at v2.6.15-rc2 2815 lines 68 kB view raw
1/* 2 * Generic PPP layer for Linux. 3 * 4 * Copyright 1999-2002 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * The generic PPP layer handles the PPP network interfaces, the 12 * /dev/ppp device, packet and VJ compression, and multilink. 13 * It talks to PPP `channels' via the interface defined in 14 * include/linux/ppp_channel.h. Channels provide the basic means for 15 * sending and receiving PPP frames on some kind of communications 16 * channel. 17 * 18 * Part of the code in this driver was inspired by the old async-only 19 * PPP driver, written by Michael Callahan and Al Longyear, and 20 * subsequently hacked by Paul Mackerras. 21 * 22 * ==FILEVERSION 20041108== 23 */ 24 25#include <linux/config.h> 26#include <linux/module.h> 27#include <linux/kernel.h> 28#include <linux/kmod.h> 29#include <linux/init.h> 30#include <linux/list.h> 31#include <linux/devfs_fs_kernel.h> 32#include <linux/netdevice.h> 33#include <linux/poll.h> 34#include <linux/ppp_defs.h> 35#include <linux/filter.h> 36#include <linux/if_ppp.h> 37#include <linux/ppp_channel.h> 38#include <linux/ppp-comp.h> 39#include <linux/skbuff.h> 40#include <linux/rtnetlink.h> 41#include <linux/if_arp.h> 42#include <linux/ip.h> 43#include <linux/tcp.h> 44#include <linux/spinlock.h> 45#include <linux/smp_lock.h> 46#include <linux/rwsem.h> 47#include <linux/stddef.h> 48#include <linux/device.h> 49#include <net/slhc_vj.h> 50#include <asm/atomic.h> 51 52#define PPP_VERSION "2.4.2" 53 54/* 55 * Network protocols we support. 56 */ 57#define NP_IP 0 /* Internet Protocol V4 */ 58#define NP_IPV6 1 /* Internet Protocol V6 */ 59#define NP_IPX 2 /* IPX protocol */ 60#define NP_AT 3 /* Appletalk protocol */ 61#define NP_MPLS_UC 4 /* MPLS unicast */ 62#define NP_MPLS_MC 5 /* MPLS multicast */ 63#define NUM_NP 6 /* Number of NPs. */ 64 65#define MPHDRLEN 6 /* multilink protocol header length */ 66#define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ 67#define MIN_FRAG_SIZE 64 68 69/* 70 * An instance of /dev/ppp can be associated with either a ppp 71 * interface unit or a ppp channel. In both cases, file->private_data 72 * points to one of these. 73 */ 74struct ppp_file { 75 enum { 76 INTERFACE=1, CHANNEL 77 } kind; 78 struct sk_buff_head xq; /* pppd transmit queue */ 79 struct sk_buff_head rq; /* receive queue for pppd */ 80 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ 81 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */ 82 int hdrlen; /* space to leave for headers */ 83 int index; /* interface unit / channel number */ 84 int dead; /* unit/channel has been shut down */ 85}; 86 87#define PF_TO_X(pf, X) ((X *)((char *)(pf) - offsetof(X, file))) 88 89#define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) 90#define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) 91 92#define ROUNDUP(n, x) (((n) + (x) - 1) / (x)) 93 94/* 95 * Data structure describing one ppp unit. 96 * A ppp unit corresponds to a ppp network interface device 97 * and represents a multilink bundle. 98 * It can have 0 or more ppp channels connected to it. 99 */ 100struct ppp { 101 struct ppp_file file; /* stuff for read/write/poll 0 */ 102 struct file *owner; /* file that owns this unit 48 */ 103 struct list_head channels; /* list of attached channels 4c */ 104 int n_channels; /* how many channels are attached 54 */ 105 spinlock_t rlock; /* lock for receive side 58 */ 106 spinlock_t wlock; /* lock for transmit side 5c */ 107 int mru; /* max receive unit 60 */ 108 unsigned int flags; /* control bits 64 */ 109 unsigned int xstate; /* transmit state bits 68 */ 110 unsigned int rstate; /* receive state bits 6c */ 111 int debug; /* debug flags 70 */ 112 struct slcompress *vj; /* state for VJ header compression */ 113 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ 114 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ 115 struct compressor *xcomp; /* transmit packet compressor 8c */ 116 void *xc_state; /* its internal state 90 */ 117 struct compressor *rcomp; /* receive decompressor 94 */ 118 void *rc_state; /* its internal state 98 */ 119 unsigned long last_xmit; /* jiffies when last pkt sent 9c */ 120 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ 121 struct net_device *dev; /* network interface device a4 */ 122#ifdef CONFIG_PPP_MULTILINK 123 int nxchan; /* next channel to send something on */ 124 u32 nxseq; /* next sequence number to send */ 125 int mrru; /* MP: max reconst. receive unit */ 126 u32 nextseq; /* MP: seq no of next packet */ 127 u32 minseq; /* MP: min of most recent seqnos */ 128 struct sk_buff_head mrq; /* MP: receive reconstruction queue */ 129#endif /* CONFIG_PPP_MULTILINK */ 130 struct net_device_stats stats; /* statistics */ 131#ifdef CONFIG_PPP_FILTER 132 struct sock_filter *pass_filter; /* filter for packets to pass */ 133 struct sock_filter *active_filter;/* filter for pkts to reset idle */ 134 unsigned pass_len, active_len; 135#endif /* CONFIG_PPP_FILTER */ 136}; 137 138/* 139 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, 140 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP, 141 * SC_MUST_COMP 142 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. 143 * Bits in xstate: SC_COMP_RUN 144 */ 145#define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ 146 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ 147 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP) 148 149/* 150 * Private data structure for each channel. 151 * This includes the data structure used for multilink. 152 */ 153struct channel { 154 struct ppp_file file; /* stuff for read/write/poll */ 155 struct list_head list; /* link in all/new_channels list */ 156 struct ppp_channel *chan; /* public channel data structure */ 157 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ 158 spinlock_t downl; /* protects `chan', file.xq dequeue */ 159 struct ppp *ppp; /* ppp unit we're connected to */ 160 struct list_head clist; /* link in list of channels per unit */ 161 rwlock_t upl; /* protects `ppp' */ 162#ifdef CONFIG_PPP_MULTILINK 163 u8 avail; /* flag used in multilink stuff */ 164 u8 had_frag; /* >= 1 fragments have been sent */ 165 u32 lastseq; /* MP: last sequence # received */ 166#endif /* CONFIG_PPP_MULTILINK */ 167}; 168 169/* 170 * SMP locking issues: 171 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels 172 * list and the ppp.n_channels field, you need to take both locks 173 * before you modify them. 174 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> 175 * channel.downl. 176 */ 177 178/* 179 * A cardmap represents a mapping from unsigned integers to pointers, 180 * and provides a fast "find lowest unused number" operation. 181 * It uses a broad (32-way) tree with a bitmap at each level. 182 * It is designed to be space-efficient for small numbers of entries 183 * and time-efficient for large numbers of entries. 184 */ 185#define CARDMAP_ORDER 5 186#define CARDMAP_WIDTH (1U << CARDMAP_ORDER) 187#define CARDMAP_MASK (CARDMAP_WIDTH - 1) 188 189struct cardmap { 190 int shift; 191 unsigned long inuse; 192 struct cardmap *parent; 193 void *ptr[CARDMAP_WIDTH]; 194}; 195static void *cardmap_get(struct cardmap *map, unsigned int nr); 196static void cardmap_set(struct cardmap **map, unsigned int nr, void *ptr); 197static unsigned int cardmap_find_first_free(struct cardmap *map); 198static void cardmap_destroy(struct cardmap **map); 199 200/* 201 * all_ppp_sem protects the all_ppp_units mapping. 202 * It also ensures that finding a ppp unit in the all_ppp_units map 203 * and updating its file.refcnt field is atomic. 204 */ 205static DECLARE_MUTEX(all_ppp_sem); 206static struct cardmap *all_ppp_units; 207static atomic_t ppp_unit_count = ATOMIC_INIT(0); 208 209/* 210 * all_channels_lock protects all_channels and last_channel_index, 211 * and the atomicity of find a channel and updating its file.refcnt 212 * field. 213 */ 214static DEFINE_SPINLOCK(all_channels_lock); 215static LIST_HEAD(all_channels); 216static LIST_HEAD(new_channels); 217static int last_channel_index; 218static atomic_t channel_count = ATOMIC_INIT(0); 219 220/* Get the PPP protocol number from a skb */ 221#define PPP_PROTO(skb) (((skb)->data[0] << 8) + (skb)->data[1]) 222 223/* We limit the length of ppp->file.rq to this (arbitrary) value */ 224#define PPP_MAX_RQLEN 32 225 226/* 227 * Maximum number of multilink fragments queued up. 228 * This has to be large enough to cope with the maximum latency of 229 * the slowest channel relative to the others. Strictly it should 230 * depend on the number of channels and their characteristics. 231 */ 232#define PPP_MP_MAX_QLEN 128 233 234/* Multilink header bits. */ 235#define B 0x80 /* this fragment begins a packet */ 236#define E 0x40 /* this fragment ends a packet */ 237 238/* Compare multilink sequence numbers (assumed to be 32 bits wide) */ 239#define seq_before(a, b) ((s32)((a) - (b)) < 0) 240#define seq_after(a, b) ((s32)((a) - (b)) > 0) 241 242/* Prototypes. */ 243static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 244 unsigned int cmd, unsigned long arg); 245static void ppp_xmit_process(struct ppp *ppp); 246static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); 247static void ppp_push(struct ppp *ppp); 248static void ppp_channel_push(struct channel *pch); 249static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, 250 struct channel *pch); 251static void ppp_receive_error(struct ppp *ppp); 252static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); 253static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, 254 struct sk_buff *skb); 255#ifdef CONFIG_PPP_MULTILINK 256static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, 257 struct channel *pch); 258static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); 259static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); 260static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); 261#endif /* CONFIG_PPP_MULTILINK */ 262static int ppp_set_compress(struct ppp *ppp, unsigned long arg); 263static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); 264static void ppp_ccp_closed(struct ppp *ppp); 265static struct compressor *find_compressor(int type); 266static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); 267static struct ppp *ppp_create_interface(int unit, int *retp); 268static void init_ppp_file(struct ppp_file *pf, int kind); 269static void ppp_shutdown_interface(struct ppp *ppp); 270static void ppp_destroy_interface(struct ppp *ppp); 271static struct ppp *ppp_find_unit(int unit); 272static struct channel *ppp_find_channel(int unit); 273static int ppp_connect_channel(struct channel *pch, int unit); 274static int ppp_disconnect_channel(struct channel *pch); 275static void ppp_destroy_channel(struct channel *pch); 276 277static struct class *ppp_class; 278 279/* Translates a PPP protocol number to a NP index (NP == network protocol) */ 280static inline int proto_to_npindex(int proto) 281{ 282 switch (proto) { 283 case PPP_IP: 284 return NP_IP; 285 case PPP_IPV6: 286 return NP_IPV6; 287 case PPP_IPX: 288 return NP_IPX; 289 case PPP_AT: 290 return NP_AT; 291 case PPP_MPLS_UC: 292 return NP_MPLS_UC; 293 case PPP_MPLS_MC: 294 return NP_MPLS_MC; 295 } 296 return -EINVAL; 297} 298 299/* Translates an NP index into a PPP protocol number */ 300static const int npindex_to_proto[NUM_NP] = { 301 PPP_IP, 302 PPP_IPV6, 303 PPP_IPX, 304 PPP_AT, 305 PPP_MPLS_UC, 306 PPP_MPLS_MC, 307}; 308 309/* Translates an ethertype into an NP index */ 310static inline int ethertype_to_npindex(int ethertype) 311{ 312 switch (ethertype) { 313 case ETH_P_IP: 314 return NP_IP; 315 case ETH_P_IPV6: 316 return NP_IPV6; 317 case ETH_P_IPX: 318 return NP_IPX; 319 case ETH_P_PPPTALK: 320 case ETH_P_ATALK: 321 return NP_AT; 322 case ETH_P_MPLS_UC: 323 return NP_MPLS_UC; 324 case ETH_P_MPLS_MC: 325 return NP_MPLS_MC; 326 } 327 return -1; 328} 329 330/* Translates an NP index into an ethertype */ 331static const int npindex_to_ethertype[NUM_NP] = { 332 ETH_P_IP, 333 ETH_P_IPV6, 334 ETH_P_IPX, 335 ETH_P_PPPTALK, 336 ETH_P_MPLS_UC, 337 ETH_P_MPLS_MC, 338}; 339 340/* 341 * Locking shorthand. 342 */ 343#define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) 344#define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) 345#define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) 346#define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) 347#define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ 348 ppp_recv_lock(ppp); } while (0) 349#define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ 350 ppp_xmit_unlock(ppp); } while (0) 351 352/* 353 * /dev/ppp device routines. 354 * The /dev/ppp device is used by pppd to control the ppp unit. 355 * It supports the read, write, ioctl and poll functions. 356 * Open instances of /dev/ppp can be in one of three states: 357 * unattached, attached to a ppp unit, or attached to a ppp channel. 358 */ 359static int ppp_open(struct inode *inode, struct file *file) 360{ 361 /* 362 * This could (should?) be enforced by the permissions on /dev/ppp. 363 */ 364 if (!capable(CAP_NET_ADMIN)) 365 return -EPERM; 366 return 0; 367} 368 369static int ppp_release(struct inode *inode, struct file *file) 370{ 371 struct ppp_file *pf = file->private_data; 372 struct ppp *ppp; 373 374 if (pf != 0) { 375 file->private_data = NULL; 376 if (pf->kind == INTERFACE) { 377 ppp = PF_TO_PPP(pf); 378 if (file == ppp->owner) 379 ppp_shutdown_interface(ppp); 380 } 381 if (atomic_dec_and_test(&pf->refcnt)) { 382 switch (pf->kind) { 383 case INTERFACE: 384 ppp_destroy_interface(PF_TO_PPP(pf)); 385 break; 386 case CHANNEL: 387 ppp_destroy_channel(PF_TO_CHANNEL(pf)); 388 break; 389 } 390 } 391 } 392 return 0; 393} 394 395static ssize_t ppp_read(struct file *file, char __user *buf, 396 size_t count, loff_t *ppos) 397{ 398 struct ppp_file *pf = file->private_data; 399 DECLARE_WAITQUEUE(wait, current); 400 ssize_t ret; 401 struct sk_buff *skb = NULL; 402 403 ret = count; 404 405 if (pf == 0) 406 return -ENXIO; 407 add_wait_queue(&pf->rwait, &wait); 408 for (;;) { 409 set_current_state(TASK_INTERRUPTIBLE); 410 skb = skb_dequeue(&pf->rq); 411 if (skb) 412 break; 413 ret = 0; 414 if (pf->dead) 415 break; 416 if (pf->kind == INTERFACE) { 417 /* 418 * Return 0 (EOF) on an interface that has no 419 * channels connected, unless it is looping 420 * network traffic (demand mode). 421 */ 422 struct ppp *ppp = PF_TO_PPP(pf); 423 if (ppp->n_channels == 0 424 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 425 break; 426 } 427 ret = -EAGAIN; 428 if (file->f_flags & O_NONBLOCK) 429 break; 430 ret = -ERESTARTSYS; 431 if (signal_pending(current)) 432 break; 433 schedule(); 434 } 435 set_current_state(TASK_RUNNING); 436 remove_wait_queue(&pf->rwait, &wait); 437 438 if (skb == 0) 439 goto out; 440 441 ret = -EOVERFLOW; 442 if (skb->len > count) 443 goto outf; 444 ret = -EFAULT; 445 if (copy_to_user(buf, skb->data, skb->len)) 446 goto outf; 447 ret = skb->len; 448 449 outf: 450 kfree_skb(skb); 451 out: 452 return ret; 453} 454 455static ssize_t ppp_write(struct file *file, const char __user *buf, 456 size_t count, loff_t *ppos) 457{ 458 struct ppp_file *pf = file->private_data; 459 struct sk_buff *skb; 460 ssize_t ret; 461 462 if (pf == 0) 463 return -ENXIO; 464 ret = -ENOMEM; 465 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); 466 if (skb == 0) 467 goto out; 468 skb_reserve(skb, pf->hdrlen); 469 ret = -EFAULT; 470 if (copy_from_user(skb_put(skb, count), buf, count)) { 471 kfree_skb(skb); 472 goto out; 473 } 474 475 skb_queue_tail(&pf->xq, skb); 476 477 switch (pf->kind) { 478 case INTERFACE: 479 ppp_xmit_process(PF_TO_PPP(pf)); 480 break; 481 case CHANNEL: 482 ppp_channel_push(PF_TO_CHANNEL(pf)); 483 break; 484 } 485 486 ret = count; 487 488 out: 489 return ret; 490} 491 492/* No kernel lock - fine */ 493static unsigned int ppp_poll(struct file *file, poll_table *wait) 494{ 495 struct ppp_file *pf = file->private_data; 496 unsigned int mask; 497 498 if (pf == 0) 499 return 0; 500 poll_wait(file, &pf->rwait, wait); 501 mask = POLLOUT | POLLWRNORM; 502 if (skb_peek(&pf->rq) != 0) 503 mask |= POLLIN | POLLRDNORM; 504 if (pf->dead) 505 mask |= POLLHUP; 506 else if (pf->kind == INTERFACE) { 507 /* see comment in ppp_read */ 508 struct ppp *ppp = PF_TO_PPP(pf); 509 if (ppp->n_channels == 0 510 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 511 mask |= POLLIN | POLLRDNORM; 512 } 513 514 return mask; 515} 516 517#ifdef CONFIG_PPP_FILTER 518static int get_filter(void __user *arg, struct sock_filter **p) 519{ 520 struct sock_fprog uprog; 521 struct sock_filter *code = NULL; 522 int len, err; 523 524 if (copy_from_user(&uprog, arg, sizeof(uprog))) 525 return -EFAULT; 526 527 if (uprog.len > BPF_MAXINSNS) 528 return -EINVAL; 529 530 if (!uprog.len) { 531 *p = NULL; 532 return 0; 533 } 534 535 len = uprog.len * sizeof(struct sock_filter); 536 code = kmalloc(len, GFP_KERNEL); 537 if (code == NULL) 538 return -ENOMEM; 539 540 if (copy_from_user(code, uprog.filter, len)) { 541 kfree(code); 542 return -EFAULT; 543 } 544 545 err = sk_chk_filter(code, uprog.len); 546 if (err) { 547 kfree(code); 548 return err; 549 } 550 551 *p = code; 552 return uprog.len; 553} 554#endif /* CONFIG_PPP_FILTER */ 555 556static int ppp_ioctl(struct inode *inode, struct file *file, 557 unsigned int cmd, unsigned long arg) 558{ 559 struct ppp_file *pf = file->private_data; 560 struct ppp *ppp; 561 int err = -EFAULT, val, val2, i; 562 struct ppp_idle idle; 563 struct npioctl npi; 564 int unit, cflags; 565 struct slcompress *vj; 566 void __user *argp = (void __user *)arg; 567 int __user *p = argp; 568 569 if (pf == 0) 570 return ppp_unattached_ioctl(pf, file, cmd, arg); 571 572 if (cmd == PPPIOCDETACH) { 573 /* 574 * We have to be careful here... if the file descriptor 575 * has been dup'd, we could have another process in the 576 * middle of a poll using the same file *, so we had 577 * better not free the interface data structures - 578 * instead we fail the ioctl. Even in this case, we 579 * shut down the interface if we are the owner of it. 580 * Actually, we should get rid of PPPIOCDETACH, userland 581 * (i.e. pppd) could achieve the same effect by closing 582 * this fd and reopening /dev/ppp. 583 */ 584 err = -EINVAL; 585 if (pf->kind == INTERFACE) { 586 ppp = PF_TO_PPP(pf); 587 if (file == ppp->owner) 588 ppp_shutdown_interface(ppp); 589 } 590 if (atomic_read(&file->f_count) <= 2) { 591 ppp_release(inode, file); 592 err = 0; 593 } else 594 printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n", 595 atomic_read(&file->f_count)); 596 return err; 597 } 598 599 if (pf->kind == CHANNEL) { 600 struct channel *pch = PF_TO_CHANNEL(pf); 601 struct ppp_channel *chan; 602 603 switch (cmd) { 604 case PPPIOCCONNECT: 605 if (get_user(unit, p)) 606 break; 607 err = ppp_connect_channel(pch, unit); 608 break; 609 610 case PPPIOCDISCONN: 611 err = ppp_disconnect_channel(pch); 612 break; 613 614 default: 615 down_read(&pch->chan_sem); 616 chan = pch->chan; 617 err = -ENOTTY; 618 if (chan && chan->ops->ioctl) 619 err = chan->ops->ioctl(chan, cmd, arg); 620 up_read(&pch->chan_sem); 621 } 622 return err; 623 } 624 625 if (pf->kind != INTERFACE) { 626 /* can't happen */ 627 printk(KERN_ERR "PPP: not interface or channel??\n"); 628 return -EINVAL; 629 } 630 631 ppp = PF_TO_PPP(pf); 632 switch (cmd) { 633 case PPPIOCSMRU: 634 if (get_user(val, p)) 635 break; 636 ppp->mru = val; 637 err = 0; 638 break; 639 640 case PPPIOCSFLAGS: 641 if (get_user(val, p)) 642 break; 643 ppp_lock(ppp); 644 cflags = ppp->flags & ~val; 645 ppp->flags = val & SC_FLAG_BITS; 646 ppp_unlock(ppp); 647 if (cflags & SC_CCP_OPEN) 648 ppp_ccp_closed(ppp); 649 err = 0; 650 break; 651 652 case PPPIOCGFLAGS: 653 val = ppp->flags | ppp->xstate | ppp->rstate; 654 if (put_user(val, p)) 655 break; 656 err = 0; 657 break; 658 659 case PPPIOCSCOMPRESS: 660 err = ppp_set_compress(ppp, arg); 661 break; 662 663 case PPPIOCGUNIT: 664 if (put_user(ppp->file.index, p)) 665 break; 666 err = 0; 667 break; 668 669 case PPPIOCSDEBUG: 670 if (get_user(val, p)) 671 break; 672 ppp->debug = val; 673 err = 0; 674 break; 675 676 case PPPIOCGDEBUG: 677 if (put_user(ppp->debug, p)) 678 break; 679 err = 0; 680 break; 681 682 case PPPIOCGIDLE: 683 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; 684 idle.recv_idle = (jiffies - ppp->last_recv) / HZ; 685 if (copy_to_user(argp, &idle, sizeof(idle))) 686 break; 687 err = 0; 688 break; 689 690 case PPPIOCSMAXCID: 691 if (get_user(val, p)) 692 break; 693 val2 = 15; 694 if ((val >> 16) != 0) { 695 val2 = val >> 16; 696 val &= 0xffff; 697 } 698 vj = slhc_init(val2+1, val+1); 699 if (vj == 0) { 700 printk(KERN_ERR "PPP: no memory (VJ compressor)\n"); 701 err = -ENOMEM; 702 break; 703 } 704 ppp_lock(ppp); 705 if (ppp->vj != 0) 706 slhc_free(ppp->vj); 707 ppp->vj = vj; 708 ppp_unlock(ppp); 709 err = 0; 710 break; 711 712 case PPPIOCGNPMODE: 713 case PPPIOCSNPMODE: 714 if (copy_from_user(&npi, argp, sizeof(npi))) 715 break; 716 err = proto_to_npindex(npi.protocol); 717 if (err < 0) 718 break; 719 i = err; 720 if (cmd == PPPIOCGNPMODE) { 721 err = -EFAULT; 722 npi.mode = ppp->npmode[i]; 723 if (copy_to_user(argp, &npi, sizeof(npi))) 724 break; 725 } else { 726 ppp->npmode[i] = npi.mode; 727 /* we may be able to transmit more packets now (??) */ 728 netif_wake_queue(ppp->dev); 729 } 730 err = 0; 731 break; 732 733#ifdef CONFIG_PPP_FILTER 734 case PPPIOCSPASS: 735 { 736 struct sock_filter *code; 737 err = get_filter(argp, &code); 738 if (err >= 0) { 739 ppp_lock(ppp); 740 kfree(ppp->pass_filter); 741 ppp->pass_filter = code; 742 ppp->pass_len = err; 743 ppp_unlock(ppp); 744 err = 0; 745 } 746 break; 747 } 748 case PPPIOCSACTIVE: 749 { 750 struct sock_filter *code; 751 err = get_filter(argp, &code); 752 if (err >= 0) { 753 ppp_lock(ppp); 754 kfree(ppp->active_filter); 755 ppp->active_filter = code; 756 ppp->active_len = err; 757 ppp_unlock(ppp); 758 err = 0; 759 } 760 break; 761 } 762#endif /* CONFIG_PPP_FILTER */ 763 764#ifdef CONFIG_PPP_MULTILINK 765 case PPPIOCSMRRU: 766 if (get_user(val, p)) 767 break; 768 ppp_recv_lock(ppp); 769 ppp->mrru = val; 770 ppp_recv_unlock(ppp); 771 err = 0; 772 break; 773#endif /* CONFIG_PPP_MULTILINK */ 774 775 default: 776 err = -ENOTTY; 777 } 778 779 return err; 780} 781 782static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 783 unsigned int cmd, unsigned long arg) 784{ 785 int unit, err = -EFAULT; 786 struct ppp *ppp; 787 struct channel *chan; 788 int __user *p = (int __user *)arg; 789 790 switch (cmd) { 791 case PPPIOCNEWUNIT: 792 /* Create a new ppp unit */ 793 if (get_user(unit, p)) 794 break; 795 ppp = ppp_create_interface(unit, &err); 796 if (ppp == 0) 797 break; 798 file->private_data = &ppp->file; 799 ppp->owner = file; 800 err = -EFAULT; 801 if (put_user(ppp->file.index, p)) 802 break; 803 err = 0; 804 break; 805 806 case PPPIOCATTACH: 807 /* Attach to an existing ppp unit */ 808 if (get_user(unit, p)) 809 break; 810 down(&all_ppp_sem); 811 err = -ENXIO; 812 ppp = ppp_find_unit(unit); 813 if (ppp != 0) { 814 atomic_inc(&ppp->file.refcnt); 815 file->private_data = &ppp->file; 816 err = 0; 817 } 818 up(&all_ppp_sem); 819 break; 820 821 case PPPIOCATTCHAN: 822 if (get_user(unit, p)) 823 break; 824 spin_lock_bh(&all_channels_lock); 825 err = -ENXIO; 826 chan = ppp_find_channel(unit); 827 if (chan != 0) { 828 atomic_inc(&chan->file.refcnt); 829 file->private_data = &chan->file; 830 err = 0; 831 } 832 spin_unlock_bh(&all_channels_lock); 833 break; 834 835 default: 836 err = -ENOTTY; 837 } 838 return err; 839} 840 841static struct file_operations ppp_device_fops = { 842 .owner = THIS_MODULE, 843 .read = ppp_read, 844 .write = ppp_write, 845 .poll = ppp_poll, 846 .ioctl = ppp_ioctl, 847 .open = ppp_open, 848 .release = ppp_release 849}; 850 851#define PPP_MAJOR 108 852 853/* Called at boot time if ppp is compiled into the kernel, 854 or at module load time (from init_module) if compiled as a module. */ 855static int __init ppp_init(void) 856{ 857 int err; 858 859 printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n"); 860 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); 861 if (!err) { 862 ppp_class = class_create(THIS_MODULE, "ppp"); 863 if (IS_ERR(ppp_class)) { 864 err = PTR_ERR(ppp_class); 865 goto out_chrdev; 866 } 867 class_device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp"); 868 err = devfs_mk_cdev(MKDEV(PPP_MAJOR, 0), 869 S_IFCHR|S_IRUSR|S_IWUSR, "ppp"); 870 if (err) 871 goto out_class; 872 } 873 874out: 875 if (err) 876 printk(KERN_ERR "failed to register PPP device (%d)\n", err); 877 return err; 878 879out_class: 880 class_device_destroy(ppp_class, MKDEV(PPP_MAJOR,0)); 881 class_destroy(ppp_class); 882out_chrdev: 883 unregister_chrdev(PPP_MAJOR, "ppp"); 884 goto out; 885} 886 887/* 888 * Network interface unit routines. 889 */ 890static int 891ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) 892{ 893 struct ppp *ppp = (struct ppp *) dev->priv; 894 int npi, proto; 895 unsigned char *pp; 896 897 npi = ethertype_to_npindex(ntohs(skb->protocol)); 898 if (npi < 0) 899 goto outf; 900 901 /* Drop, accept or reject the packet */ 902 switch (ppp->npmode[npi]) { 903 case NPMODE_PASS: 904 break; 905 case NPMODE_QUEUE: 906 /* it would be nice to have a way to tell the network 907 system to queue this one up for later. */ 908 goto outf; 909 case NPMODE_DROP: 910 case NPMODE_ERROR: 911 goto outf; 912 } 913 914 /* Put the 2-byte PPP protocol number on the front, 915 making sure there is room for the address and control fields. */ 916 if (skb_headroom(skb) < PPP_HDRLEN) { 917 struct sk_buff *ns; 918 919 ns = alloc_skb(skb->len + dev->hard_header_len, GFP_ATOMIC); 920 if (ns == 0) 921 goto outf; 922 skb_reserve(ns, dev->hard_header_len); 923 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 924 kfree_skb(skb); 925 skb = ns; 926 } 927 pp = skb_push(skb, 2); 928 proto = npindex_to_proto[npi]; 929 pp[0] = proto >> 8; 930 pp[1] = proto; 931 932 netif_stop_queue(dev); 933 skb_queue_tail(&ppp->file.xq, skb); 934 ppp_xmit_process(ppp); 935 return 0; 936 937 outf: 938 kfree_skb(skb); 939 ++ppp->stats.tx_dropped; 940 return 0; 941} 942 943static struct net_device_stats * 944ppp_net_stats(struct net_device *dev) 945{ 946 struct ppp *ppp = (struct ppp *) dev->priv; 947 948 return &ppp->stats; 949} 950 951static int 952ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 953{ 954 struct ppp *ppp = dev->priv; 955 int err = -EFAULT; 956 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; 957 struct ppp_stats stats; 958 struct ppp_comp_stats cstats; 959 char *vers; 960 961 switch (cmd) { 962 case SIOCGPPPSTATS: 963 ppp_get_stats(ppp, &stats); 964 if (copy_to_user(addr, &stats, sizeof(stats))) 965 break; 966 err = 0; 967 break; 968 969 case SIOCGPPPCSTATS: 970 memset(&cstats, 0, sizeof(cstats)); 971 if (ppp->xc_state != 0) 972 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); 973 if (ppp->rc_state != 0) 974 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); 975 if (copy_to_user(addr, &cstats, sizeof(cstats))) 976 break; 977 err = 0; 978 break; 979 980 case SIOCGPPPVER: 981 vers = PPP_VERSION; 982 if (copy_to_user(addr, vers, strlen(vers) + 1)) 983 break; 984 err = 0; 985 break; 986 987 default: 988 err = -EINVAL; 989 } 990 991 return err; 992} 993 994static void ppp_setup(struct net_device *dev) 995{ 996 dev->hard_header_len = PPP_HDRLEN; 997 dev->mtu = PPP_MTU; 998 dev->addr_len = 0; 999 dev->tx_queue_len = 3; 1000 dev->type = ARPHRD_PPP; 1001 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 1002} 1003 1004/* 1005 * Transmit-side routines. 1006 */ 1007 1008/* 1009 * Called to do any work queued up on the transmit side 1010 * that can now be done. 1011 */ 1012static void 1013ppp_xmit_process(struct ppp *ppp) 1014{ 1015 struct sk_buff *skb; 1016 1017 ppp_xmit_lock(ppp); 1018 if (ppp->dev != 0) { 1019 ppp_push(ppp); 1020 while (ppp->xmit_pending == 0 1021 && (skb = skb_dequeue(&ppp->file.xq)) != 0) 1022 ppp_send_frame(ppp, skb); 1023 /* If there's no work left to do, tell the core net 1024 code that we can accept some more. */ 1025 if (ppp->xmit_pending == 0 && skb_peek(&ppp->file.xq) == 0) 1026 netif_wake_queue(ppp->dev); 1027 } 1028 ppp_xmit_unlock(ppp); 1029} 1030 1031static inline struct sk_buff * 1032pad_compress_skb(struct ppp *ppp, struct sk_buff *skb) 1033{ 1034 struct sk_buff *new_skb; 1035 int len; 1036 int new_skb_size = ppp->dev->mtu + 1037 ppp->xcomp->comp_extra + ppp->dev->hard_header_len; 1038 int compressor_skb_size = ppp->dev->mtu + 1039 ppp->xcomp->comp_extra + PPP_HDRLEN; 1040 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC); 1041 if (!new_skb) { 1042 if (net_ratelimit()) 1043 printk(KERN_ERR "PPP: no memory (comp pkt)\n"); 1044 return NULL; 1045 } 1046 if (ppp->dev->hard_header_len > PPP_HDRLEN) 1047 skb_reserve(new_skb, 1048 ppp->dev->hard_header_len - PPP_HDRLEN); 1049 1050 /* compressor still expects A/C bytes in hdr */ 1051 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, 1052 new_skb->data, skb->len + 2, 1053 compressor_skb_size); 1054 if (len > 0 && (ppp->flags & SC_CCP_UP)) { 1055 kfree_skb(skb); 1056 skb = new_skb; 1057 skb_put(skb, len); 1058 skb_pull(skb, 2); /* pull off A/C bytes */ 1059 } else if (len == 0) { 1060 /* didn't compress, or CCP not up yet */ 1061 kfree_skb(new_skb); 1062 new_skb = skb; 1063 } else { 1064 /* 1065 * (len < 0) 1066 * MPPE requires that we do not send unencrypted 1067 * frames. The compressor will return -1 if we 1068 * should drop the frame. We cannot simply test 1069 * the compress_proto because MPPE and MPPC share 1070 * the same number. 1071 */ 1072 if (net_ratelimit()) 1073 printk(KERN_ERR "ppp: compressor dropped pkt\n"); 1074 kfree_skb(skb); 1075 kfree_skb(new_skb); 1076 new_skb = NULL; 1077 } 1078 return new_skb; 1079} 1080 1081/* 1082 * Compress and send a frame. 1083 * The caller should have locked the xmit path, 1084 * and xmit_pending should be 0. 1085 */ 1086static void 1087ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) 1088{ 1089 int proto = PPP_PROTO(skb); 1090 struct sk_buff *new_skb; 1091 int len; 1092 unsigned char *cp; 1093 1094 if (proto < 0x8000) { 1095#ifdef CONFIG_PPP_FILTER 1096 /* check if we should pass this packet */ 1097 /* the filter instructions are constructed assuming 1098 a four-byte PPP header on each packet */ 1099 *skb_push(skb, 2) = 1; 1100 if (ppp->pass_filter 1101 && sk_run_filter(skb, ppp->pass_filter, 1102 ppp->pass_len) == 0) { 1103 if (ppp->debug & 1) 1104 printk(KERN_DEBUG "PPP: outbound frame not passed\n"); 1105 kfree_skb(skb); 1106 return; 1107 } 1108 /* if this packet passes the active filter, record the time */ 1109 if (!(ppp->active_filter 1110 && sk_run_filter(skb, ppp->active_filter, 1111 ppp->active_len) == 0)) 1112 ppp->last_xmit = jiffies; 1113 skb_pull(skb, 2); 1114#else 1115 /* for data packets, record the time */ 1116 ppp->last_xmit = jiffies; 1117#endif /* CONFIG_PPP_FILTER */ 1118 } 1119 1120 ++ppp->stats.tx_packets; 1121 ppp->stats.tx_bytes += skb->len - 2; 1122 1123 switch (proto) { 1124 case PPP_IP: 1125 if (ppp->vj == 0 || (ppp->flags & SC_COMP_TCP) == 0) 1126 break; 1127 /* try to do VJ TCP header compression */ 1128 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, 1129 GFP_ATOMIC); 1130 if (new_skb == 0) { 1131 printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n"); 1132 goto drop; 1133 } 1134 skb_reserve(new_skb, ppp->dev->hard_header_len - 2); 1135 cp = skb->data + 2; 1136 len = slhc_compress(ppp->vj, cp, skb->len - 2, 1137 new_skb->data + 2, &cp, 1138 !(ppp->flags & SC_NO_TCP_CCID)); 1139 if (cp == skb->data + 2) { 1140 /* didn't compress */ 1141 kfree_skb(new_skb); 1142 } else { 1143 if (cp[0] & SL_TYPE_COMPRESSED_TCP) { 1144 proto = PPP_VJC_COMP; 1145 cp[0] &= ~SL_TYPE_COMPRESSED_TCP; 1146 } else { 1147 proto = PPP_VJC_UNCOMP; 1148 cp[0] = skb->data[2]; 1149 } 1150 kfree_skb(skb); 1151 skb = new_skb; 1152 cp = skb_put(skb, len + 2); 1153 cp[0] = 0; 1154 cp[1] = proto; 1155 } 1156 break; 1157 1158 case PPP_CCP: 1159 /* peek at outbound CCP frames */ 1160 ppp_ccp_peek(ppp, skb, 0); 1161 break; 1162 } 1163 1164 /* try to do packet compression */ 1165 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state != 0 1166 && proto != PPP_LCP && proto != PPP_CCP) { 1167 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) { 1168 if (net_ratelimit()) 1169 printk(KERN_ERR "ppp: compression required but down - pkt dropped.\n"); 1170 goto drop; 1171 } 1172 skb = pad_compress_skb(ppp, skb); 1173 if (!skb) 1174 goto drop; 1175 } 1176 1177 /* 1178 * If we are waiting for traffic (demand dialling), 1179 * queue it up for pppd to receive. 1180 */ 1181 if (ppp->flags & SC_LOOP_TRAFFIC) { 1182 if (ppp->file.rq.qlen > PPP_MAX_RQLEN) 1183 goto drop; 1184 skb_queue_tail(&ppp->file.rq, skb); 1185 wake_up_interruptible(&ppp->file.rwait); 1186 return; 1187 } 1188 1189 ppp->xmit_pending = skb; 1190 ppp_push(ppp); 1191 return; 1192 1193 drop: 1194 if (skb) 1195 kfree_skb(skb); 1196 ++ppp->stats.tx_errors; 1197} 1198 1199/* 1200 * Try to send the frame in xmit_pending. 1201 * The caller should have the xmit path locked. 1202 */ 1203static void 1204ppp_push(struct ppp *ppp) 1205{ 1206 struct list_head *list; 1207 struct channel *pch; 1208 struct sk_buff *skb = ppp->xmit_pending; 1209 1210 if (skb == 0) 1211 return; 1212 1213 list = &ppp->channels; 1214 if (list_empty(list)) { 1215 /* nowhere to send the packet, just drop it */ 1216 ppp->xmit_pending = NULL; 1217 kfree_skb(skb); 1218 return; 1219 } 1220 1221 if ((ppp->flags & SC_MULTILINK) == 0) { 1222 /* not doing multilink: send it down the first channel */ 1223 list = list->next; 1224 pch = list_entry(list, struct channel, clist); 1225 1226 spin_lock_bh(&pch->downl); 1227 if (pch->chan) { 1228 if (pch->chan->ops->start_xmit(pch->chan, skb)) 1229 ppp->xmit_pending = NULL; 1230 } else { 1231 /* channel got unregistered */ 1232 kfree_skb(skb); 1233 ppp->xmit_pending = NULL; 1234 } 1235 spin_unlock_bh(&pch->downl); 1236 return; 1237 } 1238 1239#ifdef CONFIG_PPP_MULTILINK 1240 /* Multilink: fragment the packet over as many links 1241 as can take the packet at the moment. */ 1242 if (!ppp_mp_explode(ppp, skb)) 1243 return; 1244#endif /* CONFIG_PPP_MULTILINK */ 1245 1246 ppp->xmit_pending = NULL; 1247 kfree_skb(skb); 1248} 1249 1250#ifdef CONFIG_PPP_MULTILINK 1251/* 1252 * Divide a packet to be transmitted into fragments and 1253 * send them out the individual links. 1254 */ 1255static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) 1256{ 1257 int len, fragsize; 1258 int i, bits, hdrlen, mtu; 1259 int flen; 1260 int navail, nfree; 1261 int nbigger; 1262 unsigned char *p, *q; 1263 struct list_head *list; 1264 struct channel *pch; 1265 struct sk_buff *frag; 1266 struct ppp_channel *chan; 1267 1268 nfree = 0; /* # channels which have no packet already queued */ 1269 navail = 0; /* total # of usable channels (not deregistered) */ 1270 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1271 i = 0; 1272 list_for_each_entry(pch, &ppp->channels, clist) { 1273 navail += pch->avail = (pch->chan != NULL); 1274 if (pch->avail) { 1275 if (skb_queue_empty(&pch->file.xq) || 1276 !pch->had_frag) { 1277 pch->avail = 2; 1278 ++nfree; 1279 } 1280 if (!pch->had_frag && i < ppp->nxchan) 1281 ppp->nxchan = i; 1282 } 1283 ++i; 1284 } 1285 1286 /* 1287 * Don't start sending this packet unless at least half of 1288 * the channels are free. This gives much better TCP 1289 * performance if we have a lot of channels. 1290 */ 1291 if (nfree == 0 || nfree < navail / 2) 1292 return 0; /* can't take now, leave it in xmit_pending */ 1293 1294 /* Do protocol field compression (XXX this should be optional) */ 1295 p = skb->data; 1296 len = skb->len; 1297 if (*p == 0) { 1298 ++p; 1299 --len; 1300 } 1301 1302 /* 1303 * Decide on fragment size. 1304 * We create a fragment for each free channel regardless of 1305 * how small they are (i.e. even 0 length) in order to minimize 1306 * the time that it will take to detect when a channel drops 1307 * a fragment. 1308 */ 1309 fragsize = len; 1310 if (nfree > 1) 1311 fragsize = ROUNDUP(fragsize, nfree); 1312 /* nbigger channels get fragsize bytes, the rest get fragsize-1, 1313 except if nbigger==0, then they all get fragsize. */ 1314 nbigger = len % nfree; 1315 1316 /* skip to the channel after the one we last used 1317 and start at that one */ 1318 list = &ppp->channels; 1319 for (i = 0; i < ppp->nxchan; ++i) { 1320 list = list->next; 1321 if (list == &ppp->channels) { 1322 i = 0; 1323 break; 1324 } 1325 } 1326 1327 /* create a fragment for each channel */ 1328 bits = B; 1329 while (nfree > 0 || len > 0) { 1330 list = list->next; 1331 if (list == &ppp->channels) { 1332 i = 0; 1333 continue; 1334 } 1335 pch = list_entry(list, struct channel, clist); 1336 ++i; 1337 if (!pch->avail) 1338 continue; 1339 1340 /* 1341 * Skip this channel if it has a fragment pending already and 1342 * we haven't given a fragment to all of the free channels. 1343 */ 1344 if (pch->avail == 1) { 1345 if (nfree > 0) 1346 continue; 1347 } else { 1348 --nfree; 1349 pch->avail = 1; 1350 } 1351 1352 /* check the channel's mtu and whether it is still attached. */ 1353 spin_lock_bh(&pch->downl); 1354 if (pch->chan == NULL) { 1355 /* can't use this channel, it's being deregistered */ 1356 spin_unlock_bh(&pch->downl); 1357 pch->avail = 0; 1358 if (--navail == 0) 1359 break; 1360 continue; 1361 } 1362 1363 /* 1364 * Create a fragment for this channel of 1365 * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes. 1366 * If mtu+2-hdrlen < 4, that is a ridiculously small 1367 * MTU, so we use mtu = 2 + hdrlen. 1368 */ 1369 if (fragsize > len) 1370 fragsize = len; 1371 flen = fragsize; 1372 mtu = pch->chan->mtu + 2 - hdrlen; 1373 if (mtu < 4) 1374 mtu = 4; 1375 if (flen > mtu) 1376 flen = mtu; 1377 if (flen == len && nfree == 0) 1378 bits |= E; 1379 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); 1380 if (frag == 0) 1381 goto noskb; 1382 q = skb_put(frag, flen + hdrlen); 1383 1384 /* make the MP header */ 1385 q[0] = PPP_MP >> 8; 1386 q[1] = PPP_MP; 1387 if (ppp->flags & SC_MP_XSHORTSEQ) { 1388 q[2] = bits + ((ppp->nxseq >> 8) & 0xf); 1389 q[3] = ppp->nxseq; 1390 } else { 1391 q[2] = bits; 1392 q[3] = ppp->nxseq >> 16; 1393 q[4] = ppp->nxseq >> 8; 1394 q[5] = ppp->nxseq; 1395 } 1396 1397 /* 1398 * Copy the data in. 1399 * Unfortunately there is a bug in older versions of 1400 * the Linux PPP multilink reconstruction code where it 1401 * drops 0-length fragments. Therefore we make sure the 1402 * fragment has at least one byte of data. Any bytes 1403 * we add in this situation will end up as padding on the 1404 * end of the reconstructed packet. 1405 */ 1406 if (flen == 0) 1407 *skb_put(frag, 1) = 0; 1408 else 1409 memcpy(q + hdrlen, p, flen); 1410 1411 /* try to send it down the channel */ 1412 chan = pch->chan; 1413 if (!skb_queue_empty(&pch->file.xq) || 1414 !chan->ops->start_xmit(chan, frag)) 1415 skb_queue_tail(&pch->file.xq, frag); 1416 pch->had_frag = 1; 1417 p += flen; 1418 len -= flen; 1419 ++ppp->nxseq; 1420 bits = 0; 1421 spin_unlock_bh(&pch->downl); 1422 1423 if (--nbigger == 0 && fragsize > 0) 1424 --fragsize; 1425 } 1426 ppp->nxchan = i; 1427 1428 return 1; 1429 1430 noskb: 1431 spin_unlock_bh(&pch->downl); 1432 if (ppp->debug & 1) 1433 printk(KERN_ERR "PPP: no memory (fragment)\n"); 1434 ++ppp->stats.tx_errors; 1435 ++ppp->nxseq; 1436 return 1; /* abandon the frame */ 1437} 1438#endif /* CONFIG_PPP_MULTILINK */ 1439 1440/* 1441 * Try to send data out on a channel. 1442 */ 1443static void 1444ppp_channel_push(struct channel *pch) 1445{ 1446 struct sk_buff *skb; 1447 struct ppp *ppp; 1448 1449 spin_lock_bh(&pch->downl); 1450 if (pch->chan != 0) { 1451 while (!skb_queue_empty(&pch->file.xq)) { 1452 skb = skb_dequeue(&pch->file.xq); 1453 if (!pch->chan->ops->start_xmit(pch->chan, skb)) { 1454 /* put the packet back and try again later */ 1455 skb_queue_head(&pch->file.xq, skb); 1456 break; 1457 } 1458 } 1459 } else { 1460 /* channel got deregistered */ 1461 skb_queue_purge(&pch->file.xq); 1462 } 1463 spin_unlock_bh(&pch->downl); 1464 /* see if there is anything from the attached unit to be sent */ 1465 if (skb_queue_empty(&pch->file.xq)) { 1466 read_lock_bh(&pch->upl); 1467 ppp = pch->ppp; 1468 if (ppp != 0) 1469 ppp_xmit_process(ppp); 1470 read_unlock_bh(&pch->upl); 1471 } 1472} 1473 1474/* 1475 * Receive-side routines. 1476 */ 1477 1478/* misuse a few fields of the skb for MP reconstruction */ 1479#define sequence priority 1480#define BEbits cb[0] 1481 1482static inline void 1483ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1484{ 1485 ppp_recv_lock(ppp); 1486 /* ppp->dev == 0 means interface is closing down */ 1487 if (ppp->dev != 0) 1488 ppp_receive_frame(ppp, skb, pch); 1489 else 1490 kfree_skb(skb); 1491 ppp_recv_unlock(ppp); 1492} 1493 1494void 1495ppp_input(struct ppp_channel *chan, struct sk_buff *skb) 1496{ 1497 struct channel *pch = chan->ppp; 1498 int proto; 1499 1500 if (pch == 0 || skb->len == 0) { 1501 kfree_skb(skb); 1502 return; 1503 } 1504 1505 proto = PPP_PROTO(skb); 1506 read_lock_bh(&pch->upl); 1507 if (pch->ppp == 0 || proto >= 0xc000 || proto == PPP_CCPFRAG) { 1508 /* put it on the channel queue */ 1509 skb_queue_tail(&pch->file.rq, skb); 1510 /* drop old frames if queue too long */ 1511 while (pch->file.rq.qlen > PPP_MAX_RQLEN 1512 && (skb = skb_dequeue(&pch->file.rq)) != 0) 1513 kfree_skb(skb); 1514 wake_up_interruptible(&pch->file.rwait); 1515 } else { 1516 ppp_do_recv(pch->ppp, skb, pch); 1517 } 1518 read_unlock_bh(&pch->upl); 1519} 1520 1521/* Put a 0-length skb in the receive queue as an error indication */ 1522void 1523ppp_input_error(struct ppp_channel *chan, int code) 1524{ 1525 struct channel *pch = chan->ppp; 1526 struct sk_buff *skb; 1527 1528 if (pch == 0) 1529 return; 1530 1531 read_lock_bh(&pch->upl); 1532 if (pch->ppp != 0) { 1533 skb = alloc_skb(0, GFP_ATOMIC); 1534 if (skb != 0) { 1535 skb->len = 0; /* probably unnecessary */ 1536 skb->cb[0] = code; 1537 ppp_do_recv(pch->ppp, skb, pch); 1538 } 1539 } 1540 read_unlock_bh(&pch->upl); 1541} 1542 1543/* 1544 * We come in here to process a received frame. 1545 * The receive side of the ppp unit is locked. 1546 */ 1547static void 1548ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1549{ 1550 if (skb->len >= 2) { 1551#ifdef CONFIG_PPP_MULTILINK 1552 /* XXX do channel-level decompression here */ 1553 if (PPP_PROTO(skb) == PPP_MP) 1554 ppp_receive_mp_frame(ppp, skb, pch); 1555 else 1556#endif /* CONFIG_PPP_MULTILINK */ 1557 ppp_receive_nonmp_frame(ppp, skb); 1558 return; 1559 } 1560 1561 if (skb->len > 0) 1562 /* note: a 0-length skb is used as an error indication */ 1563 ++ppp->stats.rx_length_errors; 1564 1565 kfree_skb(skb); 1566 ppp_receive_error(ppp); 1567} 1568 1569static void 1570ppp_receive_error(struct ppp *ppp) 1571{ 1572 ++ppp->stats.rx_errors; 1573 if (ppp->vj != 0) 1574 slhc_toss(ppp->vj); 1575} 1576 1577static void 1578ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) 1579{ 1580 struct sk_buff *ns; 1581 int proto, len, npi; 1582 1583 /* 1584 * Decompress the frame, if compressed. 1585 * Note that some decompressors need to see uncompressed frames 1586 * that come in as well as compressed frames. 1587 */ 1588 if (ppp->rc_state != 0 && (ppp->rstate & SC_DECOMP_RUN) 1589 && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) 1590 skb = ppp_decompress_frame(ppp, skb); 1591 1592 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR) 1593 goto err; 1594 1595 proto = PPP_PROTO(skb); 1596 switch (proto) { 1597 case PPP_VJC_COMP: 1598 /* decompress VJ compressed packets */ 1599 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1600 goto err; 1601 1602 if (skb_tailroom(skb) < 124) { 1603 /* copy to a new sk_buff with more tailroom */ 1604 ns = dev_alloc_skb(skb->len + 128); 1605 if (ns == 0) { 1606 printk(KERN_ERR"PPP: no memory (VJ decomp)\n"); 1607 goto err; 1608 } 1609 skb_reserve(ns, 2); 1610 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 1611 kfree_skb(skb); 1612 skb = ns; 1613 } 1614 else if (!pskb_may_pull(skb, skb->len)) 1615 goto err; 1616 1617 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); 1618 if (len <= 0) { 1619 printk(KERN_DEBUG "PPP: VJ decompression error\n"); 1620 goto err; 1621 } 1622 len += 2; 1623 if (len > skb->len) 1624 skb_put(skb, len - skb->len); 1625 else if (len < skb->len) 1626 skb_trim(skb, len); 1627 proto = PPP_IP; 1628 break; 1629 1630 case PPP_VJC_UNCOMP: 1631 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1632 goto err; 1633 1634 /* Until we fix the decompressor need to make sure 1635 * data portion is linear. 1636 */ 1637 if (!pskb_may_pull(skb, skb->len)) 1638 goto err; 1639 1640 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { 1641 printk(KERN_ERR "PPP: VJ uncompressed error\n"); 1642 goto err; 1643 } 1644 proto = PPP_IP; 1645 break; 1646 1647 case PPP_CCP: 1648 ppp_ccp_peek(ppp, skb, 1); 1649 break; 1650 } 1651 1652 ++ppp->stats.rx_packets; 1653 ppp->stats.rx_bytes += skb->len - 2; 1654 1655 npi = proto_to_npindex(proto); 1656 if (npi < 0) { 1657 /* control or unknown frame - pass it to pppd */ 1658 skb_queue_tail(&ppp->file.rq, skb); 1659 /* limit queue length by dropping old frames */ 1660 while (ppp->file.rq.qlen > PPP_MAX_RQLEN 1661 && (skb = skb_dequeue(&ppp->file.rq)) != 0) 1662 kfree_skb(skb); 1663 /* wake up any process polling or blocking on read */ 1664 wake_up_interruptible(&ppp->file.rwait); 1665 1666 } else { 1667 /* network protocol frame - give it to the kernel */ 1668 1669#ifdef CONFIG_PPP_FILTER 1670 /* check if the packet passes the pass and active filters */ 1671 /* the filter instructions are constructed assuming 1672 a four-byte PPP header on each packet */ 1673 *skb_push(skb, 2) = 0; 1674 if (ppp->pass_filter 1675 && sk_run_filter(skb, ppp->pass_filter, 1676 ppp->pass_len) == 0) { 1677 if (ppp->debug & 1) 1678 printk(KERN_DEBUG "PPP: inbound frame not passed\n"); 1679 kfree_skb(skb); 1680 return; 1681 } 1682 if (!(ppp->active_filter 1683 && sk_run_filter(skb, ppp->active_filter, 1684 ppp->active_len) == 0)) 1685 ppp->last_recv = jiffies; 1686 skb_pull(skb, 2); 1687#else 1688 ppp->last_recv = jiffies; 1689#endif /* CONFIG_PPP_FILTER */ 1690 1691 if ((ppp->dev->flags & IFF_UP) == 0 1692 || ppp->npmode[npi] != NPMODE_PASS) { 1693 kfree_skb(skb); 1694 } else { 1695 skb_pull(skb, 2); /* chop off protocol */ 1696 skb->dev = ppp->dev; 1697 skb->protocol = htons(npindex_to_ethertype[npi]); 1698 skb->mac.raw = skb->data; 1699 netif_rx(skb); 1700 ppp->dev->last_rx = jiffies; 1701 } 1702 } 1703 return; 1704 1705 err: 1706 kfree_skb(skb); 1707 ppp_receive_error(ppp); 1708} 1709 1710static struct sk_buff * 1711ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) 1712{ 1713 int proto = PPP_PROTO(skb); 1714 struct sk_buff *ns; 1715 int len; 1716 1717 /* Until we fix all the decompressor's need to make sure 1718 * data portion is linear. 1719 */ 1720 if (!pskb_may_pull(skb, skb->len)) 1721 goto err; 1722 1723 if (proto == PPP_COMP) { 1724 ns = dev_alloc_skb(ppp->mru + PPP_HDRLEN); 1725 if (ns == 0) { 1726 printk(KERN_ERR "ppp_decompress_frame: no memory\n"); 1727 goto err; 1728 } 1729 /* the decompressor still expects the A/C bytes in the hdr */ 1730 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, 1731 skb->len + 2, ns->data, ppp->mru + PPP_HDRLEN); 1732 if (len < 0) { 1733 /* Pass the compressed frame to pppd as an 1734 error indication. */ 1735 if (len == DECOMP_FATALERROR) 1736 ppp->rstate |= SC_DC_FERROR; 1737 kfree_skb(ns); 1738 goto err; 1739 } 1740 1741 kfree_skb(skb); 1742 skb = ns; 1743 skb_put(skb, len); 1744 skb_pull(skb, 2); /* pull off the A/C bytes */ 1745 1746 } else { 1747 /* Uncompressed frame - pass to decompressor so it 1748 can update its dictionary if necessary. */ 1749 if (ppp->rcomp->incomp) 1750 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, 1751 skb->len + 2); 1752 } 1753 1754 return skb; 1755 1756 err: 1757 ppp->rstate |= SC_DC_ERROR; 1758 ppp_receive_error(ppp); 1759 return skb; 1760} 1761 1762#ifdef CONFIG_PPP_MULTILINK 1763/* 1764 * Receive a multilink frame. 1765 * We put it on the reconstruction queue and then pull off 1766 * as many completed frames as we can. 1767 */ 1768static void 1769ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1770{ 1771 u32 mask, seq; 1772 struct channel *ch; 1773 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1774 1775 if (!pskb_may_pull(skb, mphdrlen) || ppp->mrru == 0) 1776 goto err; /* no good, throw it away */ 1777 1778 /* Decode sequence number and begin/end bits */ 1779 if (ppp->flags & SC_MP_SHORTSEQ) { 1780 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; 1781 mask = 0xfff; 1782 } else { 1783 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; 1784 mask = 0xffffff; 1785 } 1786 skb->BEbits = skb->data[2]; 1787 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ 1788 1789 /* 1790 * Do protocol ID decompression on the first fragment of each packet. 1791 */ 1792 if ((skb->BEbits & B) && (skb->data[0] & 1)) 1793 *skb_push(skb, 1) = 0; 1794 1795 /* 1796 * Expand sequence number to 32 bits, making it as close 1797 * as possible to ppp->minseq. 1798 */ 1799 seq |= ppp->minseq & ~mask; 1800 if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) 1801 seq += mask + 1; 1802 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) 1803 seq -= mask + 1; /* should never happen */ 1804 skb->sequence = seq; 1805 pch->lastseq = seq; 1806 1807 /* 1808 * If this packet comes before the next one we were expecting, 1809 * drop it. 1810 */ 1811 if (seq_before(seq, ppp->nextseq)) { 1812 kfree_skb(skb); 1813 ++ppp->stats.rx_dropped; 1814 ppp_receive_error(ppp); 1815 return; 1816 } 1817 1818 /* 1819 * Reevaluate minseq, the minimum over all channels of the 1820 * last sequence number received on each channel. Because of 1821 * the increasing sequence number rule, we know that any fragment 1822 * before `minseq' which hasn't arrived is never going to arrive. 1823 * The list of channels can't change because we have the receive 1824 * side of the ppp unit locked. 1825 */ 1826 list_for_each_entry(ch, &ppp->channels, clist) { 1827 if (seq_before(ch->lastseq, seq)) 1828 seq = ch->lastseq; 1829 } 1830 if (seq_before(ppp->minseq, seq)) 1831 ppp->minseq = seq; 1832 1833 /* Put the fragment on the reconstruction queue */ 1834 ppp_mp_insert(ppp, skb); 1835 1836 /* If the queue is getting long, don't wait any longer for packets 1837 before the start of the queue. */ 1838 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN 1839 && seq_before(ppp->minseq, ppp->mrq.next->sequence)) 1840 ppp->minseq = ppp->mrq.next->sequence; 1841 1842 /* Pull completed packets off the queue and receive them. */ 1843 while ((skb = ppp_mp_reconstruct(ppp)) != 0) 1844 ppp_receive_nonmp_frame(ppp, skb); 1845 1846 return; 1847 1848 err: 1849 kfree_skb(skb); 1850 ppp_receive_error(ppp); 1851} 1852 1853/* 1854 * Insert a fragment on the MP reconstruction queue. 1855 * The queue is ordered by increasing sequence number. 1856 */ 1857static void 1858ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) 1859{ 1860 struct sk_buff *p; 1861 struct sk_buff_head *list = &ppp->mrq; 1862 u32 seq = skb->sequence; 1863 1864 /* N.B. we don't need to lock the list lock because we have the 1865 ppp unit receive-side lock. */ 1866 for (p = list->next; p != (struct sk_buff *)list; p = p->next) 1867 if (seq_before(seq, p->sequence)) 1868 break; 1869 __skb_insert(skb, p->prev, p, list); 1870} 1871 1872/* 1873 * Reconstruct a packet from the MP fragment queue. 1874 * We go through increasing sequence numbers until we find a 1875 * complete packet, or we get to the sequence number for a fragment 1876 * which hasn't arrived but might still do so. 1877 */ 1878struct sk_buff * 1879ppp_mp_reconstruct(struct ppp *ppp) 1880{ 1881 u32 seq = ppp->nextseq; 1882 u32 minseq = ppp->minseq; 1883 struct sk_buff_head *list = &ppp->mrq; 1884 struct sk_buff *p, *next; 1885 struct sk_buff *head, *tail; 1886 struct sk_buff *skb = NULL; 1887 int lost = 0, len = 0; 1888 1889 if (ppp->mrru == 0) /* do nothing until mrru is set */ 1890 return NULL; 1891 head = list->next; 1892 tail = NULL; 1893 for (p = head; p != (struct sk_buff *) list; p = next) { 1894 next = p->next; 1895 if (seq_before(p->sequence, seq)) { 1896 /* this can't happen, anyway ignore the skb */ 1897 printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n", 1898 p->sequence, seq); 1899 head = next; 1900 continue; 1901 } 1902 if (p->sequence != seq) { 1903 /* Fragment `seq' is missing. If it is after 1904 minseq, it might arrive later, so stop here. */ 1905 if (seq_after(seq, minseq)) 1906 break; 1907 /* Fragment `seq' is lost, keep going. */ 1908 lost = 1; 1909 seq = seq_before(minseq, p->sequence)? 1910 minseq + 1: p->sequence; 1911 next = p; 1912 continue; 1913 } 1914 1915 /* 1916 * At this point we know that all the fragments from 1917 * ppp->nextseq to seq are either present or lost. 1918 * Also, there are no complete packets in the queue 1919 * that have no missing fragments and end before this 1920 * fragment. 1921 */ 1922 1923 /* B bit set indicates this fragment starts a packet */ 1924 if (p->BEbits & B) { 1925 head = p; 1926 lost = 0; 1927 len = 0; 1928 } 1929 1930 len += p->len; 1931 1932 /* Got a complete packet yet? */ 1933 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) { 1934 if (len > ppp->mrru + 2) { 1935 ++ppp->stats.rx_length_errors; 1936 printk(KERN_DEBUG "PPP: reconstructed packet" 1937 " is too long (%d)\n", len); 1938 } else if (p == head) { 1939 /* fragment is complete packet - reuse skb */ 1940 tail = p; 1941 skb = skb_get(p); 1942 break; 1943 } else if ((skb = dev_alloc_skb(len)) == NULL) { 1944 ++ppp->stats.rx_missed_errors; 1945 printk(KERN_DEBUG "PPP: no memory for " 1946 "reconstructed packet"); 1947 } else { 1948 tail = p; 1949 break; 1950 } 1951 ppp->nextseq = seq + 1; 1952 } 1953 1954 /* 1955 * If this is the ending fragment of a packet, 1956 * and we haven't found a complete valid packet yet, 1957 * we can discard up to and including this fragment. 1958 */ 1959 if (p->BEbits & E) 1960 head = next; 1961 1962 ++seq; 1963 } 1964 1965 /* If we have a complete packet, copy it all into one skb. */ 1966 if (tail != NULL) { 1967 /* If we have discarded any fragments, 1968 signal a receive error. */ 1969 if (head->sequence != ppp->nextseq) { 1970 if (ppp->debug & 1) 1971 printk(KERN_DEBUG " missed pkts %u..%u\n", 1972 ppp->nextseq, head->sequence-1); 1973 ++ppp->stats.rx_dropped; 1974 ppp_receive_error(ppp); 1975 } 1976 1977 if (head != tail) 1978 /* copy to a single skb */ 1979 for (p = head; p != tail->next; p = p->next) 1980 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len); 1981 ppp->nextseq = tail->sequence + 1; 1982 head = tail->next; 1983 } 1984 1985 /* Discard all the skbuffs that we have copied the data out of 1986 or that we can't use. */ 1987 while ((p = list->next) != head) { 1988 __skb_unlink(p, list); 1989 kfree_skb(p); 1990 } 1991 1992 return skb; 1993} 1994#endif /* CONFIG_PPP_MULTILINK */ 1995 1996/* 1997 * Channel interface. 1998 */ 1999 2000/* 2001 * Create a new, unattached ppp channel. 2002 */ 2003int 2004ppp_register_channel(struct ppp_channel *chan) 2005{ 2006 struct channel *pch; 2007 2008 pch = kmalloc(sizeof(struct channel), GFP_KERNEL); 2009 if (pch == 0) 2010 return -ENOMEM; 2011 memset(pch, 0, sizeof(struct channel)); 2012 pch->ppp = NULL; 2013 pch->chan = chan; 2014 chan->ppp = pch; 2015 init_ppp_file(&pch->file, CHANNEL); 2016 pch->file.hdrlen = chan->hdrlen; 2017#ifdef CONFIG_PPP_MULTILINK 2018 pch->lastseq = -1; 2019#endif /* CONFIG_PPP_MULTILINK */ 2020 init_rwsem(&pch->chan_sem); 2021 spin_lock_init(&pch->downl); 2022 rwlock_init(&pch->upl); 2023 spin_lock_bh(&all_channels_lock); 2024 pch->file.index = ++last_channel_index; 2025 list_add(&pch->list, &new_channels); 2026 atomic_inc(&channel_count); 2027 spin_unlock_bh(&all_channels_lock); 2028 return 0; 2029} 2030 2031/* 2032 * Return the index of a channel. 2033 */ 2034int ppp_channel_index(struct ppp_channel *chan) 2035{ 2036 struct channel *pch = chan->ppp; 2037 2038 if (pch != 0) 2039 return pch->file.index; 2040 return -1; 2041} 2042 2043/* 2044 * Return the PPP unit number to which a channel is connected. 2045 */ 2046int ppp_unit_number(struct ppp_channel *chan) 2047{ 2048 struct channel *pch = chan->ppp; 2049 int unit = -1; 2050 2051 if (pch != 0) { 2052 read_lock_bh(&pch->upl); 2053 if (pch->ppp != 0) 2054 unit = pch->ppp->file.index; 2055 read_unlock_bh(&pch->upl); 2056 } 2057 return unit; 2058} 2059 2060/* 2061 * Disconnect a channel from the generic layer. 2062 * This must be called in process context. 2063 */ 2064void 2065ppp_unregister_channel(struct ppp_channel *chan) 2066{ 2067 struct channel *pch = chan->ppp; 2068 2069 if (pch == 0) 2070 return; /* should never happen */ 2071 chan->ppp = NULL; 2072 2073 /* 2074 * This ensures that we have returned from any calls into the 2075 * the channel's start_xmit or ioctl routine before we proceed. 2076 */ 2077 down_write(&pch->chan_sem); 2078 spin_lock_bh(&pch->downl); 2079 pch->chan = NULL; 2080 spin_unlock_bh(&pch->downl); 2081 up_write(&pch->chan_sem); 2082 ppp_disconnect_channel(pch); 2083 spin_lock_bh(&all_channels_lock); 2084 list_del(&pch->list); 2085 spin_unlock_bh(&all_channels_lock); 2086 pch->file.dead = 1; 2087 wake_up_interruptible(&pch->file.rwait); 2088 if (atomic_dec_and_test(&pch->file.refcnt)) 2089 ppp_destroy_channel(pch); 2090} 2091 2092/* 2093 * Callback from a channel when it can accept more to transmit. 2094 * This should be called at BH/softirq level, not interrupt level. 2095 */ 2096void 2097ppp_output_wakeup(struct ppp_channel *chan) 2098{ 2099 struct channel *pch = chan->ppp; 2100 2101 if (pch == 0) 2102 return; 2103 ppp_channel_push(pch); 2104} 2105 2106/* 2107 * Compression control. 2108 */ 2109 2110/* Process the PPPIOCSCOMPRESS ioctl. */ 2111static int 2112ppp_set_compress(struct ppp *ppp, unsigned long arg) 2113{ 2114 int err; 2115 struct compressor *cp, *ocomp; 2116 struct ppp_option_data data; 2117 void *state, *ostate; 2118 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; 2119 2120 err = -EFAULT; 2121 if (copy_from_user(&data, (void __user *) arg, sizeof(data)) 2122 || (data.length <= CCP_MAX_OPTION_LENGTH 2123 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length))) 2124 goto out; 2125 err = -EINVAL; 2126 if (data.length > CCP_MAX_OPTION_LENGTH 2127 || ccp_option[1] < 2 || ccp_option[1] > data.length) 2128 goto out; 2129 2130 cp = find_compressor(ccp_option[0]); 2131#ifdef CONFIG_KMOD 2132 if (cp == 0) { 2133 request_module("ppp-compress-%d", ccp_option[0]); 2134 cp = find_compressor(ccp_option[0]); 2135 } 2136#endif /* CONFIG_KMOD */ 2137 if (cp == 0) 2138 goto out; 2139 2140 err = -ENOBUFS; 2141 if (data.transmit) { 2142 state = cp->comp_alloc(ccp_option, data.length); 2143 if (state != 0) { 2144 ppp_xmit_lock(ppp); 2145 ppp->xstate &= ~SC_COMP_RUN; 2146 ocomp = ppp->xcomp; 2147 ostate = ppp->xc_state; 2148 ppp->xcomp = cp; 2149 ppp->xc_state = state; 2150 ppp_xmit_unlock(ppp); 2151 if (ostate != 0) { 2152 ocomp->comp_free(ostate); 2153 module_put(ocomp->owner); 2154 } 2155 err = 0; 2156 } else 2157 module_put(cp->owner); 2158 2159 } else { 2160 state = cp->decomp_alloc(ccp_option, data.length); 2161 if (state != 0) { 2162 ppp_recv_lock(ppp); 2163 ppp->rstate &= ~SC_DECOMP_RUN; 2164 ocomp = ppp->rcomp; 2165 ostate = ppp->rc_state; 2166 ppp->rcomp = cp; 2167 ppp->rc_state = state; 2168 ppp_recv_unlock(ppp); 2169 if (ostate != 0) { 2170 ocomp->decomp_free(ostate); 2171 module_put(ocomp->owner); 2172 } 2173 err = 0; 2174 } else 2175 module_put(cp->owner); 2176 } 2177 2178 out: 2179 return err; 2180} 2181 2182/* 2183 * Look at a CCP packet and update our state accordingly. 2184 * We assume the caller has the xmit or recv path locked. 2185 */ 2186static void 2187ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) 2188{ 2189 unsigned char *dp; 2190 int len; 2191 2192 if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) 2193 return; /* no header */ 2194 dp = skb->data + 2; 2195 2196 switch (CCP_CODE(dp)) { 2197 case CCP_CONFREQ: 2198 2199 /* A ConfReq starts negotiation of compression 2200 * in one direction of transmission, 2201 * and hence brings it down...but which way? 2202 * 2203 * Remember: 2204 * A ConfReq indicates what the sender would like to receive 2205 */ 2206 if(inbound) 2207 /* He is proposing what I should send */ 2208 ppp->xstate &= ~SC_COMP_RUN; 2209 else 2210 /* I am proposing to what he should send */ 2211 ppp->rstate &= ~SC_DECOMP_RUN; 2212 2213 break; 2214 2215 case CCP_TERMREQ: 2216 case CCP_TERMACK: 2217 /* 2218 * CCP is going down, both directions of transmission 2219 */ 2220 ppp->rstate &= ~SC_DECOMP_RUN; 2221 ppp->xstate &= ~SC_COMP_RUN; 2222 break; 2223 2224 case CCP_CONFACK: 2225 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) 2226 break; 2227 len = CCP_LENGTH(dp); 2228 if (!pskb_may_pull(skb, len + 2)) 2229 return; /* too short */ 2230 dp += CCP_HDRLEN; 2231 len -= CCP_HDRLEN; 2232 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) 2233 break; 2234 if (inbound) { 2235 /* we will start receiving compressed packets */ 2236 if (ppp->rc_state == 0) 2237 break; 2238 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, 2239 ppp->file.index, 0, ppp->mru, ppp->debug)) { 2240 ppp->rstate |= SC_DECOMP_RUN; 2241 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); 2242 } 2243 } else { 2244 /* we will soon start sending compressed packets */ 2245 if (ppp->xc_state == 0) 2246 break; 2247 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, 2248 ppp->file.index, 0, ppp->debug)) 2249 ppp->xstate |= SC_COMP_RUN; 2250 } 2251 break; 2252 2253 case CCP_RESETACK: 2254 /* reset the [de]compressor */ 2255 if ((ppp->flags & SC_CCP_UP) == 0) 2256 break; 2257 if (inbound) { 2258 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { 2259 ppp->rcomp->decomp_reset(ppp->rc_state); 2260 ppp->rstate &= ~SC_DC_ERROR; 2261 } 2262 } else { 2263 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) 2264 ppp->xcomp->comp_reset(ppp->xc_state); 2265 } 2266 break; 2267 } 2268} 2269 2270/* Free up compression resources. */ 2271static void 2272ppp_ccp_closed(struct ppp *ppp) 2273{ 2274 void *xstate, *rstate; 2275 struct compressor *xcomp, *rcomp; 2276 2277 ppp_lock(ppp); 2278 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); 2279 ppp->xstate = 0; 2280 xcomp = ppp->xcomp; 2281 xstate = ppp->xc_state; 2282 ppp->xc_state = NULL; 2283 ppp->rstate = 0; 2284 rcomp = ppp->rcomp; 2285 rstate = ppp->rc_state; 2286 ppp->rc_state = NULL; 2287 ppp_unlock(ppp); 2288 2289 if (xstate) { 2290 xcomp->comp_free(xstate); 2291 module_put(xcomp->owner); 2292 } 2293 if (rstate) { 2294 rcomp->decomp_free(rstate); 2295 module_put(rcomp->owner); 2296 } 2297} 2298 2299/* List of compressors. */ 2300static LIST_HEAD(compressor_list); 2301static DEFINE_SPINLOCK(compressor_list_lock); 2302 2303struct compressor_entry { 2304 struct list_head list; 2305 struct compressor *comp; 2306}; 2307 2308static struct compressor_entry * 2309find_comp_entry(int proto) 2310{ 2311 struct compressor_entry *ce; 2312 2313 list_for_each_entry(ce, &compressor_list, list) { 2314 if (ce->comp->compress_proto == proto) 2315 return ce; 2316 } 2317 return NULL; 2318} 2319 2320/* Register a compressor */ 2321int 2322ppp_register_compressor(struct compressor *cp) 2323{ 2324 struct compressor_entry *ce; 2325 int ret; 2326 spin_lock(&compressor_list_lock); 2327 ret = -EEXIST; 2328 if (find_comp_entry(cp->compress_proto) != 0) 2329 goto out; 2330 ret = -ENOMEM; 2331 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); 2332 if (ce == 0) 2333 goto out; 2334 ret = 0; 2335 ce->comp = cp; 2336 list_add(&ce->list, &compressor_list); 2337 out: 2338 spin_unlock(&compressor_list_lock); 2339 return ret; 2340} 2341 2342/* Unregister a compressor */ 2343void 2344ppp_unregister_compressor(struct compressor *cp) 2345{ 2346 struct compressor_entry *ce; 2347 2348 spin_lock(&compressor_list_lock); 2349 ce = find_comp_entry(cp->compress_proto); 2350 if (ce != 0 && ce->comp == cp) { 2351 list_del(&ce->list); 2352 kfree(ce); 2353 } 2354 spin_unlock(&compressor_list_lock); 2355} 2356 2357/* Find a compressor. */ 2358static struct compressor * 2359find_compressor(int type) 2360{ 2361 struct compressor_entry *ce; 2362 struct compressor *cp = NULL; 2363 2364 spin_lock(&compressor_list_lock); 2365 ce = find_comp_entry(type); 2366 if (ce != 0) { 2367 cp = ce->comp; 2368 if (!try_module_get(cp->owner)) 2369 cp = NULL; 2370 } 2371 spin_unlock(&compressor_list_lock); 2372 return cp; 2373} 2374 2375/* 2376 * Miscelleneous stuff. 2377 */ 2378 2379static void 2380ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) 2381{ 2382 struct slcompress *vj = ppp->vj; 2383 2384 memset(st, 0, sizeof(*st)); 2385 st->p.ppp_ipackets = ppp->stats.rx_packets; 2386 st->p.ppp_ierrors = ppp->stats.rx_errors; 2387 st->p.ppp_ibytes = ppp->stats.rx_bytes; 2388 st->p.ppp_opackets = ppp->stats.tx_packets; 2389 st->p.ppp_oerrors = ppp->stats.tx_errors; 2390 st->p.ppp_obytes = ppp->stats.tx_bytes; 2391 if (vj == 0) 2392 return; 2393 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; 2394 st->vj.vjs_compressed = vj->sls_o_compressed; 2395 st->vj.vjs_searches = vj->sls_o_searches; 2396 st->vj.vjs_misses = vj->sls_o_misses; 2397 st->vj.vjs_errorin = vj->sls_i_error; 2398 st->vj.vjs_tossed = vj->sls_i_tossed; 2399 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; 2400 st->vj.vjs_compressedin = vj->sls_i_compressed; 2401} 2402 2403/* 2404 * Stuff for handling the lists of ppp units and channels 2405 * and for initialization. 2406 */ 2407 2408/* 2409 * Create a new ppp interface unit. Fails if it can't allocate memory 2410 * or if there is already a unit with the requested number. 2411 * unit == -1 means allocate a new number. 2412 */ 2413static struct ppp * 2414ppp_create_interface(int unit, int *retp) 2415{ 2416 struct ppp *ppp; 2417 struct net_device *dev = NULL; 2418 int ret = -ENOMEM; 2419 int i; 2420 2421 ppp = kmalloc(sizeof(struct ppp), GFP_KERNEL); 2422 if (!ppp) 2423 goto out; 2424 dev = alloc_netdev(0, "", ppp_setup); 2425 if (!dev) 2426 goto out1; 2427 memset(ppp, 0, sizeof(struct ppp)); 2428 2429 ppp->mru = PPP_MRU; 2430 init_ppp_file(&ppp->file, INTERFACE); 2431 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ 2432 for (i = 0; i < NUM_NP; ++i) 2433 ppp->npmode[i] = NPMODE_PASS; 2434 INIT_LIST_HEAD(&ppp->channels); 2435 spin_lock_init(&ppp->rlock); 2436 spin_lock_init(&ppp->wlock); 2437#ifdef CONFIG_PPP_MULTILINK 2438 ppp->minseq = -1; 2439 skb_queue_head_init(&ppp->mrq); 2440#endif /* CONFIG_PPP_MULTILINK */ 2441 ppp->dev = dev; 2442 dev->priv = ppp; 2443 2444 dev->hard_start_xmit = ppp_start_xmit; 2445 dev->get_stats = ppp_net_stats; 2446 dev->do_ioctl = ppp_net_ioctl; 2447 2448 ret = -EEXIST; 2449 down(&all_ppp_sem); 2450 if (unit < 0) 2451 unit = cardmap_find_first_free(all_ppp_units); 2452 else if (cardmap_get(all_ppp_units, unit) != NULL) 2453 goto out2; /* unit already exists */ 2454 2455 /* Initialize the new ppp unit */ 2456 ppp->file.index = unit; 2457 sprintf(dev->name, "ppp%d", unit); 2458 2459 ret = register_netdev(dev); 2460 if (ret != 0) { 2461 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n", 2462 dev->name, ret); 2463 goto out2; 2464 } 2465 2466 atomic_inc(&ppp_unit_count); 2467 cardmap_set(&all_ppp_units, unit, ppp); 2468 up(&all_ppp_sem); 2469 *retp = 0; 2470 return ppp; 2471 2472out2: 2473 up(&all_ppp_sem); 2474 free_netdev(dev); 2475out1: 2476 kfree(ppp); 2477out: 2478 *retp = ret; 2479 return NULL; 2480} 2481 2482/* 2483 * Initialize a ppp_file structure. 2484 */ 2485static void 2486init_ppp_file(struct ppp_file *pf, int kind) 2487{ 2488 pf->kind = kind; 2489 skb_queue_head_init(&pf->xq); 2490 skb_queue_head_init(&pf->rq); 2491 atomic_set(&pf->refcnt, 1); 2492 init_waitqueue_head(&pf->rwait); 2493} 2494 2495/* 2496 * Take down a ppp interface unit - called when the owning file 2497 * (the one that created the unit) is closed or detached. 2498 */ 2499static void ppp_shutdown_interface(struct ppp *ppp) 2500{ 2501 struct net_device *dev; 2502 2503 down(&all_ppp_sem); 2504 ppp_lock(ppp); 2505 dev = ppp->dev; 2506 ppp->dev = NULL; 2507 ppp_unlock(ppp); 2508 /* This will call dev_close() for us. */ 2509 if (dev) { 2510 unregister_netdev(dev); 2511 free_netdev(dev); 2512 } 2513 cardmap_set(&all_ppp_units, ppp->file.index, NULL); 2514 ppp->file.dead = 1; 2515 ppp->owner = NULL; 2516 wake_up_interruptible(&ppp->file.rwait); 2517 up(&all_ppp_sem); 2518} 2519 2520/* 2521 * Free the memory used by a ppp unit. This is only called once 2522 * there are no channels connected to the unit and no file structs 2523 * that reference the unit. 2524 */ 2525static void ppp_destroy_interface(struct ppp *ppp) 2526{ 2527 atomic_dec(&ppp_unit_count); 2528 2529 if (!ppp->file.dead || ppp->n_channels) { 2530 /* "can't happen" */ 2531 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d " 2532 "n_channels=%d !\n", ppp, ppp->file.dead, 2533 ppp->n_channels); 2534 return; 2535 } 2536 2537 ppp_ccp_closed(ppp); 2538 if (ppp->vj) { 2539 slhc_free(ppp->vj); 2540 ppp->vj = NULL; 2541 } 2542 skb_queue_purge(&ppp->file.xq); 2543 skb_queue_purge(&ppp->file.rq); 2544#ifdef CONFIG_PPP_MULTILINK 2545 skb_queue_purge(&ppp->mrq); 2546#endif /* CONFIG_PPP_MULTILINK */ 2547#ifdef CONFIG_PPP_FILTER 2548 kfree(ppp->pass_filter); 2549 ppp->pass_filter = NULL; 2550 kfree(ppp->active_filter); 2551 ppp->active_filter = NULL; 2552#endif /* CONFIG_PPP_FILTER */ 2553 2554 kfree(ppp); 2555} 2556 2557/* 2558 * Locate an existing ppp unit. 2559 * The caller should have locked the all_ppp_sem. 2560 */ 2561static struct ppp * 2562ppp_find_unit(int unit) 2563{ 2564 return cardmap_get(all_ppp_units, unit); 2565} 2566 2567/* 2568 * Locate an existing ppp channel. 2569 * The caller should have locked the all_channels_lock. 2570 * First we look in the new_channels list, then in the 2571 * all_channels list. If found in the new_channels list, 2572 * we move it to the all_channels list. This is for speed 2573 * when we have a lot of channels in use. 2574 */ 2575static struct channel * 2576ppp_find_channel(int unit) 2577{ 2578 struct channel *pch; 2579 2580 list_for_each_entry(pch, &new_channels, list) { 2581 if (pch->file.index == unit) { 2582 list_del(&pch->list); 2583 list_add(&pch->list, &all_channels); 2584 return pch; 2585 } 2586 } 2587 list_for_each_entry(pch, &all_channels, list) { 2588 if (pch->file.index == unit) 2589 return pch; 2590 } 2591 return NULL; 2592} 2593 2594/* 2595 * Connect a PPP channel to a PPP interface unit. 2596 */ 2597static int 2598ppp_connect_channel(struct channel *pch, int unit) 2599{ 2600 struct ppp *ppp; 2601 int ret = -ENXIO; 2602 int hdrlen; 2603 2604 down(&all_ppp_sem); 2605 ppp = ppp_find_unit(unit); 2606 if (ppp == 0) 2607 goto out; 2608 write_lock_bh(&pch->upl); 2609 ret = -EINVAL; 2610 if (pch->ppp != 0) 2611 goto outl; 2612 2613 ppp_lock(ppp); 2614 if (pch->file.hdrlen > ppp->file.hdrlen) 2615 ppp->file.hdrlen = pch->file.hdrlen; 2616 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ 2617 if (ppp->dev && hdrlen > ppp->dev->hard_header_len) 2618 ppp->dev->hard_header_len = hdrlen; 2619 list_add_tail(&pch->clist, &ppp->channels); 2620 ++ppp->n_channels; 2621 pch->ppp = ppp; 2622 atomic_inc(&ppp->file.refcnt); 2623 ppp_unlock(ppp); 2624 ret = 0; 2625 2626 outl: 2627 write_unlock_bh(&pch->upl); 2628 out: 2629 up(&all_ppp_sem); 2630 return ret; 2631} 2632 2633/* 2634 * Disconnect a channel from its ppp unit. 2635 */ 2636static int 2637ppp_disconnect_channel(struct channel *pch) 2638{ 2639 struct ppp *ppp; 2640 int err = -EINVAL; 2641 2642 write_lock_bh(&pch->upl); 2643 ppp = pch->ppp; 2644 pch->ppp = NULL; 2645 write_unlock_bh(&pch->upl); 2646 if (ppp != 0) { 2647 /* remove it from the ppp unit's list */ 2648 ppp_lock(ppp); 2649 list_del(&pch->clist); 2650 if (--ppp->n_channels == 0) 2651 wake_up_interruptible(&ppp->file.rwait); 2652 ppp_unlock(ppp); 2653 if (atomic_dec_and_test(&ppp->file.refcnt)) 2654 ppp_destroy_interface(ppp); 2655 err = 0; 2656 } 2657 return err; 2658} 2659 2660/* 2661 * Free up the resources used by a ppp channel. 2662 */ 2663static void ppp_destroy_channel(struct channel *pch) 2664{ 2665 atomic_dec(&channel_count); 2666 2667 if (!pch->file.dead) { 2668 /* "can't happen" */ 2669 printk(KERN_ERR "ppp: destroying undead channel %p !\n", 2670 pch); 2671 return; 2672 } 2673 skb_queue_purge(&pch->file.xq); 2674 skb_queue_purge(&pch->file.rq); 2675 kfree(pch); 2676} 2677 2678static void __exit ppp_cleanup(void) 2679{ 2680 /* should never happen */ 2681 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) 2682 printk(KERN_ERR "PPP: removing module but units remain!\n"); 2683 cardmap_destroy(&all_ppp_units); 2684 if (unregister_chrdev(PPP_MAJOR, "ppp") != 0) 2685 printk(KERN_ERR "PPP: failed to unregister PPP device\n"); 2686 devfs_remove("ppp"); 2687 class_device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0)); 2688 class_destroy(ppp_class); 2689} 2690 2691/* 2692 * Cardmap implementation. 2693 */ 2694static void *cardmap_get(struct cardmap *map, unsigned int nr) 2695{ 2696 struct cardmap *p; 2697 int i; 2698 2699 for (p = map; p != NULL; ) { 2700 if ((i = nr >> p->shift) >= CARDMAP_WIDTH) 2701 return NULL; 2702 if (p->shift == 0) 2703 return p->ptr[i]; 2704 nr &= ~(CARDMAP_MASK << p->shift); 2705 p = p->ptr[i]; 2706 } 2707 return NULL; 2708} 2709 2710static void cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr) 2711{ 2712 struct cardmap *p; 2713 int i; 2714 2715 p = *pmap; 2716 if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) { 2717 do { 2718 /* need a new top level */ 2719 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL); 2720 memset(np, 0, sizeof(*np)); 2721 np->ptr[0] = p; 2722 if (p != NULL) { 2723 np->shift = p->shift + CARDMAP_ORDER; 2724 p->parent = np; 2725 } else 2726 np->shift = 0; 2727 p = np; 2728 } while ((nr >> p->shift) >= CARDMAP_WIDTH); 2729 *pmap = p; 2730 } 2731 while (p->shift > 0) { 2732 i = (nr >> p->shift) & CARDMAP_MASK; 2733 if (p->ptr[i] == NULL) { 2734 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL); 2735 memset(np, 0, sizeof(*np)); 2736 np->shift = p->shift - CARDMAP_ORDER; 2737 np->parent = p; 2738 p->ptr[i] = np; 2739 } 2740 if (ptr == NULL) 2741 clear_bit(i, &p->inuse); 2742 p = p->ptr[i]; 2743 } 2744 i = nr & CARDMAP_MASK; 2745 p->ptr[i] = ptr; 2746 if (ptr != NULL) 2747 set_bit(i, &p->inuse); 2748 else 2749 clear_bit(i, &p->inuse); 2750} 2751 2752static unsigned int cardmap_find_first_free(struct cardmap *map) 2753{ 2754 struct cardmap *p; 2755 unsigned int nr = 0; 2756 int i; 2757 2758 if ((p = map) == NULL) 2759 return 0; 2760 for (;;) { 2761 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH); 2762 if (i >= CARDMAP_WIDTH) { 2763 if (p->parent == NULL) 2764 return CARDMAP_WIDTH << p->shift; 2765 p = p->parent; 2766 i = (nr >> p->shift) & CARDMAP_MASK; 2767 set_bit(i, &p->inuse); 2768 continue; 2769 } 2770 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift); 2771 if (p->shift == 0 || p->ptr[i] == NULL) 2772 return nr; 2773 p = p->ptr[i]; 2774 } 2775} 2776 2777static void cardmap_destroy(struct cardmap **pmap) 2778{ 2779 struct cardmap *p, *np; 2780 int i; 2781 2782 for (p = *pmap; p != NULL; p = np) { 2783 if (p->shift != 0) { 2784 for (i = 0; i < CARDMAP_WIDTH; ++i) 2785 if (p->ptr[i] != NULL) 2786 break; 2787 if (i < CARDMAP_WIDTH) { 2788 np = p->ptr[i]; 2789 p->ptr[i] = NULL; 2790 continue; 2791 } 2792 } 2793 np = p->parent; 2794 kfree(p); 2795 } 2796 *pmap = NULL; 2797} 2798 2799/* Module/initialization stuff */ 2800 2801module_init(ppp_init); 2802module_exit(ppp_cleanup); 2803 2804EXPORT_SYMBOL(ppp_register_channel); 2805EXPORT_SYMBOL(ppp_unregister_channel); 2806EXPORT_SYMBOL(ppp_channel_index); 2807EXPORT_SYMBOL(ppp_unit_number); 2808EXPORT_SYMBOL(ppp_input); 2809EXPORT_SYMBOL(ppp_input_error); 2810EXPORT_SYMBOL(ppp_output_wakeup); 2811EXPORT_SYMBOL(ppp_register_compressor); 2812EXPORT_SYMBOL(ppp_unregister_compressor); 2813MODULE_LICENSE("GPL"); 2814MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR); 2815MODULE_ALIAS("/dev/ppp");