at v2.6.15-rc2 2745 lines 83 kB view raw
1/* 2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. 3 * 4 * Note: This driver is a cleanroom reimplementation based on reverse 5 * engineered documentation written by Carl-Daniel Hailfinger 6 * and Andrew de Quincey. It's neither supported nor endorsed 7 * by NVIDIA Corp. Use at your own risk. 8 * 9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered 10 * trademarks of NVIDIA Corporation in the United States and other 11 * countries. 12 * 13 * Copyright (C) 2003,4 Manfred Spraul 14 * Copyright (C) 2004 Andrew de Quincey (wol support) 15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane 16 * IRQ rate fixes, bigendian fixes, cleanups, verification) 17 * Copyright (c) 2004 NVIDIA Corporation 18 * 19 * This program is free software; you can redistribute it and/or modify 20 * it under the terms of the GNU General Public License as published by 21 * the Free Software Foundation; either version 2 of the License, or 22 * (at your option) any later version. 23 * 24 * This program is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 27 * GNU General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License 30 * along with this program; if not, write to the Free Software 31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 32 * 33 * Changelog: 34 * 0.01: 05 Oct 2003: First release that compiles without warnings. 35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs. 36 * Check all PCI BARs for the register window. 37 * udelay added to mii_rw. 38 * 0.03: 06 Oct 2003: Initialize dev->irq. 39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks. 40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout. 41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated, 42 * irq mask updated 43 * 0.07: 14 Oct 2003: Further irq mask updates. 44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill 45 * added into irq handler, NULL check for drain_ring. 46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the 47 * requested interrupt sources. 48 * 0.10: 20 Oct 2003: First cleanup for release. 49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased. 50 * MAC Address init fix, set_multicast cleanup. 51 * 0.12: 23 Oct 2003: Cleanups for release. 52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10. 53 * Set link speed correctly. start rx before starting 54 * tx (nv_start_rx sets the link speed). 55 * 0.14: 25 Oct 2003: Nic dependant irq mask. 56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during 57 * open. 58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size 59 * increased to 1628 bytes. 60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from 61 * the tx length. 62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats 63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac 64 * addresses, really stop rx if already running 65 * in nv_start_rx, clean up a bit. 66 * 0.20: 07 Dec 2003: alloc fixes 67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix. 68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup 69 * on close. 70 * 0.23: 26 Jan 2004: various small cleanups 71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces 72 * 0.25: 09 Mar 2004: wol support 73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes 74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings, 75 * added CK804/MCP04 device IDs, code fixes 76 * for registers, link status and other minor fixes. 77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe 78 * 0.29: 31 Aug 2004: Add backup timer for link change notification. 79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset 80 * into nv_close, otherwise reenabling for wol can 81 * cause DMA to kfree'd memory. 82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link 83 * capabilities. 84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added. 85 * 0.33: 16 May 2005: Support for MCP51 added. 86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics. 87 * 0.35: 26 Jun 2005: Support for MCP55 added. 88 * 0.36: 28 Jun 2005: Add jumbo frame support. 89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list 90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of 91 * per-packet flags. 92 * 0.39: 18 Jul 2005: Add 64bit descriptor support. 93 * 0.40: 19 Jul 2005: Add support for mac address change. 94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead 95 * of nv_remove 96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization 97 * in the second (and later) nv_open call 98 * 0.43: 10 Aug 2005: Add support for tx checksum. 99 * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation. 100 * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check 101 * 0.46: 20 Oct 2005: Add irq optimization modes. 102 * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan. 103 * 104 * Known bugs: 105 * We suspect that on some hardware no TX done interrupts are generated. 106 * This means recovery from netif_stop_queue only happens if the hw timer 107 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) 108 * and the timer is active in the IRQMask, or if a rx packet arrives by chance. 109 * If your hardware reliably generates tx done interrupts, then you can remove 110 * DEV_NEED_TIMERIRQ from the driver_data flags. 111 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few 112 * superfluous timer interrupts from the nic. 113 */ 114#define FORCEDETH_VERSION "0.47" 115#define DRV_NAME "forcedeth" 116 117#include <linux/module.h> 118#include <linux/types.h> 119#include <linux/pci.h> 120#include <linux/interrupt.h> 121#include <linux/netdevice.h> 122#include <linux/etherdevice.h> 123#include <linux/delay.h> 124#include <linux/spinlock.h> 125#include <linux/ethtool.h> 126#include <linux/timer.h> 127#include <linux/skbuff.h> 128#include <linux/mii.h> 129#include <linux/random.h> 130#include <linux/init.h> 131#include <linux/if_vlan.h> 132 133#include <asm/irq.h> 134#include <asm/io.h> 135#include <asm/uaccess.h> 136#include <asm/system.h> 137 138#if 0 139#define dprintk printk 140#else 141#define dprintk(x...) do { } while (0) 142#endif 143 144 145/* 146 * Hardware access: 147 */ 148 149#define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */ 150#define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */ 151#define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */ 152#define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */ 153#define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */ 154 155enum { 156 NvRegIrqStatus = 0x000, 157#define NVREG_IRQSTAT_MIIEVENT 0x040 158#define NVREG_IRQSTAT_MASK 0x1ff 159 NvRegIrqMask = 0x004, 160#define NVREG_IRQ_RX_ERROR 0x0001 161#define NVREG_IRQ_RX 0x0002 162#define NVREG_IRQ_RX_NOBUF 0x0004 163#define NVREG_IRQ_TX_ERR 0x0008 164#define NVREG_IRQ_TX_OK 0x0010 165#define NVREG_IRQ_TIMER 0x0020 166#define NVREG_IRQ_LINK 0x0040 167#define NVREG_IRQ_TX_ERROR 0x0080 168#define NVREG_IRQ_TX1 0x0100 169#define NVREG_IRQMASK_THROUGHPUT 0x00df 170#define NVREG_IRQMASK_CPU 0x0040 171 172#define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \ 173 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \ 174 NVREG_IRQ_TX1)) 175 176 NvRegUnknownSetupReg6 = 0x008, 177#define NVREG_UNKSETUP6_VAL 3 178 179/* 180 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic 181 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms 182 */ 183 NvRegPollingInterval = 0x00c, 184#define NVREG_POLL_DEFAULT_THROUGHPUT 970 185#define NVREG_POLL_DEFAULT_CPU 13 186 NvRegMisc1 = 0x080, 187#define NVREG_MISC1_HD 0x02 188#define NVREG_MISC1_FORCE 0x3b0f3c 189 190 NvRegTransmitterControl = 0x084, 191#define NVREG_XMITCTL_START 0x01 192 NvRegTransmitterStatus = 0x088, 193#define NVREG_XMITSTAT_BUSY 0x01 194 195 NvRegPacketFilterFlags = 0x8c, 196#define NVREG_PFF_ALWAYS 0x7F0008 197#define NVREG_PFF_PROMISC 0x80 198#define NVREG_PFF_MYADDR 0x20 199 200 NvRegOffloadConfig = 0x90, 201#define NVREG_OFFLOAD_HOMEPHY 0x601 202#define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE 203 NvRegReceiverControl = 0x094, 204#define NVREG_RCVCTL_START 0x01 205 NvRegReceiverStatus = 0x98, 206#define NVREG_RCVSTAT_BUSY 0x01 207 208 NvRegRandomSeed = 0x9c, 209#define NVREG_RNDSEED_MASK 0x00ff 210#define NVREG_RNDSEED_FORCE 0x7f00 211#define NVREG_RNDSEED_FORCE2 0x2d00 212#define NVREG_RNDSEED_FORCE3 0x7400 213 214 NvRegUnknownSetupReg1 = 0xA0, 215#define NVREG_UNKSETUP1_VAL 0x16070f 216 NvRegUnknownSetupReg2 = 0xA4, 217#define NVREG_UNKSETUP2_VAL 0x16 218 NvRegMacAddrA = 0xA8, 219 NvRegMacAddrB = 0xAC, 220 NvRegMulticastAddrA = 0xB0, 221#define NVREG_MCASTADDRA_FORCE 0x01 222 NvRegMulticastAddrB = 0xB4, 223 NvRegMulticastMaskA = 0xB8, 224 NvRegMulticastMaskB = 0xBC, 225 226 NvRegPhyInterface = 0xC0, 227#define PHY_RGMII 0x10000000 228 229 NvRegTxRingPhysAddr = 0x100, 230 NvRegRxRingPhysAddr = 0x104, 231 NvRegRingSizes = 0x108, 232#define NVREG_RINGSZ_TXSHIFT 0 233#define NVREG_RINGSZ_RXSHIFT 16 234 NvRegUnknownTransmitterReg = 0x10c, 235 NvRegLinkSpeed = 0x110, 236#define NVREG_LINKSPEED_FORCE 0x10000 237#define NVREG_LINKSPEED_10 1000 238#define NVREG_LINKSPEED_100 100 239#define NVREG_LINKSPEED_1000 50 240#define NVREG_LINKSPEED_MASK (0xFFF) 241 NvRegUnknownSetupReg5 = 0x130, 242#define NVREG_UNKSETUP5_BIT31 (1<<31) 243 NvRegUnknownSetupReg3 = 0x13c, 244#define NVREG_UNKSETUP3_VAL1 0x200010 245 NvRegTxRxControl = 0x144, 246#define NVREG_TXRXCTL_KICK 0x0001 247#define NVREG_TXRXCTL_BIT1 0x0002 248#define NVREG_TXRXCTL_BIT2 0x0004 249#define NVREG_TXRXCTL_IDLE 0x0008 250#define NVREG_TXRXCTL_RESET 0x0010 251#define NVREG_TXRXCTL_RXCHECK 0x0400 252#define NVREG_TXRXCTL_DESC_1 0 253#define NVREG_TXRXCTL_DESC_2 0x02100 254#define NVREG_TXRXCTL_DESC_3 0x02200 255 NvRegMIIStatus = 0x180, 256#define NVREG_MIISTAT_ERROR 0x0001 257#define NVREG_MIISTAT_LINKCHANGE 0x0008 258#define NVREG_MIISTAT_MASK 0x000f 259#define NVREG_MIISTAT_MASK2 0x000f 260 NvRegUnknownSetupReg4 = 0x184, 261#define NVREG_UNKSETUP4_VAL 8 262 263 NvRegAdapterControl = 0x188, 264#define NVREG_ADAPTCTL_START 0x02 265#define NVREG_ADAPTCTL_LINKUP 0x04 266#define NVREG_ADAPTCTL_PHYVALID 0x40000 267#define NVREG_ADAPTCTL_RUNNING 0x100000 268#define NVREG_ADAPTCTL_PHYSHIFT 24 269 NvRegMIISpeed = 0x18c, 270#define NVREG_MIISPEED_BIT8 (1<<8) 271#define NVREG_MIIDELAY 5 272 NvRegMIIControl = 0x190, 273#define NVREG_MIICTL_INUSE 0x08000 274#define NVREG_MIICTL_WRITE 0x00400 275#define NVREG_MIICTL_ADDRSHIFT 5 276 NvRegMIIData = 0x194, 277 NvRegWakeUpFlags = 0x200, 278#define NVREG_WAKEUPFLAGS_VAL 0x7770 279#define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 280#define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 281#define NVREG_WAKEUPFLAGS_D3SHIFT 12 282#define NVREG_WAKEUPFLAGS_D2SHIFT 8 283#define NVREG_WAKEUPFLAGS_D1SHIFT 4 284#define NVREG_WAKEUPFLAGS_D0SHIFT 0 285#define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 286#define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 287#define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 288#define NVREG_WAKEUPFLAGS_ENABLE 0x1111 289 290 NvRegPatternCRC = 0x204, 291 NvRegPatternMask = 0x208, 292 NvRegPowerCap = 0x268, 293#define NVREG_POWERCAP_D3SUPP (1<<30) 294#define NVREG_POWERCAP_D2SUPP (1<<26) 295#define NVREG_POWERCAP_D1SUPP (1<<25) 296 NvRegPowerState = 0x26c, 297#define NVREG_POWERSTATE_POWEREDUP 0x8000 298#define NVREG_POWERSTATE_VALID 0x0100 299#define NVREG_POWERSTATE_MASK 0x0003 300#define NVREG_POWERSTATE_D0 0x0000 301#define NVREG_POWERSTATE_D1 0x0001 302#define NVREG_POWERSTATE_D2 0x0002 303#define NVREG_POWERSTATE_D3 0x0003 304}; 305 306/* Big endian: should work, but is untested */ 307struct ring_desc { 308 u32 PacketBuffer; 309 u32 FlagLen; 310}; 311 312struct ring_desc_ex { 313 u32 PacketBufferHigh; 314 u32 PacketBufferLow; 315 u32 Reserved; 316 u32 FlagLen; 317}; 318 319typedef union _ring_type { 320 struct ring_desc* orig; 321 struct ring_desc_ex* ex; 322} ring_type; 323 324#define FLAG_MASK_V1 0xffff0000 325#define FLAG_MASK_V2 0xffffc000 326#define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) 327#define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) 328 329#define NV_TX_LASTPACKET (1<<16) 330#define NV_TX_RETRYERROR (1<<19) 331#define NV_TX_FORCED_INTERRUPT (1<<24) 332#define NV_TX_DEFERRED (1<<26) 333#define NV_TX_CARRIERLOST (1<<27) 334#define NV_TX_LATECOLLISION (1<<28) 335#define NV_TX_UNDERFLOW (1<<29) 336#define NV_TX_ERROR (1<<30) 337#define NV_TX_VALID (1<<31) 338 339#define NV_TX2_LASTPACKET (1<<29) 340#define NV_TX2_RETRYERROR (1<<18) 341#define NV_TX2_FORCED_INTERRUPT (1<<30) 342#define NV_TX2_DEFERRED (1<<25) 343#define NV_TX2_CARRIERLOST (1<<26) 344#define NV_TX2_LATECOLLISION (1<<27) 345#define NV_TX2_UNDERFLOW (1<<28) 346/* error and valid are the same for both */ 347#define NV_TX2_ERROR (1<<30) 348#define NV_TX2_VALID (1<<31) 349#define NV_TX2_TSO (1<<28) 350#define NV_TX2_TSO_SHIFT 14 351#define NV_TX2_CHECKSUM_L3 (1<<27) 352#define NV_TX2_CHECKSUM_L4 (1<<26) 353 354#define NV_RX_DESCRIPTORVALID (1<<16) 355#define NV_RX_MISSEDFRAME (1<<17) 356#define NV_RX_SUBSTRACT1 (1<<18) 357#define NV_RX_ERROR1 (1<<23) 358#define NV_RX_ERROR2 (1<<24) 359#define NV_RX_ERROR3 (1<<25) 360#define NV_RX_ERROR4 (1<<26) 361#define NV_RX_CRCERR (1<<27) 362#define NV_RX_OVERFLOW (1<<28) 363#define NV_RX_FRAMINGERR (1<<29) 364#define NV_RX_ERROR (1<<30) 365#define NV_RX_AVAIL (1<<31) 366 367#define NV_RX2_CHECKSUMMASK (0x1C000000) 368#define NV_RX2_CHECKSUMOK1 (0x10000000) 369#define NV_RX2_CHECKSUMOK2 (0x14000000) 370#define NV_RX2_CHECKSUMOK3 (0x18000000) 371#define NV_RX2_DESCRIPTORVALID (1<<29) 372#define NV_RX2_SUBSTRACT1 (1<<25) 373#define NV_RX2_ERROR1 (1<<18) 374#define NV_RX2_ERROR2 (1<<19) 375#define NV_RX2_ERROR3 (1<<20) 376#define NV_RX2_ERROR4 (1<<21) 377#define NV_RX2_CRCERR (1<<22) 378#define NV_RX2_OVERFLOW (1<<23) 379#define NV_RX2_FRAMINGERR (1<<24) 380/* error and avail are the same for both */ 381#define NV_RX2_ERROR (1<<30) 382#define NV_RX2_AVAIL (1<<31) 383 384/* Miscelaneous hardware related defines: */ 385#define NV_PCI_REGSZ 0x270 386 387/* various timeout delays: all in usec */ 388#define NV_TXRX_RESET_DELAY 4 389#define NV_TXSTOP_DELAY1 10 390#define NV_TXSTOP_DELAY1MAX 500000 391#define NV_TXSTOP_DELAY2 100 392#define NV_RXSTOP_DELAY1 10 393#define NV_RXSTOP_DELAY1MAX 500000 394#define NV_RXSTOP_DELAY2 100 395#define NV_SETUP5_DELAY 5 396#define NV_SETUP5_DELAYMAX 50000 397#define NV_POWERUP_DELAY 5 398#define NV_POWERUP_DELAYMAX 5000 399#define NV_MIIBUSY_DELAY 50 400#define NV_MIIPHY_DELAY 10 401#define NV_MIIPHY_DELAYMAX 10000 402 403#define NV_WAKEUPPATTERNS 5 404#define NV_WAKEUPMASKENTRIES 4 405 406/* General driver defaults */ 407#define NV_WATCHDOG_TIMEO (5*HZ) 408 409#define RX_RING 128 410#define TX_RING 64 411/* 412 * If your nic mysteriously hangs then try to reduce the limits 413 * to 1/0: It might be required to set NV_TX_LASTPACKET in the 414 * last valid ring entry. But this would be impossible to 415 * implement - probably a disassembly error. 416 */ 417#define TX_LIMIT_STOP 63 418#define TX_LIMIT_START 62 419 420/* rx/tx mac addr + type + vlan + align + slack*/ 421#define NV_RX_HEADERS (64) 422/* even more slack. */ 423#define NV_RX_ALLOC_PAD (64) 424 425/* maximum mtu size */ 426#define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */ 427#define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */ 428 429#define OOM_REFILL (1+HZ/20) 430#define POLL_WAIT (1+HZ/100) 431#define LINK_TIMEOUT (3*HZ) 432 433/* 434 * desc_ver values: 435 * The nic supports three different descriptor types: 436 * - DESC_VER_1: Original 437 * - DESC_VER_2: support for jumbo frames. 438 * - DESC_VER_3: 64-bit format. 439 */ 440#define DESC_VER_1 1 441#define DESC_VER_2 2 442#define DESC_VER_3 3 443 444/* PHY defines */ 445#define PHY_OUI_MARVELL 0x5043 446#define PHY_OUI_CICADA 0x03f1 447#define PHYID1_OUI_MASK 0x03ff 448#define PHYID1_OUI_SHFT 6 449#define PHYID2_OUI_MASK 0xfc00 450#define PHYID2_OUI_SHFT 10 451#define PHY_INIT1 0x0f000 452#define PHY_INIT2 0x0e00 453#define PHY_INIT3 0x01000 454#define PHY_INIT4 0x0200 455#define PHY_INIT5 0x0004 456#define PHY_INIT6 0x02000 457#define PHY_GIGABIT 0x0100 458 459#define PHY_TIMEOUT 0x1 460#define PHY_ERROR 0x2 461 462#define PHY_100 0x1 463#define PHY_1000 0x2 464#define PHY_HALF 0x100 465 466/* FIXME: MII defines that should be added to <linux/mii.h> */ 467#define MII_1000BT_CR 0x09 468#define MII_1000BT_SR 0x0a 469#define ADVERTISE_1000FULL 0x0200 470#define ADVERTISE_1000HALF 0x0100 471#define LPA_1000FULL 0x0800 472#define LPA_1000HALF 0x0400 473 474 475/* 476 * SMP locking: 477 * All hardware access under dev->priv->lock, except the performance 478 * critical parts: 479 * - rx is (pseudo-) lockless: it relies on the single-threading provided 480 * by the arch code for interrupts. 481 * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission 482 * needs dev->priv->lock :-( 483 * - set_multicast_list: preparation lockless, relies on dev->xmit_lock. 484 */ 485 486/* in dev: base, irq */ 487struct fe_priv { 488 spinlock_t lock; 489 490 /* General data: 491 * Locking: spin_lock(&np->lock); */ 492 struct net_device_stats stats; 493 int in_shutdown; 494 u32 linkspeed; 495 int duplex; 496 int autoneg; 497 int fixed_mode; 498 int phyaddr; 499 int wolenabled; 500 unsigned int phy_oui; 501 u16 gigabit; 502 503 /* General data: RO fields */ 504 dma_addr_t ring_addr; 505 struct pci_dev *pci_dev; 506 u32 orig_mac[2]; 507 u32 irqmask; 508 u32 desc_ver; 509 u32 txrxctl_bits; 510 511 void __iomem *base; 512 513 /* rx specific fields. 514 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 515 */ 516 ring_type rx_ring; 517 unsigned int cur_rx, refill_rx; 518 struct sk_buff *rx_skbuff[RX_RING]; 519 dma_addr_t rx_dma[RX_RING]; 520 unsigned int rx_buf_sz; 521 unsigned int pkt_limit; 522 struct timer_list oom_kick; 523 struct timer_list nic_poll; 524 525 /* media detection workaround. 526 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 527 */ 528 int need_linktimer; 529 unsigned long link_timeout; 530 /* 531 * tx specific fields. 532 */ 533 ring_type tx_ring; 534 unsigned int next_tx, nic_tx; 535 struct sk_buff *tx_skbuff[TX_RING]; 536 dma_addr_t tx_dma[TX_RING]; 537 u32 tx_flags; 538}; 539 540/* 541 * Maximum number of loops until we assume that a bit in the irq mask 542 * is stuck. Overridable with module param. 543 */ 544static int max_interrupt_work = 5; 545 546/* 547 * Optimization can be either throuput mode or cpu mode 548 * 549 * Throughput Mode: Every tx and rx packet will generate an interrupt. 550 * CPU Mode: Interrupts are controlled by a timer. 551 */ 552#define NV_OPTIMIZATION_MODE_THROUGHPUT 0 553#define NV_OPTIMIZATION_MODE_CPU 1 554static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT; 555 556/* 557 * Poll interval for timer irq 558 * 559 * This interval determines how frequent an interrupt is generated. 560 * The is value is determined by [(time_in_micro_secs * 100) / (2^10)] 561 * Min = 0, and Max = 65535 562 */ 563static int poll_interval = -1; 564 565static inline struct fe_priv *get_nvpriv(struct net_device *dev) 566{ 567 return netdev_priv(dev); 568} 569 570static inline u8 __iomem *get_hwbase(struct net_device *dev) 571{ 572 return ((struct fe_priv *)netdev_priv(dev))->base; 573} 574 575static inline void pci_push(u8 __iomem *base) 576{ 577 /* force out pending posted writes */ 578 readl(base); 579} 580 581static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) 582{ 583 return le32_to_cpu(prd->FlagLen) 584 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); 585} 586 587static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) 588{ 589 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2; 590} 591 592static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, 593 int delay, int delaymax, const char *msg) 594{ 595 u8 __iomem *base = get_hwbase(dev); 596 597 pci_push(base); 598 do { 599 udelay(delay); 600 delaymax -= delay; 601 if (delaymax < 0) { 602 if (msg) 603 printk(msg); 604 return 1; 605 } 606 } while ((readl(base + offset) & mask) != target); 607 return 0; 608} 609 610#define MII_READ (-1) 611/* mii_rw: read/write a register on the PHY. 612 * 613 * Caller must guarantee serialization 614 */ 615static int mii_rw(struct net_device *dev, int addr, int miireg, int value) 616{ 617 u8 __iomem *base = get_hwbase(dev); 618 u32 reg; 619 int retval; 620 621 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus); 622 623 reg = readl(base + NvRegMIIControl); 624 if (reg & NVREG_MIICTL_INUSE) { 625 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); 626 udelay(NV_MIIBUSY_DELAY); 627 } 628 629 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; 630 if (value != MII_READ) { 631 writel(value, base + NvRegMIIData); 632 reg |= NVREG_MIICTL_WRITE; 633 } 634 writel(reg, base + NvRegMIIControl); 635 636 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, 637 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) { 638 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n", 639 dev->name, miireg, addr); 640 retval = -1; 641 } else if (value != MII_READ) { 642 /* it was a write operation - fewer failures are detectable */ 643 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n", 644 dev->name, value, miireg, addr); 645 retval = 0; 646 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { 647 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n", 648 dev->name, miireg, addr); 649 retval = -1; 650 } else { 651 retval = readl(base + NvRegMIIData); 652 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n", 653 dev->name, miireg, addr, retval); 654 } 655 656 return retval; 657} 658 659static int phy_reset(struct net_device *dev) 660{ 661 struct fe_priv *np = netdev_priv(dev); 662 u32 miicontrol; 663 unsigned int tries = 0; 664 665 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 666 miicontrol |= BMCR_RESET; 667 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) { 668 return -1; 669 } 670 671 /* wait for 500ms */ 672 msleep(500); 673 674 /* must wait till reset is deasserted */ 675 while (miicontrol & BMCR_RESET) { 676 msleep(10); 677 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 678 /* FIXME: 100 tries seem excessive */ 679 if (tries++ > 100) 680 return -1; 681 } 682 return 0; 683} 684 685static int phy_init(struct net_device *dev) 686{ 687 struct fe_priv *np = get_nvpriv(dev); 688 u8 __iomem *base = get_hwbase(dev); 689 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg; 690 691 /* set advertise register */ 692 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 693 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400); 694 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { 695 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev)); 696 return PHY_ERROR; 697 } 698 699 /* get phy interface type */ 700 phyinterface = readl(base + NvRegPhyInterface); 701 702 /* see if gigabit phy */ 703 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 704 if (mii_status & PHY_GIGABIT) { 705 np->gigabit = PHY_GIGABIT; 706 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 707 mii_control_1000 &= ~ADVERTISE_1000HALF; 708 if (phyinterface & PHY_RGMII) 709 mii_control_1000 |= ADVERTISE_1000FULL; 710 else 711 mii_control_1000 &= ~ADVERTISE_1000FULL; 712 713 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) { 714 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); 715 return PHY_ERROR; 716 } 717 } 718 else 719 np->gigabit = 0; 720 721 /* reset the phy */ 722 if (phy_reset(dev)) { 723 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev)); 724 return PHY_ERROR; 725 } 726 727 /* phy vendor specific configuration */ 728 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) { 729 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); 730 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2); 731 phy_reserved |= (PHY_INIT3 | PHY_INIT4); 732 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) { 733 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); 734 return PHY_ERROR; 735 } 736 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 737 phy_reserved |= PHY_INIT5; 738 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) { 739 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); 740 return PHY_ERROR; 741 } 742 } 743 if (np->phy_oui == PHY_OUI_CICADA) { 744 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); 745 phy_reserved |= PHY_INIT6; 746 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) { 747 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); 748 return PHY_ERROR; 749 } 750 } 751 752 /* restart auto negotiation */ 753 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 754 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 755 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { 756 return PHY_ERROR; 757 } 758 759 return 0; 760} 761 762static void nv_start_rx(struct net_device *dev) 763{ 764 struct fe_priv *np = netdev_priv(dev); 765 u8 __iomem *base = get_hwbase(dev); 766 767 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name); 768 /* Already running? Stop it. */ 769 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { 770 writel(0, base + NvRegReceiverControl); 771 pci_push(base); 772 } 773 writel(np->linkspeed, base + NvRegLinkSpeed); 774 pci_push(base); 775 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl); 776 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n", 777 dev->name, np->duplex, np->linkspeed); 778 pci_push(base); 779} 780 781static void nv_stop_rx(struct net_device *dev) 782{ 783 u8 __iomem *base = get_hwbase(dev); 784 785 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name); 786 writel(0, base + NvRegReceiverControl); 787 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, 788 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX, 789 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy"); 790 791 udelay(NV_RXSTOP_DELAY2); 792 writel(0, base + NvRegLinkSpeed); 793} 794 795static void nv_start_tx(struct net_device *dev) 796{ 797 u8 __iomem *base = get_hwbase(dev); 798 799 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name); 800 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl); 801 pci_push(base); 802} 803 804static void nv_stop_tx(struct net_device *dev) 805{ 806 u8 __iomem *base = get_hwbase(dev); 807 808 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name); 809 writel(0, base + NvRegTransmitterControl); 810 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, 811 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX, 812 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy"); 813 814 udelay(NV_TXSTOP_DELAY2); 815 writel(0, base + NvRegUnknownTransmitterReg); 816} 817 818static void nv_txrx_reset(struct net_device *dev) 819{ 820 struct fe_priv *np = netdev_priv(dev); 821 u8 __iomem *base = get_hwbase(dev); 822 823 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name); 824 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl); 825 pci_push(base); 826 udelay(NV_TXRX_RESET_DELAY); 827 writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl); 828 pci_push(base); 829} 830 831/* 832 * nv_get_stats: dev->get_stats function 833 * Get latest stats value from the nic. 834 * Called with read_lock(&dev_base_lock) held for read - 835 * only synchronized against unregister_netdevice. 836 */ 837static struct net_device_stats *nv_get_stats(struct net_device *dev) 838{ 839 struct fe_priv *np = netdev_priv(dev); 840 841 /* It seems that the nic always generates interrupts and doesn't 842 * accumulate errors internally. Thus the current values in np->stats 843 * are already up to date. 844 */ 845 return &np->stats; 846} 847 848/* 849 * nv_alloc_rx: fill rx ring entries. 850 * Return 1 if the allocations for the skbs failed and the 851 * rx engine is without Available descriptors 852 */ 853static int nv_alloc_rx(struct net_device *dev) 854{ 855 struct fe_priv *np = netdev_priv(dev); 856 unsigned int refill_rx = np->refill_rx; 857 int nr; 858 859 while (np->cur_rx != refill_rx) { 860 struct sk_buff *skb; 861 862 nr = refill_rx % RX_RING; 863 if (np->rx_skbuff[nr] == NULL) { 864 865 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD); 866 if (!skb) 867 break; 868 869 skb->dev = dev; 870 np->rx_skbuff[nr] = skb; 871 } else { 872 skb = np->rx_skbuff[nr]; 873 } 874 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len, 875 PCI_DMA_FROMDEVICE); 876 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 877 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]); 878 wmb(); 879 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); 880 } else { 881 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32; 882 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF; 883 wmb(); 884 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); 885 } 886 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n", 887 dev->name, refill_rx); 888 refill_rx++; 889 } 890 np->refill_rx = refill_rx; 891 if (np->cur_rx - refill_rx == RX_RING) 892 return 1; 893 return 0; 894} 895 896static void nv_do_rx_refill(unsigned long data) 897{ 898 struct net_device *dev = (struct net_device *) data; 899 struct fe_priv *np = netdev_priv(dev); 900 901 disable_irq(dev->irq); 902 if (nv_alloc_rx(dev)) { 903 spin_lock(&np->lock); 904 if (!np->in_shutdown) 905 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 906 spin_unlock(&np->lock); 907 } 908 enable_irq(dev->irq); 909} 910 911static void nv_init_rx(struct net_device *dev) 912{ 913 struct fe_priv *np = netdev_priv(dev); 914 int i; 915 916 np->cur_rx = RX_RING; 917 np->refill_rx = 0; 918 for (i = 0; i < RX_RING; i++) 919 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 920 np->rx_ring.orig[i].FlagLen = 0; 921 else 922 np->rx_ring.ex[i].FlagLen = 0; 923} 924 925static void nv_init_tx(struct net_device *dev) 926{ 927 struct fe_priv *np = netdev_priv(dev); 928 int i; 929 930 np->next_tx = np->nic_tx = 0; 931 for (i = 0; i < TX_RING; i++) { 932 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 933 np->tx_ring.orig[i].FlagLen = 0; 934 else 935 np->tx_ring.ex[i].FlagLen = 0; 936 np->tx_skbuff[i] = NULL; 937 } 938} 939 940static int nv_init_ring(struct net_device *dev) 941{ 942 nv_init_tx(dev); 943 nv_init_rx(dev); 944 return nv_alloc_rx(dev); 945} 946 947static void nv_release_txskb(struct net_device *dev, unsigned int skbnr) 948{ 949 struct fe_priv *np = netdev_priv(dev); 950 struct sk_buff *skb = np->tx_skbuff[skbnr]; 951 unsigned int j, entry, fragments; 952 953 dprintk(KERN_INFO "%s: nv_release_txskb for skbnr %d, skb %p\n", 954 dev->name, skbnr, np->tx_skbuff[skbnr]); 955 956 entry = skbnr; 957 if ((fragments = skb_shinfo(skb)->nr_frags) != 0) { 958 for (j = fragments; j >= 1; j--) { 959 skb_frag_t *frag = &skb_shinfo(skb)->frags[j-1]; 960 pci_unmap_page(np->pci_dev, np->tx_dma[entry], 961 frag->size, 962 PCI_DMA_TODEVICE); 963 entry = (entry - 1) % TX_RING; 964 } 965 } 966 pci_unmap_single(np->pci_dev, np->tx_dma[entry], 967 skb->len - skb->data_len, 968 PCI_DMA_TODEVICE); 969 dev_kfree_skb_irq(skb); 970 np->tx_skbuff[skbnr] = NULL; 971} 972 973static void nv_drain_tx(struct net_device *dev) 974{ 975 struct fe_priv *np = netdev_priv(dev); 976 unsigned int i; 977 978 for (i = 0; i < TX_RING; i++) { 979 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 980 np->tx_ring.orig[i].FlagLen = 0; 981 else 982 np->tx_ring.ex[i].FlagLen = 0; 983 if (np->tx_skbuff[i]) { 984 nv_release_txskb(dev, i); 985 np->stats.tx_dropped++; 986 } 987 } 988} 989 990static void nv_drain_rx(struct net_device *dev) 991{ 992 struct fe_priv *np = netdev_priv(dev); 993 int i; 994 for (i = 0; i < RX_RING; i++) { 995 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 996 np->rx_ring.orig[i].FlagLen = 0; 997 else 998 np->rx_ring.ex[i].FlagLen = 0; 999 wmb(); 1000 if (np->rx_skbuff[i]) { 1001 pci_unmap_single(np->pci_dev, np->rx_dma[i], 1002 np->rx_skbuff[i]->len, 1003 PCI_DMA_FROMDEVICE); 1004 dev_kfree_skb(np->rx_skbuff[i]); 1005 np->rx_skbuff[i] = NULL; 1006 } 1007 } 1008} 1009 1010static void drain_ring(struct net_device *dev) 1011{ 1012 nv_drain_tx(dev); 1013 nv_drain_rx(dev); 1014} 1015 1016/* 1017 * nv_start_xmit: dev->hard_start_xmit function 1018 * Called with dev->xmit_lock held. 1019 */ 1020static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev) 1021{ 1022 struct fe_priv *np = netdev_priv(dev); 1023 u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET); 1024 unsigned int fragments = skb_shinfo(skb)->nr_frags; 1025 unsigned int nr = (np->next_tx + fragments) % TX_RING; 1026 unsigned int i; 1027 1028 spin_lock_irq(&np->lock); 1029 1030 if ((np->next_tx - np->nic_tx + fragments) > TX_LIMIT_STOP) { 1031 spin_unlock_irq(&np->lock); 1032 netif_stop_queue(dev); 1033 return NETDEV_TX_BUSY; 1034 } 1035 1036 np->tx_skbuff[nr] = skb; 1037 1038 if (fragments) { 1039 dprintk(KERN_DEBUG "%s: nv_start_xmit: buffer contains %d fragments\n", dev->name, fragments); 1040 /* setup descriptors in reverse order */ 1041 for (i = fragments; i >= 1; i--) { 1042 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1]; 1043 np->tx_dma[nr] = pci_map_page(np->pci_dev, frag->page, frag->page_offset, frag->size, 1044 PCI_DMA_TODEVICE); 1045 1046 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 1047 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]); 1048 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra); 1049 } else { 1050 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32; 1051 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF; 1052 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (frag->size-1) | np->tx_flags | tx_flags_extra); 1053 } 1054 1055 nr = (nr - 1) % TX_RING; 1056 1057 if (np->desc_ver == DESC_VER_1) 1058 tx_flags_extra &= ~NV_TX_LASTPACKET; 1059 else 1060 tx_flags_extra &= ~NV_TX2_LASTPACKET; 1061 } 1062 } 1063 1064#ifdef NETIF_F_TSO 1065 if (skb_shinfo(skb)->tso_size) 1066 tx_flags_extra |= NV_TX2_TSO | (skb_shinfo(skb)->tso_size << NV_TX2_TSO_SHIFT); 1067 else 1068#endif 1069 tx_flags_extra |= (skb->ip_summed == CHECKSUM_HW ? (NV_TX2_CHECKSUM_L3|NV_TX2_CHECKSUM_L4) : 0); 1070 1071 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len-skb->data_len, 1072 PCI_DMA_TODEVICE); 1073 1074 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 1075 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]); 1076 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra); 1077 } else { 1078 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32; 1079 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF; 1080 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (skb->len-skb->data_len-1) | np->tx_flags | tx_flags_extra); 1081 } 1082 1083 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission. tx_flags_extra: %x\n", 1084 dev->name, np->next_tx, tx_flags_extra); 1085 { 1086 int j; 1087 for (j=0; j<64; j++) { 1088 if ((j%16) == 0) 1089 dprintk("\n%03x:", j); 1090 dprintk(" %02x", ((unsigned char*)skb->data)[j]); 1091 } 1092 dprintk("\n"); 1093 } 1094 1095 np->next_tx += 1 + fragments; 1096 1097 dev->trans_start = jiffies; 1098 spin_unlock_irq(&np->lock); 1099 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 1100 pci_push(get_hwbase(dev)); 1101 return NETDEV_TX_OK; 1102} 1103 1104/* 1105 * nv_tx_done: check for completed packets, release the skbs. 1106 * 1107 * Caller must own np->lock. 1108 */ 1109static void nv_tx_done(struct net_device *dev) 1110{ 1111 struct fe_priv *np = netdev_priv(dev); 1112 u32 Flags; 1113 unsigned int i; 1114 struct sk_buff *skb; 1115 1116 while (np->nic_tx != np->next_tx) { 1117 i = np->nic_tx % TX_RING; 1118 1119 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 1120 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen); 1121 else 1122 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen); 1123 1124 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n", 1125 dev->name, np->nic_tx, Flags); 1126 if (Flags & NV_TX_VALID) 1127 break; 1128 if (np->desc_ver == DESC_VER_1) { 1129 if (Flags & NV_TX_LASTPACKET) { 1130 skb = np->tx_skbuff[i]; 1131 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION| 1132 NV_TX_UNDERFLOW|NV_TX_ERROR)) { 1133 if (Flags & NV_TX_UNDERFLOW) 1134 np->stats.tx_fifo_errors++; 1135 if (Flags & NV_TX_CARRIERLOST) 1136 np->stats.tx_carrier_errors++; 1137 np->stats.tx_errors++; 1138 } else { 1139 np->stats.tx_packets++; 1140 np->stats.tx_bytes += skb->len; 1141 } 1142 nv_release_txskb(dev, i); 1143 } 1144 } else { 1145 if (Flags & NV_TX2_LASTPACKET) { 1146 skb = np->tx_skbuff[i]; 1147 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION| 1148 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) { 1149 if (Flags & NV_TX2_UNDERFLOW) 1150 np->stats.tx_fifo_errors++; 1151 if (Flags & NV_TX2_CARRIERLOST) 1152 np->stats.tx_carrier_errors++; 1153 np->stats.tx_errors++; 1154 } else { 1155 np->stats.tx_packets++; 1156 np->stats.tx_bytes += skb->len; 1157 } 1158 nv_release_txskb(dev, i); 1159 } 1160 } 1161 np->nic_tx++; 1162 } 1163 if (np->next_tx - np->nic_tx < TX_LIMIT_START) 1164 netif_wake_queue(dev); 1165} 1166 1167/* 1168 * nv_tx_timeout: dev->tx_timeout function 1169 * Called with dev->xmit_lock held. 1170 */ 1171static void nv_tx_timeout(struct net_device *dev) 1172{ 1173 struct fe_priv *np = netdev_priv(dev); 1174 u8 __iomem *base = get_hwbase(dev); 1175 1176 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, 1177 readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK); 1178 1179 { 1180 int i; 1181 1182 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n", 1183 dev->name, (unsigned long)np->ring_addr, 1184 np->next_tx, np->nic_tx); 1185 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name); 1186 for (i=0;i<0x400;i+= 32) { 1187 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n", 1188 i, 1189 readl(base + i + 0), readl(base + i + 4), 1190 readl(base + i + 8), readl(base + i + 12), 1191 readl(base + i + 16), readl(base + i + 20), 1192 readl(base + i + 24), readl(base + i + 28)); 1193 } 1194 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name); 1195 for (i=0;i<TX_RING;i+= 4) { 1196 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 1197 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n", 1198 i, 1199 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer), 1200 le32_to_cpu(np->tx_ring.orig[i].FlagLen), 1201 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer), 1202 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen), 1203 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer), 1204 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen), 1205 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer), 1206 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen)); 1207 } else { 1208 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n", 1209 i, 1210 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh), 1211 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow), 1212 le32_to_cpu(np->tx_ring.ex[i].FlagLen), 1213 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh), 1214 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow), 1215 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen), 1216 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh), 1217 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow), 1218 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen), 1219 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh), 1220 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow), 1221 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen)); 1222 } 1223 } 1224 } 1225 1226 spin_lock_irq(&np->lock); 1227 1228 /* 1) stop tx engine */ 1229 nv_stop_tx(dev); 1230 1231 /* 2) check that the packets were not sent already: */ 1232 nv_tx_done(dev); 1233 1234 /* 3) if there are dead entries: clear everything */ 1235 if (np->next_tx != np->nic_tx) { 1236 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name); 1237 nv_drain_tx(dev); 1238 np->next_tx = np->nic_tx = 0; 1239 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 1240 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1241 else 1242 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1243 netif_wake_queue(dev); 1244 } 1245 1246 /* 4) restart tx engine */ 1247 nv_start_tx(dev); 1248 spin_unlock_irq(&np->lock); 1249} 1250 1251/* 1252 * Called when the nic notices a mismatch between the actual data len on the 1253 * wire and the len indicated in the 802 header 1254 */ 1255static int nv_getlen(struct net_device *dev, void *packet, int datalen) 1256{ 1257 int hdrlen; /* length of the 802 header */ 1258 int protolen; /* length as stored in the proto field */ 1259 1260 /* 1) calculate len according to header */ 1261 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) { 1262 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto ); 1263 hdrlen = VLAN_HLEN; 1264 } else { 1265 protolen = ntohs( ((struct ethhdr *)packet)->h_proto); 1266 hdrlen = ETH_HLEN; 1267 } 1268 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n", 1269 dev->name, datalen, protolen, hdrlen); 1270 if (protolen > ETH_DATA_LEN) 1271 return datalen; /* Value in proto field not a len, no checks possible */ 1272 1273 protolen += hdrlen; 1274 /* consistency checks: */ 1275 if (datalen > ETH_ZLEN) { 1276 if (datalen >= protolen) { 1277 /* more data on wire than in 802 header, trim of 1278 * additional data. 1279 */ 1280 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n", 1281 dev->name, protolen); 1282 return protolen; 1283 } else { 1284 /* less data on wire than mentioned in header. 1285 * Discard the packet. 1286 */ 1287 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n", 1288 dev->name); 1289 return -1; 1290 } 1291 } else { 1292 /* short packet. Accept only if 802 values are also short */ 1293 if (protolen > ETH_ZLEN) { 1294 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n", 1295 dev->name); 1296 return -1; 1297 } 1298 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n", 1299 dev->name, datalen); 1300 return datalen; 1301 } 1302} 1303 1304static void nv_rx_process(struct net_device *dev) 1305{ 1306 struct fe_priv *np = netdev_priv(dev); 1307 u32 Flags; 1308 1309 for (;;) { 1310 struct sk_buff *skb; 1311 int len; 1312 int i; 1313 if (np->cur_rx - np->refill_rx >= RX_RING) 1314 break; /* we scanned the whole ring - do not continue */ 1315 1316 i = np->cur_rx % RX_RING; 1317 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 1318 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen); 1319 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver); 1320 } else { 1321 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen); 1322 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver); 1323 } 1324 1325 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n", 1326 dev->name, np->cur_rx, Flags); 1327 1328 if (Flags & NV_RX_AVAIL) 1329 break; /* still owned by hardware, */ 1330 1331 /* 1332 * the packet is for us - immediately tear down the pci mapping. 1333 * TODO: check if a prefetch of the first cacheline improves 1334 * the performance. 1335 */ 1336 pci_unmap_single(np->pci_dev, np->rx_dma[i], 1337 np->rx_skbuff[i]->len, 1338 PCI_DMA_FROMDEVICE); 1339 1340 { 1341 int j; 1342 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags); 1343 for (j=0; j<64; j++) { 1344 if ((j%16) == 0) 1345 dprintk("\n%03x:", j); 1346 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]); 1347 } 1348 dprintk("\n"); 1349 } 1350 /* look at what we actually got: */ 1351 if (np->desc_ver == DESC_VER_1) { 1352 if (!(Flags & NV_RX_DESCRIPTORVALID)) 1353 goto next_pkt; 1354 1355 if (Flags & NV_RX_ERROR) { 1356 if (Flags & NV_RX_MISSEDFRAME) { 1357 np->stats.rx_missed_errors++; 1358 np->stats.rx_errors++; 1359 goto next_pkt; 1360 } 1361 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) { 1362 np->stats.rx_errors++; 1363 goto next_pkt; 1364 } 1365 if (Flags & NV_RX_CRCERR) { 1366 np->stats.rx_crc_errors++; 1367 np->stats.rx_errors++; 1368 goto next_pkt; 1369 } 1370 if (Flags & NV_RX_OVERFLOW) { 1371 np->stats.rx_over_errors++; 1372 np->stats.rx_errors++; 1373 goto next_pkt; 1374 } 1375 if (Flags & NV_RX_ERROR4) { 1376 len = nv_getlen(dev, np->rx_skbuff[i]->data, len); 1377 if (len < 0) { 1378 np->stats.rx_errors++; 1379 goto next_pkt; 1380 } 1381 } 1382 /* framing errors are soft errors. */ 1383 if (Flags & NV_RX_FRAMINGERR) { 1384 if (Flags & NV_RX_SUBSTRACT1) { 1385 len--; 1386 } 1387 } 1388 } 1389 } else { 1390 if (!(Flags & NV_RX2_DESCRIPTORVALID)) 1391 goto next_pkt; 1392 1393 if (Flags & NV_RX2_ERROR) { 1394 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) { 1395 np->stats.rx_errors++; 1396 goto next_pkt; 1397 } 1398 if (Flags & NV_RX2_CRCERR) { 1399 np->stats.rx_crc_errors++; 1400 np->stats.rx_errors++; 1401 goto next_pkt; 1402 } 1403 if (Flags & NV_RX2_OVERFLOW) { 1404 np->stats.rx_over_errors++; 1405 np->stats.rx_errors++; 1406 goto next_pkt; 1407 } 1408 if (Flags & NV_RX2_ERROR4) { 1409 len = nv_getlen(dev, np->rx_skbuff[i]->data, len); 1410 if (len < 0) { 1411 np->stats.rx_errors++; 1412 goto next_pkt; 1413 } 1414 } 1415 /* framing errors are soft errors */ 1416 if (Flags & NV_RX2_FRAMINGERR) { 1417 if (Flags & NV_RX2_SUBSTRACT1) { 1418 len--; 1419 } 1420 } 1421 } 1422 Flags &= NV_RX2_CHECKSUMMASK; 1423 if (Flags == NV_RX2_CHECKSUMOK1 || 1424 Flags == NV_RX2_CHECKSUMOK2 || 1425 Flags == NV_RX2_CHECKSUMOK3) { 1426 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name); 1427 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY; 1428 } else { 1429 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name); 1430 } 1431 } 1432 /* got a valid packet - forward it to the network core */ 1433 skb = np->rx_skbuff[i]; 1434 np->rx_skbuff[i] = NULL; 1435 1436 skb_put(skb, len); 1437 skb->protocol = eth_type_trans(skb, dev); 1438 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n", 1439 dev->name, np->cur_rx, len, skb->protocol); 1440 netif_rx(skb); 1441 dev->last_rx = jiffies; 1442 np->stats.rx_packets++; 1443 np->stats.rx_bytes += len; 1444next_pkt: 1445 np->cur_rx++; 1446 } 1447} 1448 1449static void set_bufsize(struct net_device *dev) 1450{ 1451 struct fe_priv *np = netdev_priv(dev); 1452 1453 if (dev->mtu <= ETH_DATA_LEN) 1454 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; 1455 else 1456 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; 1457} 1458 1459/* 1460 * nv_change_mtu: dev->change_mtu function 1461 * Called with dev_base_lock held for read. 1462 */ 1463static int nv_change_mtu(struct net_device *dev, int new_mtu) 1464{ 1465 struct fe_priv *np = netdev_priv(dev); 1466 int old_mtu; 1467 1468 if (new_mtu < 64 || new_mtu > np->pkt_limit) 1469 return -EINVAL; 1470 1471 old_mtu = dev->mtu; 1472 dev->mtu = new_mtu; 1473 1474 /* return early if the buffer sizes will not change */ 1475 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) 1476 return 0; 1477 if (old_mtu == new_mtu) 1478 return 0; 1479 1480 /* synchronized against open : rtnl_lock() held by caller */ 1481 if (netif_running(dev)) { 1482 u8 __iomem *base = get_hwbase(dev); 1483 /* 1484 * It seems that the nic preloads valid ring entries into an 1485 * internal buffer. The procedure for flushing everything is 1486 * guessed, there is probably a simpler approach. 1487 * Changing the MTU is a rare event, it shouldn't matter. 1488 */ 1489 disable_irq(dev->irq); 1490 spin_lock_bh(&dev->xmit_lock); 1491 spin_lock(&np->lock); 1492 /* stop engines */ 1493 nv_stop_rx(dev); 1494 nv_stop_tx(dev); 1495 nv_txrx_reset(dev); 1496 /* drain rx queue */ 1497 nv_drain_rx(dev); 1498 nv_drain_tx(dev); 1499 /* reinit driver view of the rx queue */ 1500 nv_init_rx(dev); 1501 nv_init_tx(dev); 1502 /* alloc new rx buffers */ 1503 set_bufsize(dev); 1504 if (nv_alloc_rx(dev)) { 1505 if (!np->in_shutdown) 1506 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 1507 } 1508 /* reinit nic view of the rx queue */ 1509 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 1510 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr); 1511 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 1512 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1513 else 1514 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1515 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT), 1516 base + NvRegRingSizes); 1517 pci_push(base); 1518 writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl); 1519 pci_push(base); 1520 1521 /* restart rx engine */ 1522 nv_start_rx(dev); 1523 nv_start_tx(dev); 1524 spin_unlock(&np->lock); 1525 spin_unlock_bh(&dev->xmit_lock); 1526 enable_irq(dev->irq); 1527 } 1528 return 0; 1529} 1530 1531static void nv_copy_mac_to_hw(struct net_device *dev) 1532{ 1533 u8 __iomem *base = get_hwbase(dev); 1534 u32 mac[2]; 1535 1536 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + 1537 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); 1538 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); 1539 1540 writel(mac[0], base + NvRegMacAddrA); 1541 writel(mac[1], base + NvRegMacAddrB); 1542} 1543 1544/* 1545 * nv_set_mac_address: dev->set_mac_address function 1546 * Called with rtnl_lock() held. 1547 */ 1548static int nv_set_mac_address(struct net_device *dev, void *addr) 1549{ 1550 struct fe_priv *np = netdev_priv(dev); 1551 struct sockaddr *macaddr = (struct sockaddr*)addr; 1552 1553 if(!is_valid_ether_addr(macaddr->sa_data)) 1554 return -EADDRNOTAVAIL; 1555 1556 /* synchronized against open : rtnl_lock() held by caller */ 1557 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN); 1558 1559 if (netif_running(dev)) { 1560 spin_lock_bh(&dev->xmit_lock); 1561 spin_lock_irq(&np->lock); 1562 1563 /* stop rx engine */ 1564 nv_stop_rx(dev); 1565 1566 /* set mac address */ 1567 nv_copy_mac_to_hw(dev); 1568 1569 /* restart rx engine */ 1570 nv_start_rx(dev); 1571 spin_unlock_irq(&np->lock); 1572 spin_unlock_bh(&dev->xmit_lock); 1573 } else { 1574 nv_copy_mac_to_hw(dev); 1575 } 1576 return 0; 1577} 1578 1579/* 1580 * nv_set_multicast: dev->set_multicast function 1581 * Called with dev->xmit_lock held. 1582 */ 1583static void nv_set_multicast(struct net_device *dev) 1584{ 1585 struct fe_priv *np = netdev_priv(dev); 1586 u8 __iomem *base = get_hwbase(dev); 1587 u32 addr[2]; 1588 u32 mask[2]; 1589 u32 pff; 1590 1591 memset(addr, 0, sizeof(addr)); 1592 memset(mask, 0, sizeof(mask)); 1593 1594 if (dev->flags & IFF_PROMISC) { 1595 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); 1596 pff = NVREG_PFF_PROMISC; 1597 } else { 1598 pff = NVREG_PFF_MYADDR; 1599 1600 if (dev->flags & IFF_ALLMULTI || dev->mc_list) { 1601 u32 alwaysOff[2]; 1602 u32 alwaysOn[2]; 1603 1604 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; 1605 if (dev->flags & IFF_ALLMULTI) { 1606 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; 1607 } else { 1608 struct dev_mc_list *walk; 1609 1610 walk = dev->mc_list; 1611 while (walk != NULL) { 1612 u32 a, b; 1613 a = le32_to_cpu(*(u32 *) walk->dmi_addr); 1614 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4])); 1615 alwaysOn[0] &= a; 1616 alwaysOff[0] &= ~a; 1617 alwaysOn[1] &= b; 1618 alwaysOff[1] &= ~b; 1619 walk = walk->next; 1620 } 1621 } 1622 addr[0] = alwaysOn[0]; 1623 addr[1] = alwaysOn[1]; 1624 mask[0] = alwaysOn[0] | alwaysOff[0]; 1625 mask[1] = alwaysOn[1] | alwaysOff[1]; 1626 } 1627 } 1628 addr[0] |= NVREG_MCASTADDRA_FORCE; 1629 pff |= NVREG_PFF_ALWAYS; 1630 spin_lock_irq(&np->lock); 1631 nv_stop_rx(dev); 1632 writel(addr[0], base + NvRegMulticastAddrA); 1633 writel(addr[1], base + NvRegMulticastAddrB); 1634 writel(mask[0], base + NvRegMulticastMaskA); 1635 writel(mask[1], base + NvRegMulticastMaskB); 1636 writel(pff, base + NvRegPacketFilterFlags); 1637 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n", 1638 dev->name); 1639 nv_start_rx(dev); 1640 spin_unlock_irq(&np->lock); 1641} 1642 1643/** 1644 * nv_update_linkspeed: Setup the MAC according to the link partner 1645 * @dev: Network device to be configured 1646 * 1647 * The function queries the PHY and checks if there is a link partner. 1648 * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is 1649 * set to 10 MBit HD. 1650 * 1651 * The function returns 0 if there is no link partner and 1 if there is 1652 * a good link partner. 1653 */ 1654static int nv_update_linkspeed(struct net_device *dev) 1655{ 1656 struct fe_priv *np = netdev_priv(dev); 1657 u8 __iomem *base = get_hwbase(dev); 1658 int adv, lpa; 1659 int newls = np->linkspeed; 1660 int newdup = np->duplex; 1661 int mii_status; 1662 int retval = 0; 1663 u32 control_1000, status_1000, phyreg; 1664 1665 /* BMSR_LSTATUS is latched, read it twice: 1666 * we want the current value. 1667 */ 1668 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1669 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1670 1671 if (!(mii_status & BMSR_LSTATUS)) { 1672 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n", 1673 dev->name); 1674 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1675 newdup = 0; 1676 retval = 0; 1677 goto set_speed; 1678 } 1679 1680 if (np->autoneg == 0) { 1681 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n", 1682 dev->name, np->fixed_mode); 1683 if (np->fixed_mode & LPA_100FULL) { 1684 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1685 newdup = 1; 1686 } else if (np->fixed_mode & LPA_100HALF) { 1687 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1688 newdup = 0; 1689 } else if (np->fixed_mode & LPA_10FULL) { 1690 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1691 newdup = 1; 1692 } else { 1693 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1694 newdup = 0; 1695 } 1696 retval = 1; 1697 goto set_speed; 1698 } 1699 /* check auto negotiation is complete */ 1700 if (!(mii_status & BMSR_ANEGCOMPLETE)) { 1701 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ 1702 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1703 newdup = 0; 1704 retval = 0; 1705 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name); 1706 goto set_speed; 1707 } 1708 1709 retval = 1; 1710 if (np->gigabit == PHY_GIGABIT) { 1711 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 1712 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ); 1713 1714 if ((control_1000 & ADVERTISE_1000FULL) && 1715 (status_1000 & LPA_1000FULL)) { 1716 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n", 1717 dev->name); 1718 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; 1719 newdup = 1; 1720 goto set_speed; 1721 } 1722 } 1723 1724 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1725 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); 1726 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n", 1727 dev->name, adv, lpa); 1728 1729 /* FIXME: handle parallel detection properly */ 1730 lpa = lpa & adv; 1731 if (lpa & LPA_100FULL) { 1732 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1733 newdup = 1; 1734 } else if (lpa & LPA_100HALF) { 1735 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1736 newdup = 0; 1737 } else if (lpa & LPA_10FULL) { 1738 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1739 newdup = 1; 1740 } else if (lpa & LPA_10HALF) { 1741 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1742 newdup = 0; 1743 } else { 1744 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa); 1745 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1746 newdup = 0; 1747 } 1748 1749set_speed: 1750 if (np->duplex == newdup && np->linkspeed == newls) 1751 return retval; 1752 1753 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n", 1754 dev->name, np->linkspeed, np->duplex, newls, newdup); 1755 1756 np->duplex = newdup; 1757 np->linkspeed = newls; 1758 1759 if (np->gigabit == PHY_GIGABIT) { 1760 phyreg = readl(base + NvRegRandomSeed); 1761 phyreg &= ~(0x3FF00); 1762 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) 1763 phyreg |= NVREG_RNDSEED_FORCE3; 1764 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100) 1765 phyreg |= NVREG_RNDSEED_FORCE2; 1766 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 1767 phyreg |= NVREG_RNDSEED_FORCE; 1768 writel(phyreg, base + NvRegRandomSeed); 1769 } 1770 1771 phyreg = readl(base + NvRegPhyInterface); 1772 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 1773 if (np->duplex == 0) 1774 phyreg |= PHY_HALF; 1775 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 1776 phyreg |= PHY_100; 1777 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 1778 phyreg |= PHY_1000; 1779 writel(phyreg, base + NvRegPhyInterface); 1780 1781 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD), 1782 base + NvRegMisc1); 1783 pci_push(base); 1784 writel(np->linkspeed, base + NvRegLinkSpeed); 1785 pci_push(base); 1786 1787 return retval; 1788} 1789 1790static void nv_linkchange(struct net_device *dev) 1791{ 1792 if (nv_update_linkspeed(dev)) { 1793 if (!netif_carrier_ok(dev)) { 1794 netif_carrier_on(dev); 1795 printk(KERN_INFO "%s: link up.\n", dev->name); 1796 nv_start_rx(dev); 1797 } 1798 } else { 1799 if (netif_carrier_ok(dev)) { 1800 netif_carrier_off(dev); 1801 printk(KERN_INFO "%s: link down.\n", dev->name); 1802 nv_stop_rx(dev); 1803 } 1804 } 1805} 1806 1807static void nv_link_irq(struct net_device *dev) 1808{ 1809 u8 __iomem *base = get_hwbase(dev); 1810 u32 miistat; 1811 1812 miistat = readl(base + NvRegMIIStatus); 1813 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus); 1814 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat); 1815 1816 if (miistat & (NVREG_MIISTAT_LINKCHANGE)) 1817 nv_linkchange(dev); 1818 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name); 1819} 1820 1821static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs) 1822{ 1823 struct net_device *dev = (struct net_device *) data; 1824 struct fe_priv *np = netdev_priv(dev); 1825 u8 __iomem *base = get_hwbase(dev); 1826 u32 events; 1827 int i; 1828 1829 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name); 1830 1831 for (i=0; ; i++) { 1832 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 1833 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 1834 pci_push(base); 1835 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events); 1836 if (!(events & np->irqmask)) 1837 break; 1838 1839 spin_lock(&np->lock); 1840 nv_tx_done(dev); 1841 spin_unlock(&np->lock); 1842 1843 nv_rx_process(dev); 1844 if (nv_alloc_rx(dev)) { 1845 spin_lock(&np->lock); 1846 if (!np->in_shutdown) 1847 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 1848 spin_unlock(&np->lock); 1849 } 1850 1851 if (events & NVREG_IRQ_LINK) { 1852 spin_lock(&np->lock); 1853 nv_link_irq(dev); 1854 spin_unlock(&np->lock); 1855 } 1856 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { 1857 spin_lock(&np->lock); 1858 nv_linkchange(dev); 1859 spin_unlock(&np->lock); 1860 np->link_timeout = jiffies + LINK_TIMEOUT; 1861 } 1862 if (events & (NVREG_IRQ_TX_ERR)) { 1863 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n", 1864 dev->name, events); 1865 } 1866 if (events & (NVREG_IRQ_UNKNOWN)) { 1867 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n", 1868 dev->name, events); 1869 } 1870 if (i > max_interrupt_work) { 1871 spin_lock(&np->lock); 1872 /* disable interrupts on the nic */ 1873 writel(0, base + NvRegIrqMask); 1874 pci_push(base); 1875 1876 if (!np->in_shutdown) 1877 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 1878 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i); 1879 spin_unlock(&np->lock); 1880 break; 1881 } 1882 1883 } 1884 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name); 1885 1886 return IRQ_RETVAL(i); 1887} 1888 1889static void nv_do_nic_poll(unsigned long data) 1890{ 1891 struct net_device *dev = (struct net_device *) data; 1892 struct fe_priv *np = netdev_priv(dev); 1893 u8 __iomem *base = get_hwbase(dev); 1894 1895 disable_irq(dev->irq); 1896 /* FIXME: Do we need synchronize_irq(dev->irq) here? */ 1897 /* 1898 * reenable interrupts on the nic, we have to do this before calling 1899 * nv_nic_irq because that may decide to do otherwise 1900 */ 1901 writel(np->irqmask, base + NvRegIrqMask); 1902 pci_push(base); 1903 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL); 1904 enable_irq(dev->irq); 1905} 1906 1907#ifdef CONFIG_NET_POLL_CONTROLLER 1908static void nv_poll_controller(struct net_device *dev) 1909{ 1910 nv_do_nic_poll((unsigned long) dev); 1911} 1912#endif 1913 1914static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1915{ 1916 struct fe_priv *np = netdev_priv(dev); 1917 strcpy(info->driver, "forcedeth"); 1918 strcpy(info->version, FORCEDETH_VERSION); 1919 strcpy(info->bus_info, pci_name(np->pci_dev)); 1920} 1921 1922static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 1923{ 1924 struct fe_priv *np = netdev_priv(dev); 1925 wolinfo->supported = WAKE_MAGIC; 1926 1927 spin_lock_irq(&np->lock); 1928 if (np->wolenabled) 1929 wolinfo->wolopts = WAKE_MAGIC; 1930 spin_unlock_irq(&np->lock); 1931} 1932 1933static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 1934{ 1935 struct fe_priv *np = netdev_priv(dev); 1936 u8 __iomem *base = get_hwbase(dev); 1937 1938 spin_lock_irq(&np->lock); 1939 if (wolinfo->wolopts == 0) { 1940 writel(0, base + NvRegWakeUpFlags); 1941 np->wolenabled = 0; 1942 } 1943 if (wolinfo->wolopts & WAKE_MAGIC) { 1944 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags); 1945 np->wolenabled = 1; 1946 } 1947 spin_unlock_irq(&np->lock); 1948 return 0; 1949} 1950 1951static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1952{ 1953 struct fe_priv *np = netdev_priv(dev); 1954 int adv; 1955 1956 spin_lock_irq(&np->lock); 1957 ecmd->port = PORT_MII; 1958 if (!netif_running(dev)) { 1959 /* We do not track link speed / duplex setting if the 1960 * interface is disabled. Force a link check */ 1961 nv_update_linkspeed(dev); 1962 } 1963 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) { 1964 case NVREG_LINKSPEED_10: 1965 ecmd->speed = SPEED_10; 1966 break; 1967 case NVREG_LINKSPEED_100: 1968 ecmd->speed = SPEED_100; 1969 break; 1970 case NVREG_LINKSPEED_1000: 1971 ecmd->speed = SPEED_1000; 1972 break; 1973 } 1974 ecmd->duplex = DUPLEX_HALF; 1975 if (np->duplex) 1976 ecmd->duplex = DUPLEX_FULL; 1977 1978 ecmd->autoneg = np->autoneg; 1979 1980 ecmd->advertising = ADVERTISED_MII; 1981 if (np->autoneg) { 1982 ecmd->advertising |= ADVERTISED_Autoneg; 1983 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1984 } else { 1985 adv = np->fixed_mode; 1986 } 1987 if (adv & ADVERTISE_10HALF) 1988 ecmd->advertising |= ADVERTISED_10baseT_Half; 1989 if (adv & ADVERTISE_10FULL) 1990 ecmd->advertising |= ADVERTISED_10baseT_Full; 1991 if (adv & ADVERTISE_100HALF) 1992 ecmd->advertising |= ADVERTISED_100baseT_Half; 1993 if (adv & ADVERTISE_100FULL) 1994 ecmd->advertising |= ADVERTISED_100baseT_Full; 1995 if (np->autoneg && np->gigabit == PHY_GIGABIT) { 1996 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 1997 if (adv & ADVERTISE_1000FULL) 1998 ecmd->advertising |= ADVERTISED_1000baseT_Full; 1999 } 2000 2001 ecmd->supported = (SUPPORTED_Autoneg | 2002 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2003 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2004 SUPPORTED_MII); 2005 if (np->gigabit == PHY_GIGABIT) 2006 ecmd->supported |= SUPPORTED_1000baseT_Full; 2007 2008 ecmd->phy_address = np->phyaddr; 2009 ecmd->transceiver = XCVR_EXTERNAL; 2010 2011 /* ignore maxtxpkt, maxrxpkt for now */ 2012 spin_unlock_irq(&np->lock); 2013 return 0; 2014} 2015 2016static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 2017{ 2018 struct fe_priv *np = netdev_priv(dev); 2019 2020 if (ecmd->port != PORT_MII) 2021 return -EINVAL; 2022 if (ecmd->transceiver != XCVR_EXTERNAL) 2023 return -EINVAL; 2024 if (ecmd->phy_address != np->phyaddr) { 2025 /* TODO: support switching between multiple phys. Should be 2026 * trivial, but not enabled due to lack of test hardware. */ 2027 return -EINVAL; 2028 } 2029 if (ecmd->autoneg == AUTONEG_ENABLE) { 2030 u32 mask; 2031 2032 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | 2033 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; 2034 if (np->gigabit == PHY_GIGABIT) 2035 mask |= ADVERTISED_1000baseT_Full; 2036 2037 if ((ecmd->advertising & mask) == 0) 2038 return -EINVAL; 2039 2040 } else if (ecmd->autoneg == AUTONEG_DISABLE) { 2041 /* Note: autonegotiation disable, speed 1000 intentionally 2042 * forbidden - noone should need that. */ 2043 2044 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100) 2045 return -EINVAL; 2046 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) 2047 return -EINVAL; 2048 } else { 2049 return -EINVAL; 2050 } 2051 2052 spin_lock_irq(&np->lock); 2053 if (ecmd->autoneg == AUTONEG_ENABLE) { 2054 int adv, bmcr; 2055 2056 np->autoneg = 1; 2057 2058 /* advertise only what has been requested */ 2059 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 2060 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); 2061 if (ecmd->advertising & ADVERTISED_10baseT_Half) 2062 adv |= ADVERTISE_10HALF; 2063 if (ecmd->advertising & ADVERTISED_10baseT_Full) 2064 adv |= ADVERTISE_10FULL; 2065 if (ecmd->advertising & ADVERTISED_100baseT_Half) 2066 adv |= ADVERTISE_100HALF; 2067 if (ecmd->advertising & ADVERTISED_100baseT_Full) 2068 adv |= ADVERTISE_100FULL; 2069 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 2070 2071 if (np->gigabit == PHY_GIGABIT) { 2072 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 2073 adv &= ~ADVERTISE_1000FULL; 2074 if (ecmd->advertising & ADVERTISED_1000baseT_Full) 2075 adv |= ADVERTISE_1000FULL; 2076 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv); 2077 } 2078 2079 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 2080 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 2081 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 2082 2083 } else { 2084 int adv, bmcr; 2085 2086 np->autoneg = 0; 2087 2088 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 2089 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); 2090 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF) 2091 adv |= ADVERTISE_10HALF; 2092 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL) 2093 adv |= ADVERTISE_10FULL; 2094 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF) 2095 adv |= ADVERTISE_100HALF; 2096 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL) 2097 adv |= ADVERTISE_100FULL; 2098 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 2099 np->fixed_mode = adv; 2100 2101 if (np->gigabit == PHY_GIGABIT) { 2102 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 2103 adv &= ~ADVERTISE_1000FULL; 2104 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv); 2105 } 2106 2107 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 2108 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX); 2109 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL)) 2110 bmcr |= BMCR_FULLDPLX; 2111 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL)) 2112 bmcr |= BMCR_SPEED100; 2113 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 2114 2115 if (netif_running(dev)) { 2116 /* Wait a bit and then reconfigure the nic. */ 2117 udelay(10); 2118 nv_linkchange(dev); 2119 } 2120 } 2121 spin_unlock_irq(&np->lock); 2122 2123 return 0; 2124} 2125 2126#define FORCEDETH_REGS_VER 1 2127#define FORCEDETH_REGS_SIZE 0x400 /* 256 32-bit registers */ 2128 2129static int nv_get_regs_len(struct net_device *dev) 2130{ 2131 return FORCEDETH_REGS_SIZE; 2132} 2133 2134static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 2135{ 2136 struct fe_priv *np = netdev_priv(dev); 2137 u8 __iomem *base = get_hwbase(dev); 2138 u32 *rbuf = buf; 2139 int i; 2140 2141 regs->version = FORCEDETH_REGS_VER; 2142 spin_lock_irq(&np->lock); 2143 for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++) 2144 rbuf[i] = readl(base + i*sizeof(u32)); 2145 spin_unlock_irq(&np->lock); 2146} 2147 2148static int nv_nway_reset(struct net_device *dev) 2149{ 2150 struct fe_priv *np = netdev_priv(dev); 2151 int ret; 2152 2153 spin_lock_irq(&np->lock); 2154 if (np->autoneg) { 2155 int bmcr; 2156 2157 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 2158 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 2159 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 2160 2161 ret = 0; 2162 } else { 2163 ret = -EINVAL; 2164 } 2165 spin_unlock_irq(&np->lock); 2166 2167 return ret; 2168} 2169 2170static struct ethtool_ops ops = { 2171 .get_drvinfo = nv_get_drvinfo, 2172 .get_link = ethtool_op_get_link, 2173 .get_wol = nv_get_wol, 2174 .set_wol = nv_set_wol, 2175 .get_settings = nv_get_settings, 2176 .set_settings = nv_set_settings, 2177 .get_regs_len = nv_get_regs_len, 2178 .get_regs = nv_get_regs, 2179 .nway_reset = nv_nway_reset, 2180 .get_perm_addr = ethtool_op_get_perm_addr, 2181}; 2182 2183static int nv_open(struct net_device *dev) 2184{ 2185 struct fe_priv *np = netdev_priv(dev); 2186 u8 __iomem *base = get_hwbase(dev); 2187 int ret, oom, i; 2188 2189 dprintk(KERN_DEBUG "nv_open: begin\n"); 2190 2191 /* 1) erase previous misconfiguration */ 2192 /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */ 2193 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 2194 writel(0, base + NvRegMulticastAddrB); 2195 writel(0, base + NvRegMulticastMaskA); 2196 writel(0, base + NvRegMulticastMaskB); 2197 writel(0, base + NvRegPacketFilterFlags); 2198 2199 writel(0, base + NvRegTransmitterControl); 2200 writel(0, base + NvRegReceiverControl); 2201 2202 writel(0, base + NvRegAdapterControl); 2203 2204 /* 2) initialize descriptor rings */ 2205 set_bufsize(dev); 2206 oom = nv_init_ring(dev); 2207 2208 writel(0, base + NvRegLinkSpeed); 2209 writel(0, base + NvRegUnknownTransmitterReg); 2210 nv_txrx_reset(dev); 2211 writel(0, base + NvRegUnknownSetupReg6); 2212 2213 np->in_shutdown = 0; 2214 2215 /* 3) set mac address */ 2216 nv_copy_mac_to_hw(dev); 2217 2218 /* 4) give hw rings */ 2219 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr); 2220 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 2221 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 2222 else 2223 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 2224 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT), 2225 base + NvRegRingSizes); 2226 2227 /* 5) continue setup */ 2228 writel(np->linkspeed, base + NvRegLinkSpeed); 2229 writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3); 2230 writel(np->txrxctl_bits, base + NvRegTxRxControl); 2231 pci_push(base); 2232 writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl); 2233 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, 2234 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX, 2235 KERN_INFO "open: SetupReg5, Bit 31 remained off\n"); 2236 2237 writel(0, base + NvRegUnknownSetupReg4); 2238 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 2239 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus); 2240 2241 /* 6) continue setup */ 2242 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); 2243 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); 2244 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); 2245 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 2246 2247 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); 2248 get_random_bytes(&i, sizeof(i)); 2249 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed); 2250 writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1); 2251 writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2); 2252 if (poll_interval == -1) { 2253 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) 2254 writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval); 2255 else 2256 writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval); 2257 } 2258 else 2259 writel(poll_interval & 0xFFFF, base + NvRegPollingInterval); 2260 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 2261 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, 2262 base + NvRegAdapterControl); 2263 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); 2264 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4); 2265 writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags); 2266 2267 i = readl(base + NvRegPowerState); 2268 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0) 2269 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); 2270 2271 pci_push(base); 2272 udelay(10); 2273 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); 2274 2275 writel(0, base + NvRegIrqMask); 2276 pci_push(base); 2277 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus); 2278 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 2279 pci_push(base); 2280 2281 ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev); 2282 if (ret) 2283 goto out_drain; 2284 2285 /* ask for interrupts */ 2286 writel(np->irqmask, base + NvRegIrqMask); 2287 2288 spin_lock_irq(&np->lock); 2289 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 2290 writel(0, base + NvRegMulticastAddrB); 2291 writel(0, base + NvRegMulticastMaskA); 2292 writel(0, base + NvRegMulticastMaskB); 2293 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 2294 /* One manual link speed update: Interrupts are enabled, future link 2295 * speed changes cause interrupts and are handled by nv_link_irq(). 2296 */ 2297 { 2298 u32 miistat; 2299 miistat = readl(base + NvRegMIIStatus); 2300 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus); 2301 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat); 2302 } 2303 /* set linkspeed to invalid value, thus force nv_update_linkspeed 2304 * to init hw */ 2305 np->linkspeed = 0; 2306 ret = nv_update_linkspeed(dev); 2307 nv_start_rx(dev); 2308 nv_start_tx(dev); 2309 netif_start_queue(dev); 2310 if (ret) { 2311 netif_carrier_on(dev); 2312 } else { 2313 printk("%s: no link during initialization.\n", dev->name); 2314 netif_carrier_off(dev); 2315 } 2316 if (oom) 2317 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 2318 spin_unlock_irq(&np->lock); 2319 2320 return 0; 2321out_drain: 2322 drain_ring(dev); 2323 return ret; 2324} 2325 2326static int nv_close(struct net_device *dev) 2327{ 2328 struct fe_priv *np = netdev_priv(dev); 2329 u8 __iomem *base; 2330 2331 spin_lock_irq(&np->lock); 2332 np->in_shutdown = 1; 2333 spin_unlock_irq(&np->lock); 2334 synchronize_irq(dev->irq); 2335 2336 del_timer_sync(&np->oom_kick); 2337 del_timer_sync(&np->nic_poll); 2338 2339 netif_stop_queue(dev); 2340 spin_lock_irq(&np->lock); 2341 nv_stop_tx(dev); 2342 nv_stop_rx(dev); 2343 nv_txrx_reset(dev); 2344 2345 /* disable interrupts on the nic or we will lock up */ 2346 base = get_hwbase(dev); 2347 writel(0, base + NvRegIrqMask); 2348 pci_push(base); 2349 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name); 2350 2351 spin_unlock_irq(&np->lock); 2352 2353 free_irq(dev->irq, dev); 2354 2355 drain_ring(dev); 2356 2357 if (np->wolenabled) 2358 nv_start_rx(dev); 2359 2360 /* special op: write back the misordered MAC address - otherwise 2361 * the next nv_probe would see a wrong address. 2362 */ 2363 writel(np->orig_mac[0], base + NvRegMacAddrA); 2364 writel(np->orig_mac[1], base + NvRegMacAddrB); 2365 2366 /* FIXME: power down nic */ 2367 2368 return 0; 2369} 2370 2371static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) 2372{ 2373 struct net_device *dev; 2374 struct fe_priv *np; 2375 unsigned long addr; 2376 u8 __iomem *base; 2377 int err, i; 2378 2379 dev = alloc_etherdev(sizeof(struct fe_priv)); 2380 err = -ENOMEM; 2381 if (!dev) 2382 goto out; 2383 2384 np = netdev_priv(dev); 2385 np->pci_dev = pci_dev; 2386 spin_lock_init(&np->lock); 2387 SET_MODULE_OWNER(dev); 2388 SET_NETDEV_DEV(dev, &pci_dev->dev); 2389 2390 init_timer(&np->oom_kick); 2391 np->oom_kick.data = (unsigned long) dev; 2392 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */ 2393 init_timer(&np->nic_poll); 2394 np->nic_poll.data = (unsigned long) dev; 2395 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */ 2396 2397 err = pci_enable_device(pci_dev); 2398 if (err) { 2399 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n", 2400 err, pci_name(pci_dev)); 2401 goto out_free; 2402 } 2403 2404 pci_set_master(pci_dev); 2405 2406 err = pci_request_regions(pci_dev, DRV_NAME); 2407 if (err < 0) 2408 goto out_disable; 2409 2410 err = -EINVAL; 2411 addr = 0; 2412 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 2413 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n", 2414 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i), 2415 pci_resource_len(pci_dev, i), 2416 pci_resource_flags(pci_dev, i)); 2417 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && 2418 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) { 2419 addr = pci_resource_start(pci_dev, i); 2420 break; 2421 } 2422 } 2423 if (i == DEVICE_COUNT_RESOURCE) { 2424 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n", 2425 pci_name(pci_dev)); 2426 goto out_relreg; 2427 } 2428 2429 /* handle different descriptor versions */ 2430 if (id->driver_data & DEV_HAS_HIGH_DMA) { 2431 /* packet format 3: supports 40-bit addressing */ 2432 np->desc_ver = DESC_VER_3; 2433 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) { 2434 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n", 2435 pci_name(pci_dev)); 2436 } else { 2437 dev->features |= NETIF_F_HIGHDMA; 2438 } 2439 np->txrxctl_bits = NVREG_TXRXCTL_DESC_3; 2440 } else if (id->driver_data & DEV_HAS_LARGEDESC) { 2441 /* packet format 2: supports jumbo frames */ 2442 np->desc_ver = DESC_VER_2; 2443 np->txrxctl_bits = NVREG_TXRXCTL_DESC_2; 2444 } else { 2445 /* original packet format */ 2446 np->desc_ver = DESC_VER_1; 2447 np->txrxctl_bits = NVREG_TXRXCTL_DESC_1; 2448 } 2449 2450 np->pkt_limit = NV_PKTLIMIT_1; 2451 if (id->driver_data & DEV_HAS_LARGEDESC) 2452 np->pkt_limit = NV_PKTLIMIT_2; 2453 2454 if (id->driver_data & DEV_HAS_CHECKSUM) { 2455 np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK; 2456 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG; 2457#ifdef NETIF_F_TSO 2458 dev->features |= NETIF_F_TSO; 2459#endif 2460 } 2461 2462 err = -ENOMEM; 2463 np->base = ioremap(addr, NV_PCI_REGSZ); 2464 if (!np->base) 2465 goto out_relreg; 2466 dev->base_addr = (unsigned long)np->base; 2467 2468 dev->irq = pci_dev->irq; 2469 2470 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 2471 np->rx_ring.orig = pci_alloc_consistent(pci_dev, 2472 sizeof(struct ring_desc) * (RX_RING + TX_RING), 2473 &np->ring_addr); 2474 if (!np->rx_ring.orig) 2475 goto out_unmap; 2476 np->tx_ring.orig = &np->rx_ring.orig[RX_RING]; 2477 } else { 2478 np->rx_ring.ex = pci_alloc_consistent(pci_dev, 2479 sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), 2480 &np->ring_addr); 2481 if (!np->rx_ring.ex) 2482 goto out_unmap; 2483 np->tx_ring.ex = &np->rx_ring.ex[RX_RING]; 2484 } 2485 2486 dev->open = nv_open; 2487 dev->stop = nv_close; 2488 dev->hard_start_xmit = nv_start_xmit; 2489 dev->get_stats = nv_get_stats; 2490 dev->change_mtu = nv_change_mtu; 2491 dev->set_mac_address = nv_set_mac_address; 2492 dev->set_multicast_list = nv_set_multicast; 2493#ifdef CONFIG_NET_POLL_CONTROLLER 2494 dev->poll_controller = nv_poll_controller; 2495#endif 2496 SET_ETHTOOL_OPS(dev, &ops); 2497 dev->tx_timeout = nv_tx_timeout; 2498 dev->watchdog_timeo = NV_WATCHDOG_TIMEO; 2499 2500 pci_set_drvdata(pci_dev, dev); 2501 2502 /* read the mac address */ 2503 base = get_hwbase(dev); 2504 np->orig_mac[0] = readl(base + NvRegMacAddrA); 2505 np->orig_mac[1] = readl(base + NvRegMacAddrB); 2506 2507 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; 2508 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; 2509 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; 2510 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; 2511 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; 2512 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; 2513 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 2514 2515 if (!is_valid_ether_addr(dev->perm_addr)) { 2516 /* 2517 * Bad mac address. At least one bios sets the mac address 2518 * to 01:23:45:67:89:ab 2519 */ 2520 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n", 2521 pci_name(pci_dev), 2522 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], 2523 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); 2524 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n"); 2525 dev->dev_addr[0] = 0x00; 2526 dev->dev_addr[1] = 0x00; 2527 dev->dev_addr[2] = 0x6c; 2528 get_random_bytes(&dev->dev_addr[3], 3); 2529 } 2530 2531 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev), 2532 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], 2533 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); 2534 2535 /* disable WOL */ 2536 writel(0, base + NvRegWakeUpFlags); 2537 np->wolenabled = 0; 2538 2539 if (np->desc_ver == DESC_VER_1) { 2540 np->tx_flags = NV_TX_VALID; 2541 } else { 2542 np->tx_flags = NV_TX2_VALID; 2543 } 2544 if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) 2545 np->irqmask = NVREG_IRQMASK_THROUGHPUT; 2546 else 2547 np->irqmask = NVREG_IRQMASK_CPU; 2548 2549 if (id->driver_data & DEV_NEED_TIMERIRQ) 2550 np->irqmask |= NVREG_IRQ_TIMER; 2551 if (id->driver_data & DEV_NEED_LINKTIMER) { 2552 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev)); 2553 np->need_linktimer = 1; 2554 np->link_timeout = jiffies + LINK_TIMEOUT; 2555 } else { 2556 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev)); 2557 np->need_linktimer = 0; 2558 } 2559 2560 /* find a suitable phy */ 2561 for (i = 1; i <= 32; i++) { 2562 int id1, id2; 2563 int phyaddr = i & 0x1F; 2564 2565 spin_lock_irq(&np->lock); 2566 id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ); 2567 spin_unlock_irq(&np->lock); 2568 if (id1 < 0 || id1 == 0xffff) 2569 continue; 2570 spin_lock_irq(&np->lock); 2571 id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ); 2572 spin_unlock_irq(&np->lock); 2573 if (id2 < 0 || id2 == 0xffff) 2574 continue; 2575 2576 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; 2577 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; 2578 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n", 2579 pci_name(pci_dev), id1, id2, phyaddr); 2580 np->phyaddr = phyaddr; 2581 np->phy_oui = id1 | id2; 2582 break; 2583 } 2584 if (i == 33) { 2585 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n", 2586 pci_name(pci_dev)); 2587 goto out_freering; 2588 } 2589 2590 /* reset it */ 2591 phy_init(dev); 2592 2593 /* set default link speed settings */ 2594 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 2595 np->duplex = 0; 2596 np->autoneg = 1; 2597 2598 err = register_netdev(dev); 2599 if (err) { 2600 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err); 2601 goto out_freering; 2602 } 2603 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n", 2604 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device, 2605 pci_name(pci_dev)); 2606 2607 return 0; 2608 2609out_freering: 2610 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 2611 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), 2612 np->rx_ring.orig, np->ring_addr); 2613 else 2614 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), 2615 np->rx_ring.ex, np->ring_addr); 2616 pci_set_drvdata(pci_dev, NULL); 2617out_unmap: 2618 iounmap(get_hwbase(dev)); 2619out_relreg: 2620 pci_release_regions(pci_dev); 2621out_disable: 2622 pci_disable_device(pci_dev); 2623out_free: 2624 free_netdev(dev); 2625out: 2626 return err; 2627} 2628 2629static void __devexit nv_remove(struct pci_dev *pci_dev) 2630{ 2631 struct net_device *dev = pci_get_drvdata(pci_dev); 2632 struct fe_priv *np = netdev_priv(dev); 2633 2634 unregister_netdev(dev); 2635 2636 /* free all structures */ 2637 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 2638 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr); 2639 else 2640 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr); 2641 iounmap(get_hwbase(dev)); 2642 pci_release_regions(pci_dev); 2643 pci_disable_device(pci_dev); 2644 free_netdev(dev); 2645 pci_set_drvdata(pci_dev, NULL); 2646} 2647 2648static struct pci_device_id pci_tbl[] = { 2649 { /* nForce Ethernet Controller */ 2650 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1), 2651 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 2652 }, 2653 { /* nForce2 Ethernet Controller */ 2654 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2), 2655 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 2656 }, 2657 { /* nForce3 Ethernet Controller */ 2658 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3), 2659 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 2660 }, 2661 { /* nForce3 Ethernet Controller */ 2662 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4), 2663 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 2664 }, 2665 { /* nForce3 Ethernet Controller */ 2666 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5), 2667 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 2668 }, 2669 { /* nForce3 Ethernet Controller */ 2670 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6), 2671 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 2672 }, 2673 { /* nForce3 Ethernet Controller */ 2674 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7), 2675 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM, 2676 }, 2677 { /* CK804 Ethernet Controller */ 2678 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8), 2679 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA, 2680 }, 2681 { /* CK804 Ethernet Controller */ 2682 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9), 2683 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA, 2684 }, 2685 { /* MCP04 Ethernet Controller */ 2686 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10), 2687 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA, 2688 }, 2689 { /* MCP04 Ethernet Controller */ 2690 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11), 2691 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA, 2692 }, 2693 { /* MCP51 Ethernet Controller */ 2694 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12), 2695 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA, 2696 }, 2697 { /* MCP51 Ethernet Controller */ 2698 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13), 2699 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA, 2700 }, 2701 { /* MCP55 Ethernet Controller */ 2702 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14), 2703 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA, 2704 }, 2705 { /* MCP55 Ethernet Controller */ 2706 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15), 2707 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA, 2708 }, 2709 {0,}, 2710}; 2711 2712static struct pci_driver driver = { 2713 .name = "forcedeth", 2714 .id_table = pci_tbl, 2715 .probe = nv_probe, 2716 .remove = __devexit_p(nv_remove), 2717}; 2718 2719 2720static int __init init_nic(void) 2721{ 2722 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION); 2723 return pci_module_init(&driver); 2724} 2725 2726static void __exit exit_nic(void) 2727{ 2728 pci_unregister_driver(&driver); 2729} 2730 2731module_param(max_interrupt_work, int, 0); 2732MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); 2733module_param(optimization_mode, int, 0); 2734MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer."); 2735module_param(poll_interval, int, 0); 2736MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535."); 2737 2738MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>"); 2739MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); 2740MODULE_LICENSE("GPL"); 2741 2742MODULE_DEVICE_TABLE(pci, pci_tbl); 2743 2744module_init(init_nic); 2745module_exit(exit_nic);