_setadaption)) 3697 return -EINVAL; 3698 3699 adaption.ssb_adaption_ind = sctp_sk(sk)->adaption_ind; 3700 if (copy_to_user(optval, &adaption, len)) 3701 return -EFAULT; 3702 3703 return 0; 3704} 3705 3706/* 3707 * 3708 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM) 3709 * 3710 * Applications that wish to use the sendto() system call may wish to 3711 * specify a default set of parameters that would normally be supplied 3712 * through the inclusion of ancillary data. This socket option allows 3713 * such an application to set the default sctp_sndrcvinfo structure. 3714 3715 3716 * The application that wishes to use this socket option simply passes 3717 * in to this call the sctp_sndrcvinfo structure defined in Section 3718 * 5.2.2) The input parameters accepted by this call include 3719 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context, 3720 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in 3721 * to this call if the caller is using the UDP model. 3722 * 3723 * For getsockopt, it get the default sctp_sndrcvinfo structure. 3724 */ 3725static int sctp_getsockopt_default_send_param(struct sock *sk, 3726 int len, char __user *optval, 3727 int __user *optlen) 3728{ 3729 struct sctp_sndrcvinfo info; 3730 struct sctp_association *asoc; 3731 struct sctp_sock *sp = sctp_sk(sk); 3732 3733 if (len != sizeof(struct sctp_sndrcvinfo)) 3734 return -EINVAL; 3735 if (copy_from_user(&info, optval, sizeof(struct sctp_sndrcvinfo))) 3736 return -EFAULT; 3737 3738 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id); 3739 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP)) 3740 return -EINVAL; 3741 3742 if (asoc) { 3743 info.sinfo_stream = asoc->default_stream; 3744 info.sinfo_flags = asoc->default_flags; 3745 info.sinfo_ppid = asoc->default_ppid; 3746 info.sinfo_context = asoc->default_context; 3747 info.sinfo_timetolive = asoc->default_timetolive; 3748 } else { 3749 info.sinfo_stream = sp->default_stream; 3750 info.sinfo_flags = sp->default_flags; 3751 info.sinfo_ppid = sp->default_ppid; 3752 info.sinfo_context = sp->default_context; 3753 info.sinfo_timetolive = sp->default_timetolive; 3754 } 3755 3756 if (copy_to_user(optval, &info, sizeof(struct sctp_sndrcvinfo))) 3757 return -EFAULT; 3758 3759 return 0; 3760} 3761 3762/* 3763 * 3764 * 7.1.5 SCTP_NODELAY 3765 * 3766 * Turn on/off any Nagle-like algorithm. This means that packets are 3767 * generally sent as soon as possible and no unnecessary delays are 3768 * introduced, at the cost of more packets in the network. Expects an 3769 * integer boolean flag. 3770 */ 3771 3772static int sctp_getsockopt_nodelay(struct sock *sk, int len, 3773 char __user *optval, int __user *optlen) 3774{ 3775 int val; 3776 3777 if (len < sizeof(int)) 3778 return -EINVAL; 3779 3780 len = sizeof(int); 3781 val = (sctp_sk(sk)->nodelay == 1); 3782 if (put_user(len, optlen)) 3783 return -EFAULT; 3784 if (copy_to_user(optval, &val, len)) 3785 return -EFAULT; 3786 return 0; 3787} 3788 3789/* 3790 * 3791 * 7.1.1 SCTP_RTOINFO 3792 * 3793 * The protocol parameters used to initialize and bound retransmission 3794 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access 3795 * and modify these parameters. 3796 * All parameters are time values, in milliseconds. A value of 0, when 3797 * modifying the parameters, indicates that the current value should not 3798 * be changed. 3799 * 3800 */ 3801static int sctp_getsockopt_rtoinfo(struct sock *sk, int len, 3802 char __user *optval, 3803 int __user *optlen) { 3804 struct sctp_rtoinfo rtoinfo; 3805 struct sctp_association *asoc; 3806 3807 if (len != sizeof (struct sctp_rtoinfo)) 3808 return -EINVAL; 3809 3810 if (copy_from_user(&rtoinfo, optval, sizeof (struct sctp_rtoinfo))) 3811 return -EFAULT; 3812 3813 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id); 3814 3815 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP)) 3816 return -EINVAL; 3817 3818 /* Values corresponding to the specific association. */ 3819 if (asoc) { 3820 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial); 3821 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max); 3822 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min); 3823 } else { 3824 /* Values corresponding to the endpoint. */ 3825 struct sctp_sock *sp = sctp_sk(sk); 3826 3827 rtoinfo.srto_initial = sp->rtoinfo.srto_initial; 3828 rtoinfo.srto_max = sp->rtoinfo.srto_max; 3829 rtoinfo.srto_min = sp->rtoinfo.srto_min; 3830 } 3831 3832 if (put_user(len, optlen)) 3833 return -EFAULT; 3834 3835 if (copy_to_user(optval, &rtoinfo, len)) 3836 return -EFAULT; 3837 3838 return 0; 3839} 3840 3841/* 3842 * 3843 * 7.1.2 SCTP_ASSOCINFO 3844 * 3845 * This option is used to tune the the maximum retransmission attempts 3846 * of the association. 3847 * Returns an error if the new association retransmission value is 3848 * greater than the sum of the retransmission value of the peer. 3849 * See [SCTP] for more information. 3850 * 3851 */ 3852static int sctp_getsockopt_associnfo(struct sock *sk, int len, 3853 char __user *optval, 3854 int __user *optlen) 3855{ 3856 3857 struct sctp_assocparams assocparams; 3858 struct sctp_association *asoc; 3859 struct list_head *pos; 3860 int cnt = 0; 3861 3862 if (len != sizeof (struct sctp_assocparams)) 3863 return -EINVAL; 3864 3865 if (copy_from_user(&assocparams, optval, 3866 sizeof (struct sctp_assocparams))) 3867 return -EFAULT; 3868 3869 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id); 3870 3871 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP)) 3872 return -EINVAL; 3873 3874 /* Values correspoinding to the specific association */ 3875 if (asoc) { 3876 assocparams.sasoc_asocmaxrxt = asoc->max_retrans; 3877 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd; 3878 assocparams.sasoc_local_rwnd = asoc->a_rwnd; 3879 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec 3880 * 1000) + 3881 (asoc->cookie_life.tv_usec 3882 / 1000); 3883 3884 list_for_each(pos, &asoc->peer.transport_addr_list) { 3885 cnt ++; 3886 } 3887 3888 assocparams.sasoc_number_peer_destinations = cnt; 3889 } else { 3890 /* Values corresponding to the endpoint */ 3891 struct sctp_sock *sp = sctp_sk(sk); 3892 3893 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt; 3894 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd; 3895 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd; 3896 assocparams.sasoc_cookie_life = 3897 sp->assocparams.sasoc_cookie_life; 3898 assocparams.sasoc_number_peer_destinations = 3899 sp->assocparams. 3900 sasoc_number_peer_destinations; 3901 } 3902 3903 if (put_user(len, optlen)) 3904 return -EFAULT; 3905 3906 if (copy_to_user(optval, &assocparams, len)) 3907 return -EFAULT; 3908 3909 return 0; 3910} 3911 3912/* 3913 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR) 3914 * 3915 * This socket option is a boolean flag which turns on or off mapped V4 3916 * addresses. If this option is turned on and the socket is type 3917 * PF_INET6, then IPv4 addresses will be mapped to V6 representation. 3918 * If this option is turned off, then no mapping will be done of V4 3919 * addresses and a user will receive both PF_INET6 and PF_INET type 3920 * addresses on the socket. 3921 */ 3922static int sctp_getsockopt_mappedv4(struct sock *sk, int len, 3923 char __user *optval, int __user *optlen) 3924{ 3925 int val; 3926 struct sctp_sock *sp = sctp_sk(sk); 3927 3928 if (len < sizeof(int)) 3929 return -EINVAL; 3930 3931 len = sizeof(int); 3932 val = sp->v4mapped; 3933 if (put_user(len, optlen)) 3934 return -EFAULT; 3935 if (copy_to_user(optval, &val, len)) 3936 return -EFAULT; 3937 3938 return 0; 3939} 3940 3941/* 3942 * 7.1.17 Set the maximum fragrmentation size (SCTP_MAXSEG) 3943 * 3944 * This socket option specifies the maximum size to put in any outgoing 3945 * SCTP chunk. If a message is larger than this size it will be 3946 * fragmented by SCTP into the specified size. Note that the underlying 3947 * SCTP implementation may fragment into smaller sized chunks when the 3948 * PMTU of the underlying association is smaller than the value set by 3949 * the user. 3950 */ 3951static int sctp_getsockopt_maxseg(struct sock *sk, int len, 3952 char __user *optval, int __user *optlen) 3953{ 3954 int val; 3955 3956 if (len < sizeof(int)) 3957 return -EINVAL; 3958 3959 len = sizeof(int); 3960 3961 val = sctp_sk(sk)->user_frag; 3962 if (put_user(len, optlen)) 3963 return -EFAULT; 3964 if (copy_to_user(optval, &val, len)) 3965 return -EFAULT; 3966 3967 return 0; 3968} 3969 3970SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname, 3971 char __user *optval, int __user *optlen) 3972{ 3973 int retval = 0; 3974 int len; 3975 3976 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n", 3977 sk, optname); 3978 3979 /* I can hardly begin to describe how wrong this is. This is 3980 * so broken as to be worse than useless. The API draft 3981 * REALLY is NOT helpful here... I am not convinced that the 3982 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP 3983 * are at all well-founded. 3984 */ 3985 if (level != SOL_SCTP) { 3986 struct sctp_af *af = sctp_sk(sk)->pf->af; 3987 3988 retval = af->getsockopt(sk, level, optname, optval, optlen); 3989 return retval; 3990 } 3991 3992 if (get_user(len, optlen)) 3993 return -EFAULT; 3994 3995 sctp_lock_sock(sk); 3996 3997 switch (optname) { 3998 case SCTP_STATUS: 3999 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen); 4000 break; 4001 case SCTP_DISABLE_FRAGMENTS: 4002 retval = sctp_getsockopt_disable_fragments(sk, len, optval, 4003 optlen); 4004 break; 4005 case SCTP_EVENTS: 4006 retval = sctp_getsockopt_events(sk, len, optval, optlen); 4007 break; 4008 case SCTP_AUTOCLOSE: 4009 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen); 4010 break; 4011 case SCTP_SOCKOPT_PEELOFF: 4012 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen); 4013 break; 4014 case SCTP_PEER_ADDR_PARAMS: 4015 retval = sctp_getsockopt_peer_addr_params(sk, len, optval, 4016 optlen); 4017 break; 4018 case SCTP_INITMSG: 4019 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen); 4020 break; 4021 case SCTP_GET_PEER_ADDRS_NUM_OLD: 4022 retval = sctp_getsockopt_peer_addrs_num_old(sk, len, optval, 4023 optlen); 4024 break; 4025 case SCTP_GET_LOCAL_ADDRS_NUM_OLD: 4026 retval = sctp_getsockopt_local_addrs_num_old(sk, len, optval, 4027 optlen); 4028 break; 4029 case SCTP_GET_PEER_ADDRS_OLD: 4030 retval = sctp_getsockopt_peer_addrs_old(sk, len, optval, 4031 optlen); 4032 break; 4033 case SCTP_GET_LOCAL_ADDRS_OLD: 4034 retval = sctp_getsockopt_local_addrs_old(sk, len, optval, 4035 optlen); 4036 break; 4037 case SCTP_GET_PEER_ADDRS: 4038 retval = sctp_getsockopt_peer_addrs(sk, len, optval, 4039 optlen); 4040 break; 4041 case SCTP_GET_LOCAL_ADDRS: 4042 retval = sctp_getsockopt_local_addrs(sk, len, optval, 4043 optlen); 4044 break; 4045 case SCTP_DEFAULT_SEND_PARAM: 4046 retval = sctp_getsockopt_default_send_param(sk, len, 4047 optval, optlen); 4048 break; 4049 case SCTP_PRIMARY_ADDR: 4050 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen); 4051 break; 4052 case SCTP_NODELAY: 4053 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen); 4054 break; 4055 case SCTP_RTOINFO: 4056 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen); 4057 break; 4058 case SCTP_ASSOCINFO: 4059 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen); 4060 break; 4061 case SCTP_I_WANT_MAPPED_V4_ADDR: 4062 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen); 4063 break; 4064 case SCTP_MAXSEG: 4065 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen); 4066 break; 4067 case SCTP_GET_PEER_ADDR_INFO: 4068 retval = sctp_getsockopt_peer_addr_info(sk, len, optval, 4069 optlen); 4070 break; 4071 case SCTP_ADAPTION_LAYER: 4072 retval = sctp_getsockopt_adaption_layer(sk, len, optval, 4073 optlen); 4074 break; 4075 default: 4076 retval = -ENOPROTOOPT; 4077 break; 4078 }; 4079 4080 sctp_release_sock(sk); 4081 return retval; 4082} 4083 4084static void sctp_hash(struct sock *sk) 4085{ 4086 /* STUB */ 4087} 4088 4089static void sctp_unhash(struct sock *sk) 4090{ 4091 /* STUB */ 4092} 4093 4094/* Check if port is acceptable. Possibly find first available port. 4095 * 4096 * The port hash table (contained in the 'global' SCTP protocol storage 4097 * returned by struct sctp_protocol *sctp_get_protocol()). The hash 4098 * table is an array of 4096 lists (sctp_bind_hashbucket). Each 4099 * list (the list number is the port number hashed out, so as you 4100 * would expect from a hash function, all the ports in a given list have 4101 * such a number that hashes out to the same list number; you were 4102 * expecting that, right?); so each list has a set of ports, with a 4103 * link to the socket (struct sock) that uses it, the port number and 4104 * a fastreuse flag (FIXME: NPI ipg). 4105 */ 4106static struct sctp_bind_bucket *sctp_bucket_create( 4107 struct sctp_bind_hashbucket *head, unsigned short snum); 4108 4109static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr) 4110{ 4111 struct sctp_bind_hashbucket *head; /* hash list */ 4112 struct sctp_bind_bucket *pp; /* hash list port iterator */ 4113 unsigned short snum; 4114 int ret; 4115 4116 /* NOTE: Remember to put this back to net order. */ 4117 addr->v4.sin_port = ntohs(addr->v4.sin_port); 4118 snum = addr->v4.sin_port; 4119 4120 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum); 4121 sctp_local_bh_disable(); 4122 4123 if (snum == 0) { 4124 /* Search for an available port. 4125 * 4126 * 'sctp_port_rover' was the last port assigned, so 4127 * we start to search from 'sctp_port_rover + 4128 * 1'. What we do is first check if port 'rover' is 4129 * already in the hash table; if not, we use that; if 4130 * it is, we try next. 4131 */ 4132 int low = sysctl_local_port_range[0]; 4133 int high = sysctl_local_port_range[1]; 4134 int remaining = (high - low) + 1; 4135 int rover; 4136 int index; 4137 4138 sctp_spin_lock(&sctp_port_alloc_lock); 4139 rover = sctp_port_rover; 4140 do { 4141 rover++; 4142 if ((rover < low) || (rover > high)) 4143 rover = low; 4144 index = sctp_phashfn(rover); 4145 head = &sctp_port_hashtable[index]; 4146 sctp_spin_lock(&head->lock); 4147 for (pp = head->chain; pp; pp = pp->next) 4148 if (pp->port == rover) 4149 goto next; 4150 break; 4151 next: 4152 sctp_spin_unlock(&head->lock); 4153 } while (--remaining > 0); 4154 sctp_port_rover = rover; 4155 sctp_spin_unlock(&sctp_port_alloc_lock); 4156 4157 /* Exhausted local port range during search? */ 4158 ret = 1; 4159 if (remaining <= 0) 4160 goto fail; 4161 4162 /* OK, here is the one we will use. HEAD (the port 4163 * hash table list entry) is non-NULL and we hold it's 4164 * mutex. 4165 */ 4166 snum = rover; 4167 } else { 4168 /* We are given an specific port number; we verify 4169 * that it is not being used. If it is used, we will 4170 * exahust the search in the hash list corresponding 4171 * to the port number (snum) - we detect that with the 4172 * port iterator, pp being NULL. 4173 */ 4174 head = &sctp_port_hashtable[sctp_phashfn(snum)]; 4175 sctp_spin_lock(&head->lock); 4176 for (pp = head->chain; pp; pp = pp->next) { 4177 if (pp->port == snum) 4178 goto pp_found; 4179 } 4180 } 4181 pp = NULL; 4182 goto pp_not_found; 4183pp_found: 4184 if (!hlist_empty(&pp->owner)) { 4185 /* We had a port hash table hit - there is an 4186 * available port (pp != NULL) and it is being 4187 * used by other socket (pp->owner not empty); that other 4188 * socket is going to be sk2. 4189 */ 4190 int reuse = sk->sk_reuse; 4191 struct sock *sk2; 4192 struct hlist_node *node; 4193 4194 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n"); 4195 if (pp->fastreuse && sk->sk_reuse) 4196 goto success; 4197 4198 /* Run through the list of sockets bound to the port 4199 * (pp->port) [via the pointers bind_next and 4200 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one, 4201 * we get the endpoint they describe and run through 4202 * the endpoint's list of IP (v4 or v6) addresses, 4203 * comparing each of the addresses with the address of 4204 * the socket sk. If we find a match, then that means 4205 * that this port/socket (sk) combination are already 4206 * in an endpoint. 4207 */ 4208 sk_for_each_bound(sk2, node, &pp->owner) { 4209 struct sctp_endpoint *ep2; 4210 ep2 = sctp_sk(sk2)->ep; 4211 4212 if (reuse && sk2->sk_reuse) 4213 continue; 4214 4215 if (sctp_bind_addr_match(&ep2->base.bind_addr, addr, 4216 sctp_sk(sk))) { 4217 ret = (long)sk2; 4218 goto fail_unlock; 4219 } 4220 } 4221 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n"); 4222 } 4223pp_not_found: 4224 /* If there was a hash table miss, create a new port. */ 4225 ret = 1; 4226 if (!pp && !(pp = sctp_bucket_create(head, snum))) 4227 goto fail_unlock; 4228 4229 /* In either case (hit or miss), make sure fastreuse is 1 only 4230 * if sk->sk_reuse is too (that is, if the caller requested 4231 * SO_REUSEADDR on this socket -sk-). 4232 */ 4233 if (hlist_empty(&pp->owner)) 4234 pp->fastreuse = sk->sk_reuse ? 1 : 0; 4235 else if (pp->fastreuse && !sk->sk_reuse) 4236 pp->fastreuse = 0; 4237 4238 /* We are set, so fill up all the data in the hash table 4239 * entry, tie the socket list information with the rest of the 4240 * sockets FIXME: Blurry, NPI (ipg). 4241 */ 4242success: 4243 inet_sk(sk)->num = snum; 4244 if (!sctp_sk(sk)->bind_hash) { 4245 sk_add_bind_node(sk, &pp->owner); 4246 sctp_sk(sk)->bind_hash = pp; 4247 } 4248 ret = 0; 4249 4250fail_unlock: 4251 sctp_spin_unlock(&head->lock); 4252 4253fail: 4254 sctp_local_bh_enable(); 4255 addr->v4.sin_port = htons(addr->v4.sin_port); 4256 return ret; 4257} 4258 4259/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral 4260 * port is requested. 4261 */ 4262static int sctp_get_port(struct sock *sk, unsigned short snum) 4263{ 4264 long ret; 4265 union sctp_addr addr; 4266 struct sctp_af *af = sctp_sk(sk)->pf->af; 4267 4268 /* Set up a dummy address struct from the sk. */ 4269 af->from_sk(&addr, sk); 4270 addr.v4.sin_port = htons(snum); 4271 4272 /* Note: sk->sk_num gets filled in if ephemeral port request. */ 4273 ret = sctp_get_port_local(sk, &addr); 4274 4275 return (ret ? 1 : 0); 4276} 4277 4278/* 4279 * 3.1.3 listen() - UDP Style Syntax 4280 * 4281 * By default, new associations are not accepted for UDP style sockets. 4282 * An application uses listen() to mark a socket as being able to 4283 * accept new associations. 4284 */ 4285SCTP_STATIC int sctp_seqpacket_listen(struct sock *sk, int backlog) 4286{ 4287 struct sctp_sock *sp = sctp_sk(sk); 4288 struct sctp_endpoint *ep = sp->ep; 4289 4290 /* Only UDP style sockets that are not peeled off are allowed to 4291 * listen(). 4292 */ 4293 if (!sctp_style(sk, UDP)) 4294 return -EINVAL; 4295 4296 /* If backlog is zero, disable listening. */ 4297 if (!backlog) { 4298 if (sctp_sstate(sk, CLOSED)) 4299 return 0; 4300 4301 sctp_unhash_endpoint(ep); 4302 sk->sk_state = SCTP_SS_CLOSED; 4303 } 4304 4305 /* Return if we are already listening. */ 4306 if (sctp_sstate(sk, LISTENING)) 4307 return 0; 4308 4309 /* 4310 * If a bind() or sctp_bindx() is not called prior to a listen() 4311 * call that allows new associations to be accepted, the system 4312 * picks an ephemeral port and will choose an address set equivalent 4313 * to binding with a wildcard address. 4314 * 4315 * This is not currently spelled out in the SCTP sockets 4316 * extensions draft, but follows the practice as seen in TCP 4317 * sockets. 4318 */ 4319 if (!ep->base.bind_addr.port) { 4320 if (sctp_autobind(sk)) 4321 return -EAGAIN; 4322 } 4323 sk->sk_state = SCTP_SS_LISTENING; 4324 sctp_hash_endpoint(ep); 4325 return 0; 4326} 4327 4328/* 4329 * 4.1.3 listen() - TCP Style Syntax 4330 * 4331 * Applications uses listen() to ready the SCTP endpoint for accepting 4332 * inbound associations. 4333 */ 4334SCTP_STATIC int sctp_stream_listen(struct sock *sk, int backlog) 4335{ 4336 struct sctp_sock *sp = sctp_sk(sk); 4337 struct sctp_endpoint *ep = sp->ep; 4338 4339 /* If backlog is zero, disable listening. */ 4340 if (!backlog) { 4341 if (sctp_sstate(sk, CLOSED)) 4342 return 0; 4343 4344 sctp_unhash_endpoint(ep); 4345 sk->sk_state = SCTP_SS_CLOSED; 4346 } 4347 4348 if (sctp_sstate(sk, LISTENING)) 4349 return 0; 4350 4351 /* 4352 * If a bind() or sctp_bindx() is not called prior to a listen() 4353 * call that allows new associations to be accepted, the system 4354 * picks an ephemeral port and will choose an address set equivalent 4355 * to binding with a wildcard address. 4356 * 4357 * This is not currently spelled out in the SCTP sockets 4358 * extensions draft, but follows the practice as seen in TCP 4359 * sockets. 4360 */ 4361 if (!ep->base.bind_addr.port) { 4362 if (sctp_autobind(sk)) 4363 return -EAGAIN; 4364 } 4365 sk->sk_state = SCTP_SS_LISTENING; 4366 sk->sk_max_ack_backlog = backlog; 4367 sctp_hash_endpoint(ep); 4368 return 0; 4369} 4370 4371/* 4372 * Move a socket to LISTENING state. 4373 */ 4374int sctp_inet_listen(struct socket *sock, int backlog) 4375{ 4376 struct sock *sk = sock->sk; 4377 struct crypto_tfm *tfm=NULL; 4378 int err = -EINVAL; 4379 4380 if (unlikely(backlog < 0)) 4381 goto out; 4382 4383 sctp_lock_sock(sk); 4384 4385 if (sock->state != SS_UNCONNECTED) 4386 goto out; 4387 4388 /* Allocate HMAC for generating cookie. */ 4389 if (sctp_hmac_alg) { 4390 tfm = sctp_crypto_alloc_tfm(sctp_hmac_alg, 0); 4391 if (!tfm) { 4392 err = -ENOSYS; 4393 goto out; 4394 } 4395 } 4396 4397 switch (sock->type) { 4398 case SOCK_SEQPACKET: 4399 err = sctp_seqpacket_listen(sk, backlog); 4400 break; 4401 case SOCK_STREAM: 4402 err = sctp_stream_listen(sk, backlog); 4403 break; 4404 default: 4405 break; 4406 }; 4407 if (err) 4408 goto cleanup; 4409 4410 /* Store away the transform reference. */ 4411 sctp_sk(sk)->hmac = tfm; 4412out: 4413 sctp_release_sock(sk); 4414 return err; 4415cleanup: 4416 sctp_crypto_free_tfm(tfm); 4417 goto out; 4418} 4419 4420/* 4421 * This function is done by modeling the current datagram_poll() and the 4422 * tcp_poll(). Note that, based on these implementations, we don't 4423 * lock the socket in this function, even though it seems that, 4424 * ideally, locking or some other mechanisms can be used to ensure 4425 * the integrity of the counters (sndbuf and wmem_alloc) used 4426 * in this place. We assume that we don't need locks either until proven 4427 * otherwise. 4428 * 4429 * Another thing to note is that we include the Async I/O support 4430 * here, again, by modeling the current TCP/UDP code. We don't have 4431 * a good way to test with it yet. 4432 */ 4433unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait) 4434{ 4435 struct sock *sk = sock->sk; 4436 struct sctp_sock *sp = sctp_sk(sk); 4437 unsigned int mask; 4438 4439 poll_wait(file, sk->sk_sleep, wait); 4440 4441 /* A TCP-style listening socket becomes readable when the accept queue 4442 * is not empty. 4443 */ 4444 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) 4445 return (!list_empty(&sp->ep->asocs)) ? 4446 (POLLIN | POLLRDNORM) : 0; 4447 4448 mask = 0; 4449 4450 /* Is there any exceptional events? */ 4451 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) 4452 mask |= POLLERR; 4453 if (sk->sk_shutdown == SHUTDOWN_MASK) 4454 mask |= POLLHUP; 4455 4456 /* Is it readable? Reconsider this code with TCP-style support. */ 4457 if (!skb_queue_empty(&sk->sk_receive_queue) || 4458 (sk->sk_shutdown & RCV_SHUTDOWN)) 4459 mask |= POLLIN | POLLRDNORM; 4460 4461 /* The association is either gone or not ready. */ 4462 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED)) 4463 return mask; 4464 4465 /* Is it writable? */ 4466 if (sctp_writeable(sk)) { 4467 mask |= POLLOUT | POLLWRNORM; 4468 } else { 4469 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); 4470 /* 4471 * Since the socket is not locked, the buffer 4472 * might be made available after the writeable check and 4473 * before the bit is set. This could cause a lost I/O 4474 * signal. tcp_poll() has a race breaker for this race 4475 * condition. Based on their implementation, we put 4476 * in the following code to cover it as well. 4477 */ 4478 if (sctp_writeable(sk)) 4479 mask |= POLLOUT | POLLWRNORM; 4480 } 4481 return mask; 4482} 4483 4484/******************************************************************** 4485 * 2nd Level Abstractions 4486 ********************************************************************/ 4487 4488static struct sctp_bind_bucket *sctp_bucket_create( 4489 struct sctp_bind_hashbucket *head, unsigned short snum) 4490{ 4491 struct sctp_bind_bucket *pp; 4492 4493 pp = kmem_cache_alloc(sctp_bucket_cachep, SLAB_ATOMIC); 4494 SCTP_DBG_OBJCNT_INC(bind_bucket); 4495 if (pp) { 4496 pp->port = snum; 4497 pp->fastreuse = 0; 4498 INIT_HLIST_HEAD(&pp->owner); 4499 if ((pp->next = head->chain) != NULL) 4500 pp->next->pprev = &pp->next; 4501 head->chain = pp; 4502 pp->pprev = &head->chain; 4503 } 4504 return pp; 4505} 4506 4507/* Caller must hold hashbucket lock for this tb with local BH disabled */ 4508static void sctp_bucket_destroy(struct sctp_bind_bucket *pp) 4509{ 4510 if (hlist_empty(&pp->owner)) { 4511 if (pp->next) 4512 pp->next->pprev = pp->pprev; 4513 *(pp->pprev) = pp->next; 4514 kmem_cache_free(sctp_bucket_cachep, pp); 4515 SCTP_DBG_OBJCNT_DEC(bind_bucket); 4516 } 4517} 4518 4519/* Release this socket's reference to a local port. */ 4520static inline void __sctp_put_port(struct sock *sk) 4521{ 4522 struct sctp_bind_hashbucket *head = 4523 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->num)]; 4524 struct sctp_bind_bucket *pp; 4525 4526 sctp_spin_lock(&head->lock); 4527 pp = sctp_sk(sk)->bind_hash; 4528 __sk_del_bind_node(sk); 4529 sctp_sk(sk)->bind_hash = NULL; 4530 inet_sk(sk)->num = 0; 4531 sctp_bucket_destroy(pp); 4532 sctp_spin_unlock(&head->lock); 4533} 4534 4535void sctp_put_port(struct sock *sk) 4536{ 4537 sctp_local_bh_disable(); 4538 __sctp_put_port(sk); 4539 sctp_local_bh_enable(); 4540} 4541 4542/* 4543 * The system picks an ephemeral port and choose an address set equivalent 4544 * to binding with a wildcard address. 4545 * One of those addresses will be the primary address for the association. 4546 * This automatically enables the multihoming capability of SCTP. 4547 */ 4548static int sctp_autobind(struct sock *sk) 4549{ 4550 union sctp_addr autoaddr; 4551 struct sctp_af *af; 4552 unsigned short port; 4553 4554 /* Initialize a local sockaddr structure to INADDR_ANY. */ 4555 af = sctp_sk(sk)->pf->af; 4556 4557 port = htons(inet_sk(sk)->num); 4558 af->inaddr_any(&autoaddr, port); 4559 4560 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len); 4561} 4562 4563/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation. 4564 * 4565 * From RFC 2292 4566 * 4.2 The cmsghdr Structure * 4567 * 4568 * When ancillary data is sent or received, any number of ancillary data 4569 * objects can be specified by the msg_control and msg_controllen members of 4570 * the msghdr structure, because each object is preceded by 4571 * a cmsghdr structure defining the object's length (the cmsg_len member). 4572 * Historically Berkeley-derived implementations have passed only one object 4573 * at a time, but this API allows multiple objects to be 4574 * passed in a single call to sendmsg() or recvmsg(). The following example 4575 * shows two ancillary data objects in a control buffer. 4576 * 4577 * |<--------------------------- msg_controllen -------------------------->| 4578 * | | 4579 * 4580 * |<----- ancillary data object ----->|<----- ancillary data object ----->| 4581 * 4582 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->| 4583 * | | | 4584 * 4585 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| | 4586 * 4587 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| | 4588 * | | | | | 4589 * 4590 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 4591 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX| 4592 * 4593 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX| 4594 * 4595 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+ 4596 * ^ 4597 * | 4598 * 4599 * msg_control 4600 * points here 4601 */ 4602SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg, 4603 sctp_cmsgs_t *cmsgs) 4604{ 4605 struct cmsghdr *cmsg; 4606 4607 for (cmsg = CMSG_FIRSTHDR(msg); 4608 cmsg != NULL; 4609 cmsg = CMSG_NXTHDR((struct msghdr*)msg, cmsg)) { 4610 if (!CMSG_OK(msg, cmsg)) 4611 return -EINVAL; 4612 4613 /* Should we parse this header or ignore? */ 4614 if (cmsg->cmsg_level != IPPROTO_SCTP) 4615 continue; 4616 4617 /* Strictly check lengths following example in SCM code. */ 4618 switch (cmsg->cmsg_type) { 4619 case SCTP_INIT: 4620 /* SCTP Socket API Extension 4621 * 5.2.1 SCTP Initiation Structure (SCTP_INIT) 4622 * 4623 * This cmsghdr structure provides information for 4624 * initializing new SCTP associations with sendmsg(). 4625 * The SCTP_INITMSG socket option uses this same data 4626 * structure. This structure is not used for 4627 * recvmsg(). 4628 * 4629 * cmsg_level cmsg_type cmsg_data[] 4630 * ------------ ------------ ---------------------- 4631 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg 4632 */ 4633 if (cmsg->cmsg_len != 4634 CMSG_LEN(sizeof(struct sctp_initmsg))) 4635 return -EINVAL; 4636 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg); 4637 break; 4638 4639 case SCTP_SNDRCV: 4640 /* SCTP Socket API Extension 4641 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV) 4642 * 4643 * This cmsghdr structure specifies SCTP options for 4644 * sendmsg() and describes SCTP header information 4645 * about a received message through recvmsg(). 4646 * 4647 * cmsg_level cmsg_type cmsg_data[] 4648 * ------------ ------------ ---------------------- 4649 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo 4650 */ 4651 if (cmsg->cmsg_len != 4652 CMSG_LEN(sizeof(struct sctp_sndrcvinfo))) 4653 return -EINVAL; 4654 4655 cmsgs->info = 4656 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg); 4657 4658 /* Minimally, validate the sinfo_flags. */ 4659 if (cmsgs->info->sinfo_flags & 4660 ~(SCTP_UNORDERED | SCTP_ADDR_OVER | 4661 SCTP_ABORT | SCTP_EOF)) 4662 return -EINVAL; 4663 break; 4664 4665 default: 4666 return -EINVAL; 4667 }; 4668 } 4669 return 0; 4670} 4671 4672/* 4673 * Wait for a packet.. 4674 * Note: This function is the same function as in core/datagram.c 4675 * with a few modifications to make lksctp work. 4676 */ 4677static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p) 4678{ 4679 int error; 4680 DEFINE_WAIT(wait); 4681 4682 prepare_to_wait_exclusive(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 4683 4684 /* Socket errors? */ 4685 error = sock_error(sk); 4686 if (error) 4687 goto out; 4688 4689 if (!skb_queue_empty(&sk->sk_receive_queue)) 4690 goto ready; 4691 4692 /* Socket shut down? */ 4693 if (sk->sk_shutdown & RCV_SHUTDOWN) 4694 goto out; 4695 4696 /* Sequenced packets can come disconnected. If so we report the 4697 * problem. 4698 */ 4699 error = -ENOTCONN; 4700 4701 /* Is there a good reason to think that we may receive some data? */ 4702 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING)) 4703 goto out; 4704 4705 /* Handle signals. */ 4706 if (signal_pending(current)) 4707 goto interrupted; 4708 4709 /* Let another process have a go. Since we are going to sleep 4710 * anyway. Note: This may cause odd behaviors if the message 4711 * does not fit in the user's buffer, but this seems to be the 4712 * only way to honor MSG_DONTWAIT realistically. 4713 */ 4714 sctp_release_sock(sk); 4715 *timeo_p = schedule_timeout(*timeo_p); 4716 sctp_lock_sock(sk); 4717 4718ready: 4719 finish_wait(sk->sk_sleep, &wait); 4720 return 0; 4721 4722interrupted: 4723 error = sock_intr_errno(*timeo_p); 4724 4725out: 4726 finish_wait(sk->sk_sleep, &wait); 4727 *err = error; 4728 return error; 4729} 4730 4731/* Receive a datagram. 4732 * Note: This is pretty much the same routine as in core/datagram.c 4733 * with a few changes to make lksctp work. 4734 */ 4735static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags, 4736 int noblock, int *err) 4737{ 4738 int error; 4739 struct sk_buff *skb; 4740 long timeo; 4741 4742 timeo = sock_rcvtimeo(sk, noblock); 4743 4744 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n", 4745 timeo, MAX_SCHEDULE_TIMEOUT); 4746 4747 do { 4748 /* Again only user level code calls this function, 4749 * so nothing interrupt level 4750 * will suddenly eat the receive_queue. 4751 * 4752 * Look at current nfs client by the way... 4753 * However, this function was corrent in any case. 8) 4754 */ 4755 if (flags & MSG_PEEK) { 4756 spin_lock_bh(&sk->sk_receive_queue.lock); 4757 skb = skb_peek(&sk->sk_receive_queue); 4758 if (skb) 4759 atomic_inc(&skb->users); 4760 spin_unlock_bh(&sk->sk_receive_queue.lock); 4761 } else { 4762 skb = skb_dequeue(&sk->sk_receive_queue); 4763 } 4764 4765 if (skb) 4766 return skb; 4767 4768 /* Caller is allowed not to check sk->sk_err before calling. */ 4769 error = sock_error(sk); 4770 if (error) 4771 goto no_packet; 4772 4773 if (sk->sk_shutdown & RCV_SHUTDOWN) 4774 break; 4775 4776 /* User doesn't want to wait. */ 4777 error = -EAGAIN; 4778 if (!timeo) 4779 goto no_packet; 4780 } while (sctp_wait_for_packet(sk, err, &timeo) == 0); 4781 4782 return NULL; 4783 4784no_packet: 4785 *err = error; 4786 return NULL; 4787} 4788 4789/* If sndbuf has changed, wake up per association sndbuf waiters. */ 4790static void __sctp_write_space(struct sctp_association *asoc) 4791{ 4792 struct sock *sk = asoc->base.sk; 4793 struct socket *sock = sk->sk_socket; 4794 4795 if ((sctp_wspace(asoc) > 0) && sock) { 4796 if (waitqueue_active(&asoc->wait)) 4797 wake_up_interruptible(&asoc->wait); 4798 4799 if (sctp_writeable(sk)) { 4800 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) 4801 wake_up_interruptible(sk->sk_sleep); 4802 4803 /* Note that we try to include the Async I/O support 4804 * here by modeling from the current TCP/UDP code. 4805 * We have not tested with it yet. 4806 */ 4807 if (sock->fasync_list && 4808 !(sk->sk_shutdown & SEND_SHUTDOWN)) 4809 sock_wake_async(sock, 2, POLL_OUT); 4810 } 4811 } 4812} 4813 4814/* Do accounting for the sndbuf space. 4815 * Decrement the used sndbuf space of the corresponding association by the 4816 * data size which was just transmitted(freed). 4817 */ 4818static void sctp_wfree(struct sk_buff *skb) 4819{ 4820 struct sctp_association *asoc; 4821 struct sctp_chunk *chunk; 4822 struct sock *sk; 4823 4824 /* Get the saved chunk pointer. */ 4825 chunk = *((struct sctp_chunk **)(skb->cb)); 4826 asoc = chunk->asoc; 4827 sk = asoc->base.sk; 4828 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) + 4829 sizeof(struct sk_buff) + 4830 sizeof(struct sctp_chunk); 4831 4832 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc); 4833 4834 sock_wfree(skb); 4835 __sctp_write_space(asoc); 4836 4837 sctp_association_put(asoc); 4838} 4839 4840/* Helper function to wait for space in the sndbuf. */ 4841static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p, 4842 size_t msg_len) 4843{ 4844 struct sock *sk = asoc->base.sk; 4845 int err = 0; 4846 long current_timeo = *timeo_p; 4847 DEFINE_WAIT(wait); 4848 4849 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n", 4850 asoc, (long)(*timeo_p), msg_len); 4851 4852 /* Increment the association's refcnt. */ 4853 sctp_association_hold(asoc); 4854 4855 /* Wait on the association specific sndbuf space. */ 4856 for (;;) { 4857 prepare_to_wait_exclusive(&asoc->wait, &wait, 4858 TASK_INTERRUPTIBLE); 4859 if (!*timeo_p) 4860 goto do_nonblock; 4861 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 4862 asoc->base.dead) 4863 goto do_error; 4864 if (signal_pending(current)) 4865 goto do_interrupted; 4866 if (msg_len <= sctp_wspace(asoc)) 4867 break; 4868 4869 /* Let another process have a go. Since we are going 4870 * to sleep anyway. 4871 */ 4872 sctp_release_sock(sk); 4873 current_timeo = schedule_timeout(current_timeo); 4874 sctp_lock_sock(sk); 4875 4876 *timeo_p = current_timeo; 4877 } 4878 4879out: 4880 finish_wait(&asoc->wait, &wait); 4881 4882 /* Release the association's refcnt. */ 4883 sctp_association_put(asoc); 4884 4885 return err; 4886 4887do_error: 4888 err = -EPIPE; 4889 goto out; 4890 4891do_interrupted: 4892 err = sock_intr_errno(*timeo_p); 4893 goto out; 4894 4895do_nonblock: 4896 err = -EAGAIN; 4897 goto out; 4898} 4899 4900/* If socket sndbuf has changed, wake up all per association waiters. */ 4901void sctp_write_space(struct sock *sk) 4902{ 4903 struct sctp_association *asoc; 4904 struct list_head *pos; 4905 4906 /* Wake up the tasks in each wait queue. */ 4907 list_for_each(pos, &((sctp_sk(sk))->ep->asocs)) { 4908 asoc = list_entry(pos, struct sctp_association, asocs); 4909 __sctp_write_space(asoc); 4910 } 4911} 4912 4913/* Is there any sndbuf space available on the socket? 4914 * 4915 * Note that sk_wmem_alloc is the sum of the send buffers on all of the 4916 * associations on the same socket. For a UDP-style socket with 4917 * multiple associations, it is possible for it to be "unwriteable" 4918 * prematurely. I assume that this is acceptable because 4919 * a premature "unwriteable" is better than an accidental "writeable" which 4920 * would cause an unwanted block under certain circumstances. For the 1-1 4921 * UDP-style sockets or TCP-style sockets, this code should work. 4922 * - Daisy 4923 */ 4924static int sctp_writeable(struct sock *sk) 4925{ 4926 int amt = 0; 4927 4928 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); 4929 if (amt < 0) 4930 amt = 0; 4931 return amt; 4932} 4933 4934/* Wait for an association to go into ESTABLISHED state. If timeout is 0, 4935 * returns immediately with EINPROGRESS. 4936 */ 4937static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p) 4938{ 4939 struct sock *sk = asoc->base.sk; 4940 int err = 0; 4941 long current_timeo = *timeo_p; 4942 DEFINE_WAIT(wait); 4943 4944 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __FUNCTION__, asoc, 4945 (long)(*timeo_p)); 4946 4947 /* Increment the association's refcnt. */ 4948 sctp_association_hold(asoc); 4949 4950 for (;;) { 4951 prepare_to_wait_exclusive(&asoc->wait, &wait, 4952 TASK_INTERRUPTIBLE); 4953 if (!*timeo_p) 4954 goto do_nonblock; 4955 if (sk->sk_shutdown & RCV_SHUTDOWN) 4956 break; 4957 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING || 4958 asoc->base.dead) 4959 goto do_error; 4960 if (signal_pending(current)) 4961 goto do_interrupted; 4962 4963 if (sctp_state(asoc, ESTABLISHED)) 4964 break; 4965 4966 /* Let another process have a go. Since we are going 4967 * to sleep anyway. 4968 */ 4969 sctp_release_sock(sk); 4970 current_timeo = schedule_timeout(current_timeo); 4971 sctp_lock_sock(sk); 4972 4973 *timeo_p = current_timeo; 4974 } 4975 4976out: 4977 finish_wait(&asoc->wait, &wait); 4978 4979 /* Release the association's refcnt. */ 4980 sctp_association_put(asoc); 4981 4982 return err; 4983 4984do_error: 4985 if (asoc->init_err_counter + 1 >= asoc->max_init_attempts) 4986 err = -ETIMEDOUT; 4987 else 4988 err = -ECONNREFUSED; 4989 goto out; 4990 4991do_interrupted: 4992 err = sock_intr_errno(*timeo_p); 4993 goto out; 4994 4995do_nonblock: 4996 err = -EINPROGRESS; 4997 goto out; 4998} 4999 5000static int sctp_wait_for_accept(struct sock *sk, long timeo) 5001{ 5002 struct sctp_endpoint *ep; 5003 int err = 0; 5004 DEFINE_WAIT(wait); 5005 5006 ep = sctp_sk(sk)->ep; 5007 5008 5009 for (;;) { 5010 prepare_to_wait_exclusive(sk->sk_sleep, &wait, 5011 TASK_INTERRUPTIBLE); 5012 5013 if (list_empty(&ep->asocs)) { 5014 sctp_release_sock(sk); 5015 timeo = schedule_timeout(timeo); 5016 sctp_lock_sock(sk); 5017 } 5018 5019 err = -EINVAL; 5020 if (!sctp_sstate(sk, LISTENING)) 5021 break; 5022 5023 err = 0; 5024 if (!list_empty(&ep->asocs)) 5025 break; 5026 5027 err = sock_intr_errno(timeo); 5028 if (signal_pending(current)) 5029 break; 5030 5031 err = -EAGAIN; 5032 if (!timeo) 5033 break; 5034 } 5035 5036 finish_wait(sk->sk_sleep, &wait); 5037 5038 return err; 5039} 5040 5041void sctp_wait_for_close(struct sock *sk, long timeout) 5042{ 5043 DEFINE_WAIT(wait); 5044 5045 do { 5046 prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); 5047 if (list_empty(&sctp_sk(sk)->ep->asocs)) 5048 break; 5049 sctp_release_sock(sk); 5050 timeout = schedule_timeout(timeout); 5051 sctp_lock_sock(sk); 5052 } while (!signal_pending(current) && timeout); 5053 5054 finish_wait(sk->sk_sleep, &wait); 5055} 5056 5057/* Populate the fields of the newsk from the oldsk and migrate the assoc 5058 * and its messages to the newsk. 5059 */ 5060static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk, 5061 struct sctp_association *assoc, 5062 sctp_socket_type_t type) 5063{ 5064 struct sctp_sock *oldsp = sctp_sk(oldsk); 5065 struct sctp_sock *newsp = sctp_sk(newsk); 5066 struct sctp_bind_bucket *pp; /* hash list port iterator */ 5067 struct sctp_endpoint *newep = newsp->ep; 5068 struct sk_buff *skb, *tmp; 5069 struct sctp_ulpevent *event; 5070 int flags = 0; 5071 5072 /* Migrate socket buffer sizes and all the socket level options to the 5073 * new socket. 5074 */ 5075 newsk->sk_sndbuf = oldsk->sk_sndbuf; 5076 newsk->sk_rcvbuf = oldsk->sk_rcvbuf; 5077 /* Brute force copy old sctp opt. */ 5078 inet_sk_copy_descendant(newsk, oldsk); 5079 5080 /* Restore the ep value that was overwritten with the above structure 5081 * copy. 5082 */ 5083 newsp->ep = newep; 5084 newsp->hmac = NULL; 5085 5086 /* Hook this new socket in to the bind_hash list. */ 5087 pp = sctp_sk(oldsk)->bind_hash; 5088 sk_add_bind_node(newsk, &pp->owner); 5089 sctp_sk(newsk)->bind_hash = pp; 5090 inet_sk(newsk)->num = inet_sk(oldsk)->num; 5091 5092 /* Copy the bind_addr list from the original endpoint to the new 5093 * endpoint so that we can handle restarts properly 5094 */ 5095 if (assoc->peer.ipv4_address) 5096 flags |= SCTP_ADDR4_PEERSUPP; 5097 if (assoc->peer.ipv6_address) 5098 flags |= SCTP_ADDR6_PEERSUPP; 5099 sctp_bind_addr_copy(&newsp->ep->base.bind_addr, 5100 &oldsp->ep->base.bind_addr, 5101 SCTP_SCOPE_GLOBAL, GFP_KERNEL, flags); 5102 5103 /* Move any messages in the old socket's receive queue that are for the 5104 * peeled off association to the new socket's receive queue. 5105 */ 5106 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) { 5107 event = sctp_skb2event(skb); 5108 if (event->asoc == assoc) { 5109 sock_rfree(skb); 5110 __skb_unlink(skb, &oldsk->sk_receive_queue); 5111 __skb_queue_tail(&newsk->sk_receive_queue, skb); 5112 skb_set_owner_r(skb, newsk); 5113 } 5114 } 5115 5116 /* Clean up any messages pending delivery due to partial 5117 * delivery. Three cases: 5118 * 1) No partial deliver; no work. 5119 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby. 5120 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue. 5121 */ 5122 skb_queue_head_init(&newsp->pd_lobby); 5123 sctp_sk(newsk)->pd_mode = assoc->ulpq.pd_mode; 5124 5125 if (sctp_sk(oldsk)->pd_mode) { 5126 struct sk_buff_head *queue; 5127 5128 /* Decide which queue to move pd_lobby skbs to. */ 5129 if (assoc->ulpq.pd_mode) { 5130 queue = &newsp->pd_lobby; 5131 } else 5132 queue = &newsk->sk_receive_queue; 5133 5134 /* Walk through the pd_lobby, looking for skbs that 5135 * need moved to the new socket. 5136 */ 5137 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) { 5138 event = sctp_skb2event(skb); 5139 if (event->asoc == assoc) { 5140 sock_rfree(skb); 5141 __skb_unlink(skb, &oldsp->pd_lobby); 5142 __skb_queue_tail(queue, skb); 5143 skb_set_owner_r(skb, newsk); 5144 } 5145 } 5146 5147 /* Clear up any skbs waiting for the partial 5148 * delivery to finish. 5149 */ 5150 if (assoc->ulpq.pd_mode) 5151 sctp_clear_pd(oldsk); 5152 5153 } 5154 5155 /* Set the type of socket to indicate that it is peeled off from the 5156 * original UDP-style socket or created with the accept() call on a 5157 * TCP-style socket.. 5158 */ 5159 newsp->type = type; 5160 5161 /* Migrate the association to the new socket. */ 5162 sctp_assoc_migrate(assoc, newsk); 5163 5164 /* If the association on the newsk is already closed before accept() 5165 * is called, set RCV_SHUTDOWN flag. 5166 */ 5167 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) 5168 newsk->sk_shutdown |= RCV_SHUTDOWN; 5169 5170 newsk->sk_state = SCTP_SS_ESTABLISHED; 5171} 5172 5173/* This proto struct describes the ULP interface for SCTP. */ 5174struct proto sctp_prot = { 5175 .name = "SCTP", 5176 .owner = THIS_MODULE, 5177 .close = sctp_close, 5178 .connect = sctp_connect, 5179 .disconnect = sctp_disconnect, 5180 .accept = sctp_accept, 5181 .ioctl = sctp_ioctl, 5182 .init = sctp_init_sock, 5183 .destroy = sctp_destroy_sock, 5184 .shutdown = sctp_shutdown, 5185 .setsockopt = sctp_setsockopt, 5186 .getsockopt = sctp_getsockopt, 5187 .sendmsg = sctp_sendmsg, 5188 .recvmsg = sctp_recvmsg, 5189 .bind = sctp_bind, 5190 .backlog_rcv = sctp_backlog_rcv, 5191 .hash = sctp_hash, 5192 .unhash = sctp_unhash, 5193 .get_port = sctp_get_port, 5194 .obj_size = sizeof(struct sctp_sock), 5195}; 5196 5197#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5198struct proto sctpv6_prot = { 5199 .name = "SCTPv6", 5200 .owner = THIS_MODULE, 5201 .close = sctp_close, 5202 .connect = sctp_connect, 5203 .disconnect = sctp_disconnect, 5204 .accept = sctp_accept, 5205 .ioctl = sctp_ioctl, 5206 .init = sctp_init_sock, 5207 .destroy = sctp_destroy_sock, 5208 .shutdown = sctp_shutdown, 5209 .setsockopt = sctp_setsockopt, 5210 .getsockopt = sctp_getsockopt, 5211 .sendmsg = sctp_sendmsg, 5212 .recvmsg = sctp_recvmsg, 5213 .bind = sctp_bind, 5214 .backlog_rcv = sctp_backlog_rcv, 5215 .hash = sctp_hash, 5216 .unhash = sctp_unhash, 5217 .get_port = sctp_get_port, 5218 .obj_size = sizeof(struct sctp6_sock), 5219}; 5220#endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */