at v2.6.15-rc2 2734 lines 80 kB view raw
1/******************************************************************************* 2 3 4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 2 of the License, or (at your option) 9 any later version. 10 11 This program is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 59 18 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 20 The full GNU General Public License is included in this distribution in the 21 file called LICENSE. 22 23 Contact Information: 24 Linux NICS <linux.nics@intel.com> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29/* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Recieve 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * Under typical operation, the receive unit (RU) is start once, 110 * and the controller happily fills RFDs as frames arrive. If 111 * replacement RFDs cannot be allocated, or the RU goes non-active, 112 * the RU must be restarted. Frame arrival generates an interrupt, 113 * and Rx indication and re-allocation happen in the same context, 114 * therefore no locking is required. A software-generated interrupt 115 * is generated from the watchdog to recover from a failed allocation 116 * senario where all Rx resources have been indicated and none re- 117 * placed. 118 * 119 * V. Miscellaneous 120 * 121 * VLAN offloading of tagging, stripping and filtering is not 122 * supported, but driver will accommodate the extra 4-byte VLAN tag 123 * for processing by upper layers. Tx/Rx Checksum offloading is not 124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 125 * not supported (hardware limitation). 126 * 127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 128 * 129 * Thanks to JC (jchapman@katalix.com) for helping with 130 * testing/troubleshooting the development driver. 131 * 132 * TODO: 133 * o several entry points race with dev->close 134 * o check for tx-no-resources/stop Q races with tx clean/wake Q 135 */ 136 137#include <linux/config.h> 138#include <linux/module.h> 139#include <linux/moduleparam.h> 140#include <linux/kernel.h> 141#include <linux/types.h> 142#include <linux/slab.h> 143#include <linux/delay.h> 144#include <linux/init.h> 145#include <linux/pci.h> 146#include <linux/dma-mapping.h> 147#include <linux/netdevice.h> 148#include <linux/etherdevice.h> 149#include <linux/mii.h> 150#include <linux/if_vlan.h> 151#include <linux/skbuff.h> 152#include <linux/ethtool.h> 153#include <linux/string.h> 154#include <asm/unaligned.h> 155 156 157#define DRV_NAME "e100" 158#define DRV_EXT "-NAPI" 159#define DRV_VERSION "3.4.14-k4"DRV_EXT 160#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 161#define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation" 162#define PFX DRV_NAME ": " 163 164#define E100_WATCHDOG_PERIOD (2 * HZ) 165#define E100_NAPI_WEIGHT 16 166 167MODULE_DESCRIPTION(DRV_DESCRIPTION); 168MODULE_AUTHOR(DRV_COPYRIGHT); 169MODULE_LICENSE("GPL"); 170MODULE_VERSION(DRV_VERSION); 171 172static int debug = 3; 173module_param(debug, int, 0); 174MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 175#define DPRINTK(nlevel, klevel, fmt, args...) \ 176 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ 177 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ 178 __FUNCTION__ , ## args)) 179 180#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 181 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 182 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 183static struct pci_device_id e100_id_table[] = { 184 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 185 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 186 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 187 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 188 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 189 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 190 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 191 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 192 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 193 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 194 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 195 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 196 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 197 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 198 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 199 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 200 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 201 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 202 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 203 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 204 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 205 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 206 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 207 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 208 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 209 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 210 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 211 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 212 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 213 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 214 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 215 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 216 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 217 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 218 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 219 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 220 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 221 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 222 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 223 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 224 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 225 { 0, } 226}; 227MODULE_DEVICE_TABLE(pci, e100_id_table); 228 229enum mac { 230 mac_82557_D100_A = 0, 231 mac_82557_D100_B = 1, 232 mac_82557_D100_C = 2, 233 mac_82558_D101_A4 = 4, 234 mac_82558_D101_B0 = 5, 235 mac_82559_D101M = 8, 236 mac_82559_D101S = 9, 237 mac_82550_D102 = 12, 238 mac_82550_D102_C = 13, 239 mac_82551_E = 14, 240 mac_82551_F = 15, 241 mac_82551_10 = 16, 242 mac_unknown = 0xFF, 243}; 244 245enum phy { 246 phy_100a = 0x000003E0, 247 phy_100c = 0x035002A8, 248 phy_82555_tx = 0x015002A8, 249 phy_nsc_tx = 0x5C002000, 250 phy_82562_et = 0x033002A8, 251 phy_82562_em = 0x032002A8, 252 phy_82562_ek = 0x031002A8, 253 phy_82562_eh = 0x017002A8, 254 phy_unknown = 0xFFFFFFFF, 255}; 256 257/* CSR (Control/Status Registers) */ 258struct csr { 259 struct { 260 u8 status; 261 u8 stat_ack; 262 u8 cmd_lo; 263 u8 cmd_hi; 264 u32 gen_ptr; 265 } scb; 266 u32 port; 267 u16 flash_ctrl; 268 u8 eeprom_ctrl_lo; 269 u8 eeprom_ctrl_hi; 270 u32 mdi_ctrl; 271 u32 rx_dma_count; 272}; 273 274enum scb_status { 275 rus_ready = 0x10, 276 rus_mask = 0x3C, 277}; 278 279enum ru_state { 280 RU_SUSPENDED = 0, 281 RU_RUNNING = 1, 282 RU_UNINITIALIZED = -1, 283}; 284 285enum scb_stat_ack { 286 stat_ack_not_ours = 0x00, 287 stat_ack_sw_gen = 0x04, 288 stat_ack_rnr = 0x10, 289 stat_ack_cu_idle = 0x20, 290 stat_ack_frame_rx = 0x40, 291 stat_ack_cu_cmd_done = 0x80, 292 stat_ack_not_present = 0xFF, 293 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 294 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 295}; 296 297enum scb_cmd_hi { 298 irq_mask_none = 0x00, 299 irq_mask_all = 0x01, 300 irq_sw_gen = 0x02, 301}; 302 303enum scb_cmd_lo { 304 cuc_nop = 0x00, 305 ruc_start = 0x01, 306 ruc_load_base = 0x06, 307 cuc_start = 0x10, 308 cuc_resume = 0x20, 309 cuc_dump_addr = 0x40, 310 cuc_dump_stats = 0x50, 311 cuc_load_base = 0x60, 312 cuc_dump_reset = 0x70, 313}; 314 315enum cuc_dump { 316 cuc_dump_complete = 0x0000A005, 317 cuc_dump_reset_complete = 0x0000A007, 318}; 319 320enum port { 321 software_reset = 0x0000, 322 selftest = 0x0001, 323 selective_reset = 0x0002, 324}; 325 326enum eeprom_ctrl_lo { 327 eesk = 0x01, 328 eecs = 0x02, 329 eedi = 0x04, 330 eedo = 0x08, 331}; 332 333enum mdi_ctrl { 334 mdi_write = 0x04000000, 335 mdi_read = 0x08000000, 336 mdi_ready = 0x10000000, 337}; 338 339enum eeprom_op { 340 op_write = 0x05, 341 op_read = 0x06, 342 op_ewds = 0x10, 343 op_ewen = 0x13, 344}; 345 346enum eeprom_offsets { 347 eeprom_cnfg_mdix = 0x03, 348 eeprom_id = 0x0A, 349 eeprom_config_asf = 0x0D, 350 eeprom_smbus_addr = 0x90, 351}; 352 353enum eeprom_cnfg_mdix { 354 eeprom_mdix_enabled = 0x0080, 355}; 356 357enum eeprom_id { 358 eeprom_id_wol = 0x0020, 359}; 360 361enum eeprom_config_asf { 362 eeprom_asf = 0x8000, 363 eeprom_gcl = 0x4000, 364}; 365 366enum cb_status { 367 cb_complete = 0x8000, 368 cb_ok = 0x2000, 369}; 370 371enum cb_command { 372 cb_nop = 0x0000, 373 cb_iaaddr = 0x0001, 374 cb_config = 0x0002, 375 cb_multi = 0x0003, 376 cb_tx = 0x0004, 377 cb_ucode = 0x0005, 378 cb_dump = 0x0006, 379 cb_tx_sf = 0x0008, 380 cb_cid = 0x1f00, 381 cb_i = 0x2000, 382 cb_s = 0x4000, 383 cb_el = 0x8000, 384}; 385 386struct rfd { 387 u16 status; 388 u16 command; 389 u32 link; 390 u32 rbd; 391 u16 actual_size; 392 u16 size; 393}; 394 395struct rx { 396 struct rx *next, *prev; 397 struct sk_buff *skb; 398 dma_addr_t dma_addr; 399}; 400 401#if defined(__BIG_ENDIAN_BITFIELD) 402#define X(a,b) b,a 403#else 404#define X(a,b) a,b 405#endif 406struct config { 407/*0*/ u8 X(byte_count:6, pad0:2); 408/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 409/*2*/ u8 adaptive_ifs; 410/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 411 term_write_cache_line:1), pad3:4); 412/*4*/ u8 X(rx_dma_max_count:7, pad4:1); 413/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 414/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 415 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 416 rx_discard_overruns:1), rx_save_bad_frames:1); 417/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 418 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 419 tx_dynamic_tbd:1); 420/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 421/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 422 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 423/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 424 loopback:2); 425/*11*/ u8 X(linear_priority:3, pad11:5); 426/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 427/*13*/ u8 ip_addr_lo; 428/*14*/ u8 ip_addr_hi; 429/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 430 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 431 pad15_2:1), crs_or_cdt:1); 432/*16*/ u8 fc_delay_lo; 433/*17*/ u8 fc_delay_hi; 434/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 435 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 436/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 437 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 438 full_duplex_force:1), full_duplex_pin:1); 439/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 440/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 441/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 442 u8 pad_d102[9]; 443}; 444 445#define E100_MAX_MULTICAST_ADDRS 64 446struct multi { 447 u16 count; 448 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 449}; 450 451/* Important: keep total struct u32-aligned */ 452#define UCODE_SIZE 134 453struct cb { 454 u16 status; 455 u16 command; 456 u32 link; 457 union { 458 u8 iaaddr[ETH_ALEN]; 459 u32 ucode[UCODE_SIZE]; 460 struct config config; 461 struct multi multi; 462 struct { 463 u32 tbd_array; 464 u16 tcb_byte_count; 465 u8 threshold; 466 u8 tbd_count; 467 struct { 468 u32 buf_addr; 469 u16 size; 470 u16 eol; 471 } tbd; 472 } tcb; 473 u32 dump_buffer_addr; 474 } u; 475 struct cb *next, *prev; 476 dma_addr_t dma_addr; 477 struct sk_buff *skb; 478}; 479 480enum loopback { 481 lb_none = 0, lb_mac = 1, lb_phy = 3, 482}; 483 484struct stats { 485 u32 tx_good_frames, tx_max_collisions, tx_late_collisions, 486 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 487 tx_multiple_collisions, tx_total_collisions; 488 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 489 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 490 rx_short_frame_errors; 491 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 492 u16 xmt_tco_frames, rcv_tco_frames; 493 u32 complete; 494}; 495 496struct mem { 497 struct { 498 u32 signature; 499 u32 result; 500 } selftest; 501 struct stats stats; 502 u8 dump_buf[596]; 503}; 504 505struct param_range { 506 u32 min; 507 u32 max; 508 u32 count; 509}; 510 511struct params { 512 struct param_range rfds; 513 struct param_range cbs; 514}; 515 516struct nic { 517 /* Begin: frequently used values: keep adjacent for cache effect */ 518 u32 msg_enable ____cacheline_aligned; 519 struct net_device *netdev; 520 struct pci_dev *pdev; 521 522 struct rx *rxs ____cacheline_aligned; 523 struct rx *rx_to_use; 524 struct rx *rx_to_clean; 525 struct rfd blank_rfd; 526 enum ru_state ru_running; 527 528 spinlock_t cb_lock ____cacheline_aligned; 529 spinlock_t cmd_lock; 530 struct csr __iomem *csr; 531 enum scb_cmd_lo cuc_cmd; 532 unsigned int cbs_avail; 533 struct cb *cbs; 534 struct cb *cb_to_use; 535 struct cb *cb_to_send; 536 struct cb *cb_to_clean; 537 u16 tx_command; 538 /* End: frequently used values: keep adjacent for cache effect */ 539 540 enum { 541 ich = (1 << 0), 542 promiscuous = (1 << 1), 543 multicast_all = (1 << 2), 544 wol_magic = (1 << 3), 545 ich_10h_workaround = (1 << 4), 546 } flags ____cacheline_aligned; 547 548 enum mac mac; 549 enum phy phy; 550 struct params params; 551 struct net_device_stats net_stats; 552 struct timer_list watchdog; 553 struct timer_list blink_timer; 554 struct mii_if_info mii; 555 struct work_struct tx_timeout_task; 556 enum loopback loopback; 557 558 struct mem *mem; 559 dma_addr_t dma_addr; 560 561 dma_addr_t cbs_dma_addr; 562 u8 adaptive_ifs; 563 u8 tx_threshold; 564 u32 tx_frames; 565 u32 tx_collisions; 566 u32 tx_deferred; 567 u32 tx_single_collisions; 568 u32 tx_multiple_collisions; 569 u32 tx_fc_pause; 570 u32 tx_tco_frames; 571 572 u32 rx_fc_pause; 573 u32 rx_fc_unsupported; 574 u32 rx_tco_frames; 575 u32 rx_over_length_errors; 576 577 u8 rev_id; 578 u16 leds; 579 u16 eeprom_wc; 580 u16 eeprom[256]; 581}; 582 583static inline void e100_write_flush(struct nic *nic) 584{ 585 /* Flush previous PCI writes through intermediate bridges 586 * by doing a benign read */ 587 (void)readb(&nic->csr->scb.status); 588} 589 590static inline void e100_enable_irq(struct nic *nic) 591{ 592 unsigned long flags; 593 594 spin_lock_irqsave(&nic->cmd_lock, flags); 595 writeb(irq_mask_none, &nic->csr->scb.cmd_hi); 596 spin_unlock_irqrestore(&nic->cmd_lock, flags); 597 e100_write_flush(nic); 598} 599 600static inline void e100_disable_irq(struct nic *nic) 601{ 602 unsigned long flags; 603 604 spin_lock_irqsave(&nic->cmd_lock, flags); 605 writeb(irq_mask_all, &nic->csr->scb.cmd_hi); 606 spin_unlock_irqrestore(&nic->cmd_lock, flags); 607 e100_write_flush(nic); 608} 609 610static void e100_hw_reset(struct nic *nic) 611{ 612 /* Put CU and RU into idle with a selective reset to get 613 * device off of PCI bus */ 614 writel(selective_reset, &nic->csr->port); 615 e100_write_flush(nic); udelay(20); 616 617 /* Now fully reset device */ 618 writel(software_reset, &nic->csr->port); 619 e100_write_flush(nic); udelay(20); 620 621 /* Mask off our interrupt line - it's unmasked after reset */ 622 e100_disable_irq(nic); 623} 624 625static int e100_self_test(struct nic *nic) 626{ 627 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 628 629 /* Passing the self-test is a pretty good indication 630 * that the device can DMA to/from host memory */ 631 632 nic->mem->selftest.signature = 0; 633 nic->mem->selftest.result = 0xFFFFFFFF; 634 635 writel(selftest | dma_addr, &nic->csr->port); 636 e100_write_flush(nic); 637 /* Wait 10 msec for self-test to complete */ 638 msleep(10); 639 640 /* Interrupts are enabled after self-test */ 641 e100_disable_irq(nic); 642 643 /* Check results of self-test */ 644 if(nic->mem->selftest.result != 0) { 645 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", 646 nic->mem->selftest.result); 647 return -ETIMEDOUT; 648 } 649 if(nic->mem->selftest.signature == 0) { 650 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); 651 return -ETIMEDOUT; 652 } 653 654 return 0; 655} 656 657static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data) 658{ 659 u32 cmd_addr_data[3]; 660 u8 ctrl; 661 int i, j; 662 663 /* Three cmds: write/erase enable, write data, write/erase disable */ 664 cmd_addr_data[0] = op_ewen << (addr_len - 2); 665 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 666 cpu_to_le16(data); 667 cmd_addr_data[2] = op_ewds << (addr_len - 2); 668 669 /* Bit-bang cmds to write word to eeprom */ 670 for(j = 0; j < 3; j++) { 671 672 /* Chip select */ 673 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 674 e100_write_flush(nic); udelay(4); 675 676 for(i = 31; i >= 0; i--) { 677 ctrl = (cmd_addr_data[j] & (1 << i)) ? 678 eecs | eedi : eecs; 679 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); 680 e100_write_flush(nic); udelay(4); 681 682 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 683 e100_write_flush(nic); udelay(4); 684 } 685 /* Wait 10 msec for cmd to complete */ 686 msleep(10); 687 688 /* Chip deselect */ 689 writeb(0, &nic->csr->eeprom_ctrl_lo); 690 e100_write_flush(nic); udelay(4); 691 } 692}; 693 694/* General technique stolen from the eepro100 driver - very clever */ 695static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 696{ 697 u32 cmd_addr_data; 698 u16 data = 0; 699 u8 ctrl; 700 int i; 701 702 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 703 704 /* Chip select */ 705 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 706 e100_write_flush(nic); udelay(4); 707 708 /* Bit-bang to read word from eeprom */ 709 for(i = 31; i >= 0; i--) { 710 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 711 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); 712 e100_write_flush(nic); udelay(4); 713 714 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 715 e100_write_flush(nic); udelay(4); 716 717 /* Eeprom drives a dummy zero to EEDO after receiving 718 * complete address. Use this to adjust addr_len. */ 719 ctrl = readb(&nic->csr->eeprom_ctrl_lo); 720 if(!(ctrl & eedo) && i > 16) { 721 *addr_len -= (i - 16); 722 i = 17; 723 } 724 725 data = (data << 1) | (ctrl & eedo ? 1 : 0); 726 } 727 728 /* Chip deselect */ 729 writeb(0, &nic->csr->eeprom_ctrl_lo); 730 e100_write_flush(nic); udelay(4); 731 732 return le16_to_cpu(data); 733}; 734 735/* Load entire EEPROM image into driver cache and validate checksum */ 736static int e100_eeprom_load(struct nic *nic) 737{ 738 u16 addr, addr_len = 8, checksum = 0; 739 740 /* Try reading with an 8-bit addr len to discover actual addr len */ 741 e100_eeprom_read(nic, &addr_len, 0); 742 nic->eeprom_wc = 1 << addr_len; 743 744 for(addr = 0; addr < nic->eeprom_wc; addr++) { 745 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 746 if(addr < nic->eeprom_wc - 1) 747 checksum += cpu_to_le16(nic->eeprom[addr]); 748 } 749 750 /* The checksum, stored in the last word, is calculated such that 751 * the sum of words should be 0xBABA */ 752 checksum = le16_to_cpu(0xBABA - checksum); 753 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) { 754 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); 755 return -EAGAIN; 756 } 757 758 return 0; 759} 760 761/* Save (portion of) driver EEPROM cache to device and update checksum */ 762static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 763{ 764 u16 addr, addr_len = 8, checksum = 0; 765 766 /* Try reading with an 8-bit addr len to discover actual addr len */ 767 e100_eeprom_read(nic, &addr_len, 0); 768 nic->eeprom_wc = 1 << addr_len; 769 770 if(start + count >= nic->eeprom_wc) 771 return -EINVAL; 772 773 for(addr = start; addr < start + count; addr++) 774 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 775 776 /* The checksum, stored in the last word, is calculated such that 777 * the sum of words should be 0xBABA */ 778 for(addr = 0; addr < nic->eeprom_wc - 1; addr++) 779 checksum += cpu_to_le16(nic->eeprom[addr]); 780 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum); 781 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 782 nic->eeprom[nic->eeprom_wc - 1]); 783 784 return 0; 785} 786 787#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 788#define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 789static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 790{ 791 unsigned long flags; 792 unsigned int i; 793 int err = 0; 794 795 spin_lock_irqsave(&nic->cmd_lock, flags); 796 797 /* Previous command is accepted when SCB clears */ 798 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 799 if(likely(!readb(&nic->csr->scb.cmd_lo))) 800 break; 801 cpu_relax(); 802 if(unlikely(i > E100_WAIT_SCB_FAST)) 803 udelay(5); 804 } 805 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 806 err = -EAGAIN; 807 goto err_unlock; 808 } 809 810 if(unlikely(cmd != cuc_resume)) 811 writel(dma_addr, &nic->csr->scb.gen_ptr); 812 writeb(cmd, &nic->csr->scb.cmd_lo); 813 814err_unlock: 815 spin_unlock_irqrestore(&nic->cmd_lock, flags); 816 817 return err; 818} 819 820static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 821 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 822{ 823 struct cb *cb; 824 unsigned long flags; 825 int err = 0; 826 827 spin_lock_irqsave(&nic->cb_lock, flags); 828 829 if(unlikely(!nic->cbs_avail)) { 830 err = -ENOMEM; 831 goto err_unlock; 832 } 833 834 cb = nic->cb_to_use; 835 nic->cb_to_use = cb->next; 836 nic->cbs_avail--; 837 cb->skb = skb; 838 839 if(unlikely(!nic->cbs_avail)) 840 err = -ENOSPC; 841 842 cb_prepare(nic, cb, skb); 843 844 /* Order is important otherwise we'll be in a race with h/w: 845 * set S-bit in current first, then clear S-bit in previous. */ 846 cb->command |= cpu_to_le16(cb_s); 847 wmb(); 848 cb->prev->command &= cpu_to_le16(~cb_s); 849 850 while(nic->cb_to_send != nic->cb_to_use) { 851 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 852 nic->cb_to_send->dma_addr))) { 853 /* Ok, here's where things get sticky. It's 854 * possible that we can't schedule the command 855 * because the controller is too busy, so 856 * let's just queue the command and try again 857 * when another command is scheduled. */ 858 if(err == -ENOSPC) { 859 //request a reset 860 schedule_work(&nic->tx_timeout_task); 861 } 862 break; 863 } else { 864 nic->cuc_cmd = cuc_resume; 865 nic->cb_to_send = nic->cb_to_send->next; 866 } 867 } 868 869err_unlock: 870 spin_unlock_irqrestore(&nic->cb_lock, flags); 871 872 return err; 873} 874 875static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 876{ 877 u32 data_out = 0; 878 unsigned int i; 879 880 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 881 882 for(i = 0; i < 100; i++) { 883 udelay(20); 884 if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready) 885 break; 886 } 887 888 DPRINTK(HW, DEBUG, 889 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 890 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); 891 return (u16)data_out; 892} 893 894static int mdio_read(struct net_device *netdev, int addr, int reg) 895{ 896 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); 897} 898 899static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 900{ 901 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); 902} 903 904static void e100_get_defaults(struct nic *nic) 905{ 906 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 907 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 908 909 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); 910 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 911 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id; 912 if(nic->mac == mac_unknown) 913 nic->mac = mac_82557_D100_A; 914 915 nic->params.rfds = rfds; 916 nic->params.cbs = cbs; 917 918 /* Quadwords to DMA into FIFO before starting frame transmit */ 919 nic->tx_threshold = 0xE0; 920 921 /* no interrupt for every tx completion, delay = 256us if not 557*/ 922 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 923 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 924 925 /* Template for a freshly allocated RFD */ 926 nic->blank_rfd.command = cpu_to_le16(cb_el); 927 nic->blank_rfd.rbd = 0xFFFFFFFF; 928 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 929 930 /* MII setup */ 931 nic->mii.phy_id_mask = 0x1F; 932 nic->mii.reg_num_mask = 0x1F; 933 nic->mii.dev = nic->netdev; 934 nic->mii.mdio_read = mdio_read; 935 nic->mii.mdio_write = mdio_write; 936} 937 938static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 939{ 940 struct config *config = &cb->u.config; 941 u8 *c = (u8 *)config; 942 943 cb->command = cpu_to_le16(cb_config); 944 945 memset(config, 0, sizeof(struct config)); 946 947 config->byte_count = 0x16; /* bytes in this struct */ 948 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 949 config->direct_rx_dma = 0x1; /* reserved */ 950 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 951 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 952 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 953 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 954 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ 955 config->pad10 = 0x6; 956 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 957 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 958 config->ifs = 0x6; /* x16 = inter frame spacing */ 959 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 960 config->pad15_1 = 0x1; 961 config->pad15_2 = 0x1; 962 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 963 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 964 config->tx_padding = 0x1; /* 1=pad short frames */ 965 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 966 config->pad18 = 0x1; 967 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 968 config->pad20_1 = 0x1F; 969 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 970 config->pad21_1 = 0x5; 971 972 config->adaptive_ifs = nic->adaptive_ifs; 973 config->loopback = nic->loopback; 974 975 if(nic->mii.force_media && nic->mii.full_duplex) 976 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 977 978 if(nic->flags & promiscuous || nic->loopback) { 979 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 980 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 981 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 982 } 983 984 if(nic->flags & multicast_all) 985 config->multicast_all = 0x1; /* 1=accept, 0=no */ 986 987 /* disable WoL when up */ 988 if(netif_running(nic->netdev) || !(nic->flags & wol_magic)) 989 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 990 991 if(nic->mac >= mac_82558_D101_A4) { 992 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 993 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 994 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 995 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 996 if(nic->mac >= mac_82559_D101M) 997 config->tno_intr = 0x1; /* TCO stats enable */ 998 else 999 config->standard_stat_counter = 0x0; 1000 } 1001 1002 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1003 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); 1004 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1005 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); 1006 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1007 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); 1008} 1009 1010/********************************************************/ 1011/* Micro code for 8086:1229 Rev 8 */ 1012/********************************************************/ 1013 1014/* Parameter values for the D101M B-step */ 1015#define D101M_CPUSAVER_TIMER_DWORD 78 1016#define D101M_CPUSAVER_BUNDLE_DWORD 65 1017#define D101M_CPUSAVER_MIN_SIZE_DWORD 126 1018 1019#define D101M_B_RCVBUNDLE_UCODE \ 1020{\ 10210x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \ 10220x000C0001, 0x00101312, 0x000C0008, 0x00380216, \ 10230x0010009C, 0x00204056, 0x002380CC, 0x00380056, \ 10240x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \ 10250x00380438, 0x00000000, 0x00140000, 0x00380555, \ 10260x00308000, 0x00100662, 0x00100561, 0x000E0408, \ 10270x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 10280x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 10290x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \ 10300x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \ 10310x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10320x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \ 10330x003A0437, 0x00044010, 0x0038078A, 0x00000000, \ 10340x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \ 10350x00130824, 0x000C0001, 0x00101213, 0x00260C75, \ 10360x00041000, 0x00010004, 0x00130826, 0x000C0006, \ 10370x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \ 10380x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10390x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10400x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 10410x00101210, 0x00380C34, 0x00000000, 0x00000000, \ 10420x0021155B, 0x00100099, 0x00206559, 0x0010009C, \ 10430x00244559, 0x00130836, 0x000C0000, 0x00220C62, \ 10440x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \ 10450x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \ 10460x00214C0E, 0x00380555, 0x00010004, 0x00041000, \ 10470x00278C67, 0x00040800, 0x00018100, 0x003A0437, \ 10480x00130826, 0x000C0001, 0x00220559, 0x00101313, \ 10490x00380559, 0x00000000, 0x00000000, 0x00000000, \ 10500x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10510x00000000, 0x00130831, 0x0010090B, 0x00124813, \ 10520x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \ 10530x003806A8, 0x00000000, 0x00000000, 0x00000000, \ 1054} 1055 1056/********************************************************/ 1057/* Micro code for 8086:1229 Rev 9 */ 1058/********************************************************/ 1059 1060/* Parameter values for the D101S */ 1061#define D101S_CPUSAVER_TIMER_DWORD 78 1062#define D101S_CPUSAVER_BUNDLE_DWORD 67 1063#define D101S_CPUSAVER_MIN_SIZE_DWORD 128 1064 1065#define D101S_RCVBUNDLE_UCODE \ 1066{\ 10670x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \ 10680x000C0001, 0x00101312, 0x000C0008, 0x00380243, \ 10690x0010009C, 0x00204056, 0x002380D0, 0x00380056, \ 10700x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \ 10710x0038047F, 0x00000000, 0x00140000, 0x003805A3, \ 10720x00308000, 0x00100610, 0x00100561, 0x000E0408, \ 10730x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 10740x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 10750x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \ 10760x00380F90, 0x00080000, 0x00103090, 0x00380F90, \ 10770x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10780x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \ 10790x003A047E, 0x00044010, 0x00380819, 0x00000000, \ 10800x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \ 10810x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \ 10820x00101213, 0x00260FF7, 0x00041000, 0x00010004, \ 10830x00130826, 0x000C0006, 0x00220700, 0x0013C926, \ 10840x00101313, 0x00380700, 0x00000000, 0x00000000, \ 10850x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10860x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 10870x00101210, 0x00380FB6, 0x00000000, 0x00000000, \ 10880x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \ 10890x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \ 10900x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \ 10910x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \ 10920x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \ 10930x00010004, 0x00041000, 0x00278FE9, 0x00040800, \ 10940x00018100, 0x003A047E, 0x00130826, 0x000C0001, \ 10950x002205A7, 0x00101313, 0x003805A7, 0x00000000, \ 10960x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10970x00000000, 0x00000000, 0x00000000, 0x00130831, \ 10980x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \ 10990x00041000, 0x00010004, 0x00380700 \ 1100} 1101 1102/********************************************************/ 1103/* Micro code for the 8086:1229 Rev F/10 */ 1104/********************************************************/ 1105 1106/* Parameter values for the D102 E-step */ 1107#define D102_E_CPUSAVER_TIMER_DWORD 42 1108#define D102_E_CPUSAVER_BUNDLE_DWORD 54 1109#define D102_E_CPUSAVER_MIN_SIZE_DWORD 46 1110 1111#define D102_E_RCVBUNDLE_UCODE \ 1112{\ 11130x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \ 11140x00E014B9, 0x00000000, 0x00000000, 0x00000000, \ 11150x00E014BD, 0x00000000, 0x00000000, 0x00000000, \ 11160x00E014D5, 0x00000000, 0x00000000, 0x00000000, \ 11170x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11180x00E014C1, 0x00000000, 0x00000000, 0x00000000, \ 11190x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11200x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11210x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11220x00E014C8, 0x00000000, 0x00000000, 0x00000000, \ 11230x00200600, 0x00E014EE, 0x00000000, 0x00000000, \ 11240x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \ 11250x00E00E43, 0x00000000, 0x00000000, 0x00000000, \ 11260x00300006, 0x00E014FB, 0x00000000, 0x00000000, \ 11270x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11280x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11290x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11300x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \ 11310x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \ 11320x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11330x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11340x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11350x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11360x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11370x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11380x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11390x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11400x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11410x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11420x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11430x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11440x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11450x00000000, 0x00000000, 0x00000000, 0x00000000, \ 1146} 1147 1148static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1149{ 1150/* *INDENT-OFF* */ 1151 static struct { 1152 u32 ucode[UCODE_SIZE + 1]; 1153 u8 mac; 1154 u8 timer_dword; 1155 u8 bundle_dword; 1156 u8 min_size_dword; 1157 } ucode_opts[] = { 1158 { D101M_B_RCVBUNDLE_UCODE, 1159 mac_82559_D101M, 1160 D101M_CPUSAVER_TIMER_DWORD, 1161 D101M_CPUSAVER_BUNDLE_DWORD, 1162 D101M_CPUSAVER_MIN_SIZE_DWORD }, 1163 { D101S_RCVBUNDLE_UCODE, 1164 mac_82559_D101S, 1165 D101S_CPUSAVER_TIMER_DWORD, 1166 D101S_CPUSAVER_BUNDLE_DWORD, 1167 D101S_CPUSAVER_MIN_SIZE_DWORD }, 1168 { D102_E_RCVBUNDLE_UCODE, 1169 mac_82551_F, 1170 D102_E_CPUSAVER_TIMER_DWORD, 1171 D102_E_CPUSAVER_BUNDLE_DWORD, 1172 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1173 { D102_E_RCVBUNDLE_UCODE, 1174 mac_82551_10, 1175 D102_E_CPUSAVER_TIMER_DWORD, 1176 D102_E_CPUSAVER_BUNDLE_DWORD, 1177 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1178 { {0}, 0, 0, 0, 0} 1179 }, *opts; 1180/* *INDENT-ON* */ 1181 1182/************************************************************************* 1183* CPUSaver parameters 1184* 1185* All CPUSaver parameters are 16-bit literals that are part of a 1186* "move immediate value" instruction. By changing the value of 1187* the literal in the instruction before the code is loaded, the 1188* driver can change the algorithm. 1189* 1190* INTDELAY - This loads the dead-man timer with its inital value. 1191* When this timer expires the interrupt is asserted, and the 1192* timer is reset each time a new packet is received. (see 1193* BUNDLEMAX below to set the limit on number of chained packets) 1194* The current default is 0x600 or 1536. Experiments show that 1195* the value should probably stay within the 0x200 - 0x1000. 1196* 1197* BUNDLEMAX - 1198* This sets the maximum number of frames that will be bundled. In 1199* some situations, such as the TCP windowing algorithm, it may be 1200* better to limit the growth of the bundle size than let it go as 1201* high as it can, because that could cause too much added latency. 1202* The default is six, because this is the number of packets in the 1203* default TCP window size. A value of 1 would make CPUSaver indicate 1204* an interrupt for every frame received. If you do not want to put 1205* a limit on the bundle size, set this value to xFFFF. 1206* 1207* BUNDLESMALL - 1208* This contains a bit-mask describing the minimum size frame that 1209* will be bundled. The default masks the lower 7 bits, which means 1210* that any frame less than 128 bytes in length will not be bundled, 1211* but will instead immediately generate an interrupt. This does 1212* not affect the current bundle in any way. Any frame that is 128 1213* bytes or large will be bundled normally. This feature is meant 1214* to provide immediate indication of ACK frames in a TCP environment. 1215* Customers were seeing poor performance when a machine with CPUSaver 1216* enabled was sending but not receiving. The delay introduced when 1217* the ACKs were received was enough to reduce total throughput, because 1218* the sender would sit idle until the ACK was finally seen. 1219* 1220* The current default is 0xFF80, which masks out the lower 7 bits. 1221* This means that any frame which is x7F (127) bytes or smaller 1222* will cause an immediate interrupt. Because this value must be a 1223* bit mask, there are only a few valid values that can be used. To 1224* turn this feature off, the driver can write the value xFFFF to the 1225* lower word of this instruction (in the same way that the other 1226* parameters are used). Likewise, a value of 0xF800 (2047) would 1227* cause an interrupt to be generated for every frame, because all 1228* standard Ethernet frames are <= 2047 bytes in length. 1229*************************************************************************/ 1230 1231/* if you wish to disable the ucode functionality, while maintaining the 1232 * workarounds it provides, set the following defines to: 1233 * BUNDLESMALL 0 1234 * BUNDLEMAX 1 1235 * INTDELAY 1 1236 */ 1237#define BUNDLESMALL 1 1238#define BUNDLEMAX (u16)6 1239#define INTDELAY (u16)1536 /* 0x600 */ 1240 1241 /* do not load u-code for ICH devices */ 1242 if (nic->flags & ich) 1243 goto noloaducode; 1244 1245 /* Search for ucode match against h/w rev_id */ 1246 for (opts = ucode_opts; opts->mac; opts++) { 1247 int i; 1248 u32 *ucode = opts->ucode; 1249 if (nic->mac != opts->mac) 1250 continue; 1251 1252 /* Insert user-tunable settings */ 1253 ucode[opts->timer_dword] &= 0xFFFF0000; 1254 ucode[opts->timer_dword] |= INTDELAY; 1255 ucode[opts->bundle_dword] &= 0xFFFF0000; 1256 ucode[opts->bundle_dword] |= BUNDLEMAX; 1257 ucode[opts->min_size_dword] &= 0xFFFF0000; 1258 ucode[opts->min_size_dword] |= (BUNDLESMALL) ? 0xFFFF : 0xFF80; 1259 1260 for (i = 0; i < UCODE_SIZE; i++) 1261 cb->u.ucode[i] = cpu_to_le32(ucode[i]); 1262 cb->command = cpu_to_le16(cb_ucode); 1263 return; 1264 } 1265 1266noloaducode: 1267 cb->command = cpu_to_le16(cb_nop); 1268} 1269 1270static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1271 struct sk_buff *skb) 1272{ 1273 cb->command = cpu_to_le16(cb_iaaddr); 1274 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1275} 1276 1277static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1278{ 1279 cb->command = cpu_to_le16(cb_dump); 1280 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1281 offsetof(struct mem, dump_buf)); 1282} 1283 1284#define NCONFIG_AUTO_SWITCH 0x0080 1285#define MII_NSC_CONG MII_RESV1 1286#define NSC_CONG_ENABLE 0x0100 1287#define NSC_CONG_TXREADY 0x0400 1288#define ADVERTISE_FC_SUPPORTED 0x0400 1289static int e100_phy_init(struct nic *nic) 1290{ 1291 struct net_device *netdev = nic->netdev; 1292 u32 addr; 1293 u16 bmcr, stat, id_lo, id_hi, cong; 1294 1295 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1296 for(addr = 0; addr < 32; addr++) { 1297 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1298 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1299 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1300 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1301 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1302 break; 1303 } 1304 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); 1305 if(addr == 32) 1306 return -EAGAIN; 1307 1308 /* Selected the phy and isolate the rest */ 1309 for(addr = 0; addr < 32; addr++) { 1310 if(addr != nic->mii.phy_id) { 1311 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1312 } else { 1313 bmcr = mdio_read(netdev, addr, MII_BMCR); 1314 mdio_write(netdev, addr, MII_BMCR, 1315 bmcr & ~BMCR_ISOLATE); 1316 } 1317 } 1318 1319 /* Get phy ID */ 1320 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1321 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1322 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1323 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); 1324 1325 /* Handle National tx phys */ 1326#define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1327 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1328 /* Disable congestion control */ 1329 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1330 cong |= NSC_CONG_TXREADY; 1331 cong &= ~NSC_CONG_ENABLE; 1332 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1333 } 1334 1335 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1336 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000))) { 1337 /* enable/disable MDI/MDI-X auto-switching. 1338 MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */ 1339 if((nic->mac == mac_82551_E) || (nic->mac == mac_82551_F) || 1340 (nic->mac == mac_82551_10) || (nic->mii.force_media) || 1341 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)) 1342 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 0); 1343 else 1344 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, NCONFIG_AUTO_SWITCH); 1345 } 1346 1347 return 0; 1348} 1349 1350static int e100_hw_init(struct nic *nic) 1351{ 1352 int err; 1353 1354 e100_hw_reset(nic); 1355 1356 DPRINTK(HW, ERR, "e100_hw_init\n"); 1357 if(!in_interrupt() && (err = e100_self_test(nic))) 1358 return err; 1359 1360 if((err = e100_phy_init(nic))) 1361 return err; 1362 if((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1363 return err; 1364 if((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1365 return err; 1366 if((err = e100_exec_cb(nic, NULL, e100_load_ucode))) 1367 return err; 1368 if((err = e100_exec_cb(nic, NULL, e100_configure))) 1369 return err; 1370 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1371 return err; 1372 if((err = e100_exec_cmd(nic, cuc_dump_addr, 1373 nic->dma_addr + offsetof(struct mem, stats)))) 1374 return err; 1375 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1376 return err; 1377 1378 e100_disable_irq(nic); 1379 1380 return 0; 1381} 1382 1383static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1384{ 1385 struct net_device *netdev = nic->netdev; 1386 struct dev_mc_list *list = netdev->mc_list; 1387 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); 1388 1389 cb->command = cpu_to_le16(cb_multi); 1390 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1391 for(i = 0; list && i < count; i++, list = list->next) 1392 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, 1393 ETH_ALEN); 1394} 1395 1396static void e100_set_multicast_list(struct net_device *netdev) 1397{ 1398 struct nic *nic = netdev_priv(netdev); 1399 1400 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", 1401 netdev->mc_count, netdev->flags); 1402 1403 if(netdev->flags & IFF_PROMISC) 1404 nic->flags |= promiscuous; 1405 else 1406 nic->flags &= ~promiscuous; 1407 1408 if(netdev->flags & IFF_ALLMULTI || 1409 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) 1410 nic->flags |= multicast_all; 1411 else 1412 nic->flags &= ~multicast_all; 1413 1414 e100_exec_cb(nic, NULL, e100_configure); 1415 e100_exec_cb(nic, NULL, e100_multi); 1416} 1417 1418static void e100_update_stats(struct nic *nic) 1419{ 1420 struct net_device_stats *ns = &nic->net_stats; 1421 struct stats *s = &nic->mem->stats; 1422 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1423 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames : 1424 &s->complete; 1425 1426 /* Device's stats reporting may take several microseconds to 1427 * complete, so where always waiting for results of the 1428 * previous command. */ 1429 1430 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) { 1431 *complete = 0; 1432 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1433 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1434 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1435 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1436 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1437 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1438 ns->collisions += nic->tx_collisions; 1439 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1440 le32_to_cpu(s->tx_lost_crs); 1441 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + 1442 nic->rx_over_length_errors; 1443 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1444 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1445 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1446 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1447 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1448 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1449 le32_to_cpu(s->rx_alignment_errors) + 1450 le32_to_cpu(s->rx_short_frame_errors) + 1451 le32_to_cpu(s->rx_cdt_errors); 1452 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1453 nic->tx_single_collisions += 1454 le32_to_cpu(s->tx_single_collisions); 1455 nic->tx_multiple_collisions += 1456 le32_to_cpu(s->tx_multiple_collisions); 1457 if(nic->mac >= mac_82558_D101_A4) { 1458 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1459 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1460 nic->rx_fc_unsupported += 1461 le32_to_cpu(s->fc_rcv_unsupported); 1462 if(nic->mac >= mac_82559_D101M) { 1463 nic->tx_tco_frames += 1464 le16_to_cpu(s->xmt_tco_frames); 1465 nic->rx_tco_frames += 1466 le16_to_cpu(s->rcv_tco_frames); 1467 } 1468 } 1469 } 1470 1471 1472 if(e100_exec_cmd(nic, cuc_dump_reset, 0)) 1473 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); 1474} 1475 1476static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1477{ 1478 /* Adjust inter-frame-spacing (IFS) between two transmits if 1479 * we're getting collisions on a half-duplex connection. */ 1480 1481 if(duplex == DUPLEX_HALF) { 1482 u32 prev = nic->adaptive_ifs; 1483 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1484 1485 if((nic->tx_frames / 32 < nic->tx_collisions) && 1486 (nic->tx_frames > min_frames)) { 1487 if(nic->adaptive_ifs < 60) 1488 nic->adaptive_ifs += 5; 1489 } else if (nic->tx_frames < min_frames) { 1490 if(nic->adaptive_ifs >= 5) 1491 nic->adaptive_ifs -= 5; 1492 } 1493 if(nic->adaptive_ifs != prev) 1494 e100_exec_cb(nic, NULL, e100_configure); 1495 } 1496} 1497 1498static void e100_watchdog(unsigned long data) 1499{ 1500 struct nic *nic = (struct nic *)data; 1501 struct ethtool_cmd cmd; 1502 1503 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); 1504 1505 /* mii library handles link maintenance tasks */ 1506 1507 mii_ethtool_gset(&nic->mii, &cmd); 1508 1509 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1510 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", 1511 cmd.speed == SPEED_100 ? "100" : "10", 1512 cmd.duplex == DUPLEX_FULL ? "full" : "half"); 1513 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1514 DPRINTK(LINK, INFO, "link down\n"); 1515 } 1516 1517 mii_check_link(&nic->mii); 1518 1519 /* Software generated interrupt to recover from (rare) Rx 1520 * allocation failure. 1521 * Unfortunately have to use a spinlock to not re-enable interrupts 1522 * accidentally, due to hardware that shares a register between the 1523 * interrupt mask bit and the SW Interrupt generation bit */ 1524 spin_lock_irq(&nic->cmd_lock); 1525 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1526 spin_unlock_irq(&nic->cmd_lock); 1527 e100_write_flush(nic); 1528 1529 e100_update_stats(nic); 1530 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); 1531 1532 if(nic->mac <= mac_82557_D100_C) 1533 /* Issue a multicast command to workaround a 557 lock up */ 1534 e100_set_multicast_list(nic->netdev); 1535 1536 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) 1537 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1538 nic->flags |= ich_10h_workaround; 1539 else 1540 nic->flags &= ~ich_10h_workaround; 1541 1542 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD); 1543} 1544 1545static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb, 1546 struct sk_buff *skb) 1547{ 1548 cb->command = nic->tx_command; 1549 /* interrupt every 16 packets regardless of delay */ 1550 if((nic->cbs_avail & ~15) == nic->cbs_avail) 1551 cb->command |= cpu_to_le16(cb_i); 1552 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1553 cb->u.tcb.tcb_byte_count = 0; 1554 cb->u.tcb.threshold = nic->tx_threshold; 1555 cb->u.tcb.tbd_count = 1; 1556 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, 1557 skb->data, skb->len, PCI_DMA_TODEVICE)); 1558 /* check for mapping failure? */ 1559 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1560} 1561 1562static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 1563{ 1564 struct nic *nic = netdev_priv(netdev); 1565 int err; 1566 1567 if(nic->flags & ich_10h_workaround) { 1568 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1569 Issue a NOP command followed by a 1us delay before 1570 issuing the Tx command. */ 1571 if(e100_exec_cmd(nic, cuc_nop, 0)) 1572 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); 1573 udelay(1); 1574 } 1575 1576 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1577 1578 switch(err) { 1579 case -ENOSPC: 1580 /* We queued the skb, but now we're out of space. */ 1581 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); 1582 netif_stop_queue(netdev); 1583 break; 1584 case -ENOMEM: 1585 /* This is a hard error - log it. */ 1586 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); 1587 netif_stop_queue(netdev); 1588 return 1; 1589 } 1590 1591 netdev->trans_start = jiffies; 1592 return 0; 1593} 1594 1595static inline int e100_tx_clean(struct nic *nic) 1596{ 1597 struct cb *cb; 1598 int tx_cleaned = 0; 1599 1600 spin_lock(&nic->cb_lock); 1601 1602 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n", 1603 nic->cb_to_clean->status); 1604 1605 /* Clean CBs marked complete */ 1606 for(cb = nic->cb_to_clean; 1607 cb->status & cpu_to_le16(cb_complete); 1608 cb = nic->cb_to_clean = cb->next) { 1609 if(likely(cb->skb != NULL)) { 1610 nic->net_stats.tx_packets++; 1611 nic->net_stats.tx_bytes += cb->skb->len; 1612 1613 pci_unmap_single(nic->pdev, 1614 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1615 le16_to_cpu(cb->u.tcb.tbd.size), 1616 PCI_DMA_TODEVICE); 1617 dev_kfree_skb_any(cb->skb); 1618 cb->skb = NULL; 1619 tx_cleaned = 1; 1620 } 1621 cb->status = 0; 1622 nic->cbs_avail++; 1623 } 1624 1625 spin_unlock(&nic->cb_lock); 1626 1627 /* Recover from running out of Tx resources in xmit_frame */ 1628 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1629 netif_wake_queue(nic->netdev); 1630 1631 return tx_cleaned; 1632} 1633 1634static void e100_clean_cbs(struct nic *nic) 1635{ 1636 if(nic->cbs) { 1637 while(nic->cbs_avail != nic->params.cbs.count) { 1638 struct cb *cb = nic->cb_to_clean; 1639 if(cb->skb) { 1640 pci_unmap_single(nic->pdev, 1641 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1642 le16_to_cpu(cb->u.tcb.tbd.size), 1643 PCI_DMA_TODEVICE); 1644 dev_kfree_skb(cb->skb); 1645 } 1646 nic->cb_to_clean = nic->cb_to_clean->next; 1647 nic->cbs_avail++; 1648 } 1649 pci_free_consistent(nic->pdev, 1650 sizeof(struct cb) * nic->params.cbs.count, 1651 nic->cbs, nic->cbs_dma_addr); 1652 nic->cbs = NULL; 1653 nic->cbs_avail = 0; 1654 } 1655 nic->cuc_cmd = cuc_start; 1656 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1657 nic->cbs; 1658} 1659 1660static int e100_alloc_cbs(struct nic *nic) 1661{ 1662 struct cb *cb; 1663 unsigned int i, count = nic->params.cbs.count; 1664 1665 nic->cuc_cmd = cuc_start; 1666 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1667 nic->cbs_avail = 0; 1668 1669 nic->cbs = pci_alloc_consistent(nic->pdev, 1670 sizeof(struct cb) * count, &nic->cbs_dma_addr); 1671 if(!nic->cbs) 1672 return -ENOMEM; 1673 1674 for(cb = nic->cbs, i = 0; i < count; cb++, i++) { 1675 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1676 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1677 1678 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1679 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1680 ((i+1) % count) * sizeof(struct cb)); 1681 cb->skb = NULL; 1682 } 1683 1684 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1685 nic->cbs_avail = count; 1686 1687 return 0; 1688} 1689 1690static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1691{ 1692 if(!nic->rxs) return; 1693 if(RU_SUSPENDED != nic->ru_running) return; 1694 1695 /* handle init time starts */ 1696 if(!rx) rx = nic->rxs; 1697 1698 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1699 if(rx->skb) { 1700 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1701 nic->ru_running = RU_RUNNING; 1702 } 1703} 1704 1705#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) 1706static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1707{ 1708 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN))) 1709 return -ENOMEM; 1710 1711 /* Align, init, and map the RFD. */ 1712 rx->skb->dev = nic->netdev; 1713 skb_reserve(rx->skb, NET_IP_ALIGN); 1714 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd)); 1715 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1716 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1717 1718 if(pci_dma_mapping_error(rx->dma_addr)) { 1719 dev_kfree_skb_any(rx->skb); 1720 rx->skb = NULL; 1721 rx->dma_addr = 0; 1722 return -ENOMEM; 1723 } 1724 1725 /* Link the RFD to end of RFA by linking previous RFD to 1726 * this one, and clearing EL bit of previous. */ 1727 if(rx->prev->skb) { 1728 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1729 put_unaligned(cpu_to_le32(rx->dma_addr), 1730 (u32 *)&prev_rfd->link); 1731 wmb(); 1732 prev_rfd->command &= ~cpu_to_le16(cb_el); 1733 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1734 sizeof(struct rfd), PCI_DMA_TODEVICE); 1735 } 1736 1737 return 0; 1738} 1739 1740static inline int e100_rx_indicate(struct nic *nic, struct rx *rx, 1741 unsigned int *work_done, unsigned int work_to_do) 1742{ 1743 struct sk_buff *skb = rx->skb; 1744 struct rfd *rfd = (struct rfd *)skb->data; 1745 u16 rfd_status, actual_size; 1746 1747 if(unlikely(work_done && *work_done >= work_to_do)) 1748 return -EAGAIN; 1749 1750 /* Need to sync before taking a peek at cb_complete bit */ 1751 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1752 sizeof(struct rfd), PCI_DMA_FROMDEVICE); 1753 rfd_status = le16_to_cpu(rfd->status); 1754 1755 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); 1756 1757 /* If data isn't ready, nothing to indicate */ 1758 if(unlikely(!(rfd_status & cb_complete))) 1759 return -ENODATA; 1760 1761 /* Get actual data size */ 1762 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1763 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1764 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1765 1766 /* Get data */ 1767 pci_unmap_single(nic->pdev, rx->dma_addr, 1768 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1769 1770 /* this allows for a fast restart without re-enabling interrupts */ 1771 if(le16_to_cpu(rfd->command) & cb_el) 1772 nic->ru_running = RU_SUSPENDED; 1773 1774 /* Pull off the RFD and put the actual data (minus eth hdr) */ 1775 skb_reserve(skb, sizeof(struct rfd)); 1776 skb_put(skb, actual_size); 1777 skb->protocol = eth_type_trans(skb, nic->netdev); 1778 1779 if(unlikely(!(rfd_status & cb_ok))) { 1780 /* Don't indicate if hardware indicates errors */ 1781 dev_kfree_skb_any(skb); 1782 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { 1783 /* Don't indicate oversized frames */ 1784 nic->rx_over_length_errors++; 1785 dev_kfree_skb_any(skb); 1786 } else { 1787 nic->net_stats.rx_packets++; 1788 nic->net_stats.rx_bytes += actual_size; 1789 nic->netdev->last_rx = jiffies; 1790 netif_receive_skb(skb); 1791 if(work_done) 1792 (*work_done)++; 1793 } 1794 1795 rx->skb = NULL; 1796 1797 return 0; 1798} 1799 1800static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done, 1801 unsigned int work_to_do) 1802{ 1803 struct rx *rx; 1804 int restart_required = 0; 1805 struct rx *rx_to_start = NULL; 1806 1807 /* are we already rnr? then pay attention!!! this ensures that 1808 * the state machine progression never allows a start with a 1809 * partially cleaned list, avoiding a race between hardware 1810 * and rx_to_clean when in NAPI mode */ 1811 if(RU_SUSPENDED == nic->ru_running) 1812 restart_required = 1; 1813 1814 /* Indicate newly arrived packets */ 1815 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 1816 int err = e100_rx_indicate(nic, rx, work_done, work_to_do); 1817 if(-EAGAIN == err) { 1818 /* hit quota so have more work to do, restart once 1819 * cleanup is complete */ 1820 restart_required = 0; 1821 break; 1822 } else if(-ENODATA == err) 1823 break; /* No more to clean */ 1824 } 1825 1826 /* save our starting point as the place we'll restart the receiver */ 1827 if(restart_required) 1828 rx_to_start = nic->rx_to_clean; 1829 1830 /* Alloc new skbs to refill list */ 1831 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 1832 if(unlikely(e100_rx_alloc_skb(nic, rx))) 1833 break; /* Better luck next time (see watchdog) */ 1834 } 1835 1836 if(restart_required) { 1837 // ack the rnr? 1838 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack); 1839 e100_start_receiver(nic, rx_to_start); 1840 if(work_done) 1841 (*work_done)++; 1842 } 1843} 1844 1845static void e100_rx_clean_list(struct nic *nic) 1846{ 1847 struct rx *rx; 1848 unsigned int i, count = nic->params.rfds.count; 1849 1850 nic->ru_running = RU_UNINITIALIZED; 1851 1852 if(nic->rxs) { 1853 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1854 if(rx->skb) { 1855 pci_unmap_single(nic->pdev, rx->dma_addr, 1856 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1857 dev_kfree_skb(rx->skb); 1858 } 1859 } 1860 kfree(nic->rxs); 1861 nic->rxs = NULL; 1862 } 1863 1864 nic->rx_to_use = nic->rx_to_clean = NULL; 1865} 1866 1867static int e100_rx_alloc_list(struct nic *nic) 1868{ 1869 struct rx *rx; 1870 unsigned int i, count = nic->params.rfds.count; 1871 1872 nic->rx_to_use = nic->rx_to_clean = NULL; 1873 nic->ru_running = RU_UNINITIALIZED; 1874 1875 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) 1876 return -ENOMEM; 1877 memset(nic->rxs, 0, sizeof(struct rx) * count); 1878 1879 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1880 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 1881 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 1882 if(e100_rx_alloc_skb(nic, rx)) { 1883 e100_rx_clean_list(nic); 1884 return -ENOMEM; 1885 } 1886 } 1887 1888 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 1889 nic->ru_running = RU_SUSPENDED; 1890 1891 return 0; 1892} 1893 1894static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs) 1895{ 1896 struct net_device *netdev = dev_id; 1897 struct nic *nic = netdev_priv(netdev); 1898 u8 stat_ack = readb(&nic->csr->scb.stat_ack); 1899 1900 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); 1901 1902 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ 1903 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 1904 return IRQ_NONE; 1905 1906 /* Ack interrupt(s) */ 1907 writeb(stat_ack, &nic->csr->scb.stat_ack); 1908 1909 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 1910 if(stat_ack & stat_ack_rnr) 1911 nic->ru_running = RU_SUSPENDED; 1912 1913 if(likely(netif_rx_schedule_prep(netdev))) { 1914 e100_disable_irq(nic); 1915 __netif_rx_schedule(netdev); 1916 } 1917 1918 return IRQ_HANDLED; 1919} 1920 1921static int e100_poll(struct net_device *netdev, int *budget) 1922{ 1923 struct nic *nic = netdev_priv(netdev); 1924 unsigned int work_to_do = min(netdev->quota, *budget); 1925 unsigned int work_done = 0; 1926 int tx_cleaned; 1927 1928 e100_rx_clean(nic, &work_done, work_to_do); 1929 tx_cleaned = e100_tx_clean(nic); 1930 1931 /* If no Rx and Tx cleanup work was done, exit polling mode. */ 1932 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { 1933 netif_rx_complete(netdev); 1934 e100_enable_irq(nic); 1935 return 0; 1936 } 1937 1938 *budget -= work_done; 1939 netdev->quota -= work_done; 1940 1941 return 1; 1942} 1943 1944#ifdef CONFIG_NET_POLL_CONTROLLER 1945static void e100_netpoll(struct net_device *netdev) 1946{ 1947 struct nic *nic = netdev_priv(netdev); 1948 1949 e100_disable_irq(nic); 1950 e100_intr(nic->pdev->irq, netdev, NULL); 1951 e100_tx_clean(nic); 1952 e100_enable_irq(nic); 1953} 1954#endif 1955 1956static struct net_device_stats *e100_get_stats(struct net_device *netdev) 1957{ 1958 struct nic *nic = netdev_priv(netdev); 1959 return &nic->net_stats; 1960} 1961 1962static int e100_set_mac_address(struct net_device *netdev, void *p) 1963{ 1964 struct nic *nic = netdev_priv(netdev); 1965 struct sockaddr *addr = p; 1966 1967 if (!is_valid_ether_addr(addr->sa_data)) 1968 return -EADDRNOTAVAIL; 1969 1970 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1971 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 1972 1973 return 0; 1974} 1975 1976static int e100_change_mtu(struct net_device *netdev, int new_mtu) 1977{ 1978 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 1979 return -EINVAL; 1980 netdev->mtu = new_mtu; 1981 return 0; 1982} 1983 1984#ifdef CONFIG_PM 1985static int e100_asf(struct nic *nic) 1986{ 1987 /* ASF can be enabled from eeprom */ 1988 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 1989 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 1990 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 1991 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); 1992} 1993#endif 1994 1995static int e100_up(struct nic *nic) 1996{ 1997 int err; 1998 1999 if((err = e100_rx_alloc_list(nic))) 2000 return err; 2001 if((err = e100_alloc_cbs(nic))) 2002 goto err_rx_clean_list; 2003 if((err = e100_hw_init(nic))) 2004 goto err_clean_cbs; 2005 e100_set_multicast_list(nic->netdev); 2006 e100_start_receiver(nic, NULL); 2007 mod_timer(&nic->watchdog, jiffies); 2008 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ, 2009 nic->netdev->name, nic->netdev))) 2010 goto err_no_irq; 2011 netif_wake_queue(nic->netdev); 2012 netif_poll_enable(nic->netdev); 2013 /* enable ints _after_ enabling poll, preventing a race between 2014 * disable ints+schedule */ 2015 e100_enable_irq(nic); 2016 return 0; 2017 2018err_no_irq: 2019 del_timer_sync(&nic->watchdog); 2020err_clean_cbs: 2021 e100_clean_cbs(nic); 2022err_rx_clean_list: 2023 e100_rx_clean_list(nic); 2024 return err; 2025} 2026 2027static void e100_down(struct nic *nic) 2028{ 2029 /* wait here for poll to complete */ 2030 netif_poll_disable(nic->netdev); 2031 netif_stop_queue(nic->netdev); 2032 e100_hw_reset(nic); 2033 free_irq(nic->pdev->irq, nic->netdev); 2034 del_timer_sync(&nic->watchdog); 2035 netif_carrier_off(nic->netdev); 2036 e100_clean_cbs(nic); 2037 e100_rx_clean_list(nic); 2038} 2039 2040static void e100_tx_timeout(struct net_device *netdev) 2041{ 2042 struct nic *nic = netdev_priv(netdev); 2043 2044 /* Reset outside of interrupt context, to avoid request_irq 2045 * in interrupt context */ 2046 schedule_work(&nic->tx_timeout_task); 2047} 2048 2049static void e100_tx_timeout_task(struct net_device *netdev) 2050{ 2051 struct nic *nic = netdev_priv(netdev); 2052 2053 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", 2054 readb(&nic->csr->scb.status)); 2055 e100_down(netdev_priv(netdev)); 2056 e100_up(netdev_priv(netdev)); 2057} 2058 2059static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2060{ 2061 int err; 2062 struct sk_buff *skb; 2063 2064 /* Use driver resources to perform internal MAC or PHY 2065 * loopback test. A single packet is prepared and transmitted 2066 * in loopback mode, and the test passes if the received 2067 * packet compares byte-for-byte to the transmitted packet. */ 2068 2069 if((err = e100_rx_alloc_list(nic))) 2070 return err; 2071 if((err = e100_alloc_cbs(nic))) 2072 goto err_clean_rx; 2073 2074 /* ICH PHY loopback is broken so do MAC loopback instead */ 2075 if(nic->flags & ich && loopback_mode == lb_phy) 2076 loopback_mode = lb_mac; 2077 2078 nic->loopback = loopback_mode; 2079 if((err = e100_hw_init(nic))) 2080 goto err_loopback_none; 2081 2082 if(loopback_mode == lb_phy) 2083 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2084 BMCR_LOOPBACK); 2085 2086 e100_start_receiver(nic, NULL); 2087 2088 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { 2089 err = -ENOMEM; 2090 goto err_loopback_none; 2091 } 2092 skb_put(skb, ETH_DATA_LEN); 2093 memset(skb->data, 0xFF, ETH_DATA_LEN); 2094 e100_xmit_frame(skb, nic->netdev); 2095 2096 msleep(10); 2097 2098 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2099 skb->data, ETH_DATA_LEN)) 2100 err = -EAGAIN; 2101 2102err_loopback_none: 2103 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2104 nic->loopback = lb_none; 2105 e100_hw_init(nic); 2106 e100_clean_cbs(nic); 2107err_clean_rx: 2108 e100_rx_clean_list(nic); 2109 return err; 2110} 2111 2112#define MII_LED_CONTROL 0x1B 2113static void e100_blink_led(unsigned long data) 2114{ 2115 struct nic *nic = (struct nic *)data; 2116 enum led_state { 2117 led_on = 0x01, 2118 led_off = 0x04, 2119 led_on_559 = 0x05, 2120 led_on_557 = 0x07, 2121 }; 2122 2123 nic->leds = (nic->leds & led_on) ? led_off : 2124 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 2125 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); 2126 mod_timer(&nic->blink_timer, jiffies + HZ / 4); 2127} 2128 2129static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2130{ 2131 struct nic *nic = netdev_priv(netdev); 2132 return mii_ethtool_gset(&nic->mii, cmd); 2133} 2134 2135static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2136{ 2137 struct nic *nic = netdev_priv(netdev); 2138 int err; 2139 2140 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2141 err = mii_ethtool_sset(&nic->mii, cmd); 2142 e100_exec_cb(nic, NULL, e100_configure); 2143 2144 return err; 2145} 2146 2147static void e100_get_drvinfo(struct net_device *netdev, 2148 struct ethtool_drvinfo *info) 2149{ 2150 struct nic *nic = netdev_priv(netdev); 2151 strcpy(info->driver, DRV_NAME); 2152 strcpy(info->version, DRV_VERSION); 2153 strcpy(info->fw_version, "N/A"); 2154 strcpy(info->bus_info, pci_name(nic->pdev)); 2155} 2156 2157static int e100_get_regs_len(struct net_device *netdev) 2158{ 2159 struct nic *nic = netdev_priv(netdev); 2160#define E100_PHY_REGS 0x1C 2161#define E100_REGS_LEN 1 + E100_PHY_REGS + \ 2162 sizeof(nic->mem->dump_buf) / sizeof(u32) 2163 return E100_REGS_LEN * sizeof(u32); 2164} 2165 2166static void e100_get_regs(struct net_device *netdev, 2167 struct ethtool_regs *regs, void *p) 2168{ 2169 struct nic *nic = netdev_priv(netdev); 2170 u32 *buff = p; 2171 int i; 2172 2173 regs->version = (1 << 24) | nic->rev_id; 2174 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 | 2175 readb(&nic->csr->scb.cmd_lo) << 16 | 2176 readw(&nic->csr->scb.status); 2177 for(i = E100_PHY_REGS; i >= 0; i--) 2178 buff[1 + E100_PHY_REGS - i] = 2179 mdio_read(netdev, nic->mii.phy_id, i); 2180 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2181 e100_exec_cb(nic, NULL, e100_dump); 2182 msleep(10); 2183 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2184 sizeof(nic->mem->dump_buf)); 2185} 2186 2187static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2188{ 2189 struct nic *nic = netdev_priv(netdev); 2190 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2191 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2192} 2193 2194static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2195{ 2196 struct nic *nic = netdev_priv(netdev); 2197 2198 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) 2199 return -EOPNOTSUPP; 2200 2201 if(wol->wolopts) 2202 nic->flags |= wol_magic; 2203 else 2204 nic->flags &= ~wol_magic; 2205 2206 e100_exec_cb(nic, NULL, e100_configure); 2207 2208 return 0; 2209} 2210 2211static u32 e100_get_msglevel(struct net_device *netdev) 2212{ 2213 struct nic *nic = netdev_priv(netdev); 2214 return nic->msg_enable; 2215} 2216 2217static void e100_set_msglevel(struct net_device *netdev, u32 value) 2218{ 2219 struct nic *nic = netdev_priv(netdev); 2220 nic->msg_enable = value; 2221} 2222 2223static int e100_nway_reset(struct net_device *netdev) 2224{ 2225 struct nic *nic = netdev_priv(netdev); 2226 return mii_nway_restart(&nic->mii); 2227} 2228 2229static u32 e100_get_link(struct net_device *netdev) 2230{ 2231 struct nic *nic = netdev_priv(netdev); 2232 return mii_link_ok(&nic->mii); 2233} 2234 2235static int e100_get_eeprom_len(struct net_device *netdev) 2236{ 2237 struct nic *nic = netdev_priv(netdev); 2238 return nic->eeprom_wc << 1; 2239} 2240 2241#define E100_EEPROM_MAGIC 0x1234 2242static int e100_get_eeprom(struct net_device *netdev, 2243 struct ethtool_eeprom *eeprom, u8 *bytes) 2244{ 2245 struct nic *nic = netdev_priv(netdev); 2246 2247 eeprom->magic = E100_EEPROM_MAGIC; 2248 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2249 2250 return 0; 2251} 2252 2253static int e100_set_eeprom(struct net_device *netdev, 2254 struct ethtool_eeprom *eeprom, u8 *bytes) 2255{ 2256 struct nic *nic = netdev_priv(netdev); 2257 2258 if(eeprom->magic != E100_EEPROM_MAGIC) 2259 return -EINVAL; 2260 2261 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2262 2263 return e100_eeprom_save(nic, eeprom->offset >> 1, 2264 (eeprom->len >> 1) + 1); 2265} 2266 2267static void e100_get_ringparam(struct net_device *netdev, 2268 struct ethtool_ringparam *ring) 2269{ 2270 struct nic *nic = netdev_priv(netdev); 2271 struct param_range *rfds = &nic->params.rfds; 2272 struct param_range *cbs = &nic->params.cbs; 2273 2274 ring->rx_max_pending = rfds->max; 2275 ring->tx_max_pending = cbs->max; 2276 ring->rx_mini_max_pending = 0; 2277 ring->rx_jumbo_max_pending = 0; 2278 ring->rx_pending = rfds->count; 2279 ring->tx_pending = cbs->count; 2280 ring->rx_mini_pending = 0; 2281 ring->rx_jumbo_pending = 0; 2282} 2283 2284static int e100_set_ringparam(struct net_device *netdev, 2285 struct ethtool_ringparam *ring) 2286{ 2287 struct nic *nic = netdev_priv(netdev); 2288 struct param_range *rfds = &nic->params.rfds; 2289 struct param_range *cbs = &nic->params.cbs; 2290 2291 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2292 return -EINVAL; 2293 2294 if(netif_running(netdev)) 2295 e100_down(nic); 2296 rfds->count = max(ring->rx_pending, rfds->min); 2297 rfds->count = min(rfds->count, rfds->max); 2298 cbs->count = max(ring->tx_pending, cbs->min); 2299 cbs->count = min(cbs->count, cbs->max); 2300 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", 2301 rfds->count, cbs->count); 2302 if(netif_running(netdev)) 2303 e100_up(nic); 2304 2305 return 0; 2306} 2307 2308static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2309 "Link test (on/offline)", 2310 "Eeprom test (on/offline)", 2311 "Self test (offline)", 2312 "Mac loopback (offline)", 2313 "Phy loopback (offline)", 2314}; 2315#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN 2316 2317static int e100_diag_test_count(struct net_device *netdev) 2318{ 2319 return E100_TEST_LEN; 2320} 2321 2322static void e100_diag_test(struct net_device *netdev, 2323 struct ethtool_test *test, u64 *data) 2324{ 2325 struct ethtool_cmd cmd; 2326 struct nic *nic = netdev_priv(netdev); 2327 int i, err; 2328 2329 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2330 data[0] = !mii_link_ok(&nic->mii); 2331 data[1] = e100_eeprom_load(nic); 2332 if(test->flags & ETH_TEST_FL_OFFLINE) { 2333 2334 /* save speed, duplex & autoneg settings */ 2335 err = mii_ethtool_gset(&nic->mii, &cmd); 2336 2337 if(netif_running(netdev)) 2338 e100_down(nic); 2339 data[2] = e100_self_test(nic); 2340 data[3] = e100_loopback_test(nic, lb_mac); 2341 data[4] = e100_loopback_test(nic, lb_phy); 2342 2343 /* restore speed, duplex & autoneg settings */ 2344 err = mii_ethtool_sset(&nic->mii, &cmd); 2345 2346 if(netif_running(netdev)) 2347 e100_up(nic); 2348 } 2349 for(i = 0; i < E100_TEST_LEN; i++) 2350 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2351 2352 msleep_interruptible(4 * 1000); 2353} 2354 2355static int e100_phys_id(struct net_device *netdev, u32 data) 2356{ 2357 struct nic *nic = netdev_priv(netdev); 2358 2359 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 2360 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); 2361 mod_timer(&nic->blink_timer, jiffies); 2362 msleep_interruptible(data * 1000); 2363 del_timer_sync(&nic->blink_timer); 2364 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); 2365 2366 return 0; 2367} 2368 2369static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2370 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2371 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2372 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2373 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2374 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2375 "tx_heartbeat_errors", "tx_window_errors", 2376 /* device-specific stats */ 2377 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2378 "tx_flow_control_pause", "rx_flow_control_pause", 2379 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2380}; 2381#define E100_NET_STATS_LEN 21 2382#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN 2383 2384static int e100_get_stats_count(struct net_device *netdev) 2385{ 2386 return E100_STATS_LEN; 2387} 2388 2389static void e100_get_ethtool_stats(struct net_device *netdev, 2390 struct ethtool_stats *stats, u64 *data) 2391{ 2392 struct nic *nic = netdev_priv(netdev); 2393 int i; 2394 2395 for(i = 0; i < E100_NET_STATS_LEN; i++) 2396 data[i] = ((unsigned long *)&nic->net_stats)[i]; 2397 2398 data[i++] = nic->tx_deferred; 2399 data[i++] = nic->tx_single_collisions; 2400 data[i++] = nic->tx_multiple_collisions; 2401 data[i++] = nic->tx_fc_pause; 2402 data[i++] = nic->rx_fc_pause; 2403 data[i++] = nic->rx_fc_unsupported; 2404 data[i++] = nic->tx_tco_frames; 2405 data[i++] = nic->rx_tco_frames; 2406} 2407 2408static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2409{ 2410 switch(stringset) { 2411 case ETH_SS_TEST: 2412 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2413 break; 2414 case ETH_SS_STATS: 2415 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2416 break; 2417 } 2418} 2419 2420static struct ethtool_ops e100_ethtool_ops = { 2421 .get_settings = e100_get_settings, 2422 .set_settings = e100_set_settings, 2423 .get_drvinfo = e100_get_drvinfo, 2424 .get_regs_len = e100_get_regs_len, 2425 .get_regs = e100_get_regs, 2426 .get_wol = e100_get_wol, 2427 .set_wol = e100_set_wol, 2428 .get_msglevel = e100_get_msglevel, 2429 .set_msglevel = e100_set_msglevel, 2430 .nway_reset = e100_nway_reset, 2431 .get_link = e100_get_link, 2432 .get_eeprom_len = e100_get_eeprom_len, 2433 .get_eeprom = e100_get_eeprom, 2434 .set_eeprom = e100_set_eeprom, 2435 .get_ringparam = e100_get_ringparam, 2436 .set_ringparam = e100_set_ringparam, 2437 .self_test_count = e100_diag_test_count, 2438 .self_test = e100_diag_test, 2439 .get_strings = e100_get_strings, 2440 .phys_id = e100_phys_id, 2441 .get_stats_count = e100_get_stats_count, 2442 .get_ethtool_stats = e100_get_ethtool_stats, 2443 .get_perm_addr = ethtool_op_get_perm_addr, 2444}; 2445 2446static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2447{ 2448 struct nic *nic = netdev_priv(netdev); 2449 2450 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2451} 2452 2453static int e100_alloc(struct nic *nic) 2454{ 2455 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2456 &nic->dma_addr); 2457 return nic->mem ? 0 : -ENOMEM; 2458} 2459 2460static void e100_free(struct nic *nic) 2461{ 2462 if(nic->mem) { 2463 pci_free_consistent(nic->pdev, sizeof(struct mem), 2464 nic->mem, nic->dma_addr); 2465 nic->mem = NULL; 2466 } 2467} 2468 2469static int e100_open(struct net_device *netdev) 2470{ 2471 struct nic *nic = netdev_priv(netdev); 2472 int err = 0; 2473 2474 netif_carrier_off(netdev); 2475 if((err = e100_up(nic))) 2476 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); 2477 return err; 2478} 2479 2480static int e100_close(struct net_device *netdev) 2481{ 2482 e100_down(netdev_priv(netdev)); 2483 return 0; 2484} 2485 2486static int __devinit e100_probe(struct pci_dev *pdev, 2487 const struct pci_device_id *ent) 2488{ 2489 struct net_device *netdev; 2490 struct nic *nic; 2491 int err; 2492 2493 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { 2494 if(((1 << debug) - 1) & NETIF_MSG_PROBE) 2495 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); 2496 return -ENOMEM; 2497 } 2498 2499 netdev->open = e100_open; 2500 netdev->stop = e100_close; 2501 netdev->hard_start_xmit = e100_xmit_frame; 2502 netdev->get_stats = e100_get_stats; 2503 netdev->set_multicast_list = e100_set_multicast_list; 2504 netdev->set_mac_address = e100_set_mac_address; 2505 netdev->change_mtu = e100_change_mtu; 2506 netdev->do_ioctl = e100_do_ioctl; 2507 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); 2508 netdev->tx_timeout = e100_tx_timeout; 2509 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2510 netdev->poll = e100_poll; 2511 netdev->weight = E100_NAPI_WEIGHT; 2512#ifdef CONFIG_NET_POLL_CONTROLLER 2513 netdev->poll_controller = e100_netpoll; 2514#endif 2515 strcpy(netdev->name, pci_name(pdev)); 2516 2517 nic = netdev_priv(netdev); 2518 nic->netdev = netdev; 2519 nic->pdev = pdev; 2520 nic->msg_enable = (1 << debug) - 1; 2521 pci_set_drvdata(pdev, netdev); 2522 2523 if((err = pci_enable_device(pdev))) { 2524 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); 2525 goto err_out_free_dev; 2526 } 2527 2528 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2529 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " 2530 "base address, aborting.\n"); 2531 err = -ENODEV; 2532 goto err_out_disable_pdev; 2533 } 2534 2535 if((err = pci_request_regions(pdev, DRV_NAME))) { 2536 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); 2537 goto err_out_disable_pdev; 2538 } 2539 2540 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { 2541 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); 2542 goto err_out_free_res; 2543 } 2544 2545 SET_MODULE_OWNER(netdev); 2546 SET_NETDEV_DEV(netdev, &pdev->dev); 2547 2548 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr)); 2549 if(!nic->csr) { 2550 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); 2551 err = -ENOMEM; 2552 goto err_out_free_res; 2553 } 2554 2555 if(ent->driver_data) 2556 nic->flags |= ich; 2557 else 2558 nic->flags &= ~ich; 2559 2560 e100_get_defaults(nic); 2561 2562 /* locks must be initialized before calling hw_reset */ 2563 spin_lock_init(&nic->cb_lock); 2564 spin_lock_init(&nic->cmd_lock); 2565 2566 /* Reset the device before pci_set_master() in case device is in some 2567 * funky state and has an interrupt pending - hint: we don't have the 2568 * interrupt handler registered yet. */ 2569 e100_hw_reset(nic); 2570 2571 pci_set_master(pdev); 2572 2573 init_timer(&nic->watchdog); 2574 nic->watchdog.function = e100_watchdog; 2575 nic->watchdog.data = (unsigned long)nic; 2576 init_timer(&nic->blink_timer); 2577 nic->blink_timer.function = e100_blink_led; 2578 nic->blink_timer.data = (unsigned long)nic; 2579 2580 INIT_WORK(&nic->tx_timeout_task, 2581 (void (*)(void *))e100_tx_timeout_task, netdev); 2582 2583 if((err = e100_alloc(nic))) { 2584 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); 2585 goto err_out_iounmap; 2586 } 2587 2588 if((err = e100_eeprom_load(nic))) 2589 goto err_out_free; 2590 2591 e100_phy_init(nic); 2592 2593 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2594 memcpy(netdev->perm_addr, nic->eeprom, ETH_ALEN); 2595 if(!is_valid_ether_addr(netdev->perm_addr)) { 2596 DPRINTK(PROBE, ERR, "Invalid MAC address from " 2597 "EEPROM, aborting.\n"); 2598 err = -EAGAIN; 2599 goto err_out_free; 2600 } 2601 2602 /* Wol magic packet can be enabled from eeprom */ 2603 if((nic->mac >= mac_82558_D101_A4) && 2604 (nic->eeprom[eeprom_id] & eeprom_id_wol)) 2605 nic->flags |= wol_magic; 2606 2607 /* ack any pending wake events, disable PME */ 2608 pci_enable_wake(pdev, 0, 0); 2609 2610 strcpy(netdev->name, "eth%d"); 2611 if((err = register_netdev(netdev))) { 2612 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); 2613 goto err_out_free; 2614 } 2615 2616 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, " 2617 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", 2618 pci_resource_start(pdev, 0), pdev->irq, 2619 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], 2620 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); 2621 2622 return 0; 2623 2624err_out_free: 2625 e100_free(nic); 2626err_out_iounmap: 2627 iounmap(nic->csr); 2628err_out_free_res: 2629 pci_release_regions(pdev); 2630err_out_disable_pdev: 2631 pci_disable_device(pdev); 2632err_out_free_dev: 2633 pci_set_drvdata(pdev, NULL); 2634 free_netdev(netdev); 2635 return err; 2636} 2637 2638static void __devexit e100_remove(struct pci_dev *pdev) 2639{ 2640 struct net_device *netdev = pci_get_drvdata(pdev); 2641 2642 if(netdev) { 2643 struct nic *nic = netdev_priv(netdev); 2644 unregister_netdev(netdev); 2645 e100_free(nic); 2646 iounmap(nic->csr); 2647 free_netdev(netdev); 2648 pci_release_regions(pdev); 2649 pci_disable_device(pdev); 2650 pci_set_drvdata(pdev, NULL); 2651 } 2652} 2653 2654#ifdef CONFIG_PM 2655static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 2656{ 2657 struct net_device *netdev = pci_get_drvdata(pdev); 2658 struct nic *nic = netdev_priv(netdev); 2659 2660 if(netif_running(netdev)) 2661 e100_down(nic); 2662 e100_hw_reset(nic); 2663 netif_device_detach(netdev); 2664 2665 pci_save_state(pdev); 2666 pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic))); 2667 pci_disable_device(pdev); 2668 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 2669 2670 return 0; 2671} 2672 2673static int e100_resume(struct pci_dev *pdev) 2674{ 2675 struct net_device *netdev = pci_get_drvdata(pdev); 2676 struct nic *nic = netdev_priv(netdev); 2677 2678 pci_set_power_state(pdev, PCI_D0); 2679 pci_restore_state(pdev); 2680 /* ack any pending wake events, disable PME */ 2681 pci_enable_wake(pdev, 0, 0); 2682 if(e100_hw_init(nic)) 2683 DPRINTK(HW, ERR, "e100_hw_init failed\n"); 2684 2685 netif_device_attach(netdev); 2686 if(netif_running(netdev)) 2687 e100_up(nic); 2688 2689 return 0; 2690} 2691#endif 2692 2693 2694static void e100_shutdown(struct pci_dev *pdev) 2695{ 2696 struct net_device *netdev = pci_get_drvdata(pdev); 2697 struct nic *nic = netdev_priv(netdev); 2698 2699#ifdef CONFIG_PM 2700 pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); 2701#else 2702 pci_enable_wake(pdev, 0, nic->flags & (wol_magic)); 2703#endif 2704} 2705 2706 2707static struct pci_driver e100_driver = { 2708 .name = DRV_NAME, 2709 .id_table = e100_id_table, 2710 .probe = e100_probe, 2711 .remove = __devexit_p(e100_remove), 2712#ifdef CONFIG_PM 2713 .suspend = e100_suspend, 2714 .resume = e100_resume, 2715#endif 2716 .shutdown = e100_shutdown, 2717}; 2718 2719static int __init e100_init_module(void) 2720{ 2721 if(((1 << debug) - 1) & NETIF_MSG_DRV) { 2722 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 2723 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); 2724 } 2725 return pci_module_init(&e100_driver); 2726} 2727 2728static void __exit e100_cleanup_module(void) 2729{ 2730 pci_unregister_driver(&e100_driver); 2731} 2732 2733module_init(e100_init_module); 2734module_exit(e100_cleanup_module);