at v2.6.14 36 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/config.h> 18#include <linux/kernel.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/cache.h> 22 23#include <asm/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/mm.h> 27#include <linux/highmem.h> 28#include <linux/poll.h> 29#include <linux/net.h> 30#include <linux/textsearch.h> 31#include <net/checksum.h> 32 33#define HAVE_ALLOC_SKB /* For the drivers to know */ 34#define HAVE_ALIGNABLE_SKB /* Ditto 8) */ 35#define SLAB_SKB /* Slabified skbuffs */ 36 37#define CHECKSUM_NONE 0 38#define CHECKSUM_HW 1 39#define CHECKSUM_UNNECESSARY 2 40 41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \ 42 ~(SMP_CACHE_BYTES - 1)) 43#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \ 44 sizeof(struct skb_shared_info)) & \ 45 ~(SMP_CACHE_BYTES - 1)) 46#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 47#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 48 49/* A. Checksumming of received packets by device. 50 * 51 * NONE: device failed to checksum this packet. 52 * skb->csum is undefined. 53 * 54 * UNNECESSARY: device parsed packet and wouldbe verified checksum. 55 * skb->csum is undefined. 56 * It is bad option, but, unfortunately, many of vendors do this. 57 * Apparently with secret goal to sell you new device, when you 58 * will add new protocol to your host. F.e. IPv6. 8) 59 * 60 * HW: the most generic way. Device supplied checksum of _all_ 61 * the packet as seen by netif_rx in skb->csum. 62 * NOTE: Even if device supports only some protocols, but 63 * is able to produce some skb->csum, it MUST use HW, 64 * not UNNECESSARY. 65 * 66 * B. Checksumming on output. 67 * 68 * NONE: skb is checksummed by protocol or csum is not required. 69 * 70 * HW: device is required to csum packet as seen by hard_start_xmit 71 * from skb->h.raw to the end and to record the checksum 72 * at skb->h.raw+skb->csum. 73 * 74 * Device must show its capabilities in dev->features, set 75 * at device setup time. 76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum 77 * everything. 78 * NETIF_F_NO_CSUM - loopback or reliable single hop media. 79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only 80 * TCP/UDP over IPv4. Sigh. Vendors like this 81 * way by an unknown reason. Though, see comment above 82 * about CHECKSUM_UNNECESSARY. 8) 83 * 84 * Any questions? No questions, good. --ANK 85 */ 86 87struct net_device; 88 89#ifdef CONFIG_NETFILTER 90struct nf_conntrack { 91 atomic_t use; 92 void (*destroy)(struct nf_conntrack *); 93}; 94 95#ifdef CONFIG_BRIDGE_NETFILTER 96struct nf_bridge_info { 97 atomic_t use; 98 struct net_device *physindev; 99 struct net_device *physoutdev; 100#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 101 struct net_device *netoutdev; 102#endif 103 unsigned int mask; 104 unsigned long data[32 / sizeof(unsigned long)]; 105}; 106#endif 107 108#endif 109 110struct sk_buff_head { 111 /* These two members must be first. */ 112 struct sk_buff *next; 113 struct sk_buff *prev; 114 115 __u32 qlen; 116 spinlock_t lock; 117}; 118 119struct sk_buff; 120 121/* To allow 64K frame to be packed as single skb without frag_list */ 122#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2) 123 124typedef struct skb_frag_struct skb_frag_t; 125 126struct skb_frag_struct { 127 struct page *page; 128 __u16 page_offset; 129 __u16 size; 130}; 131 132/* This data is invariant across clones and lives at 133 * the end of the header data, ie. at skb->end. 134 */ 135struct skb_shared_info { 136 atomic_t dataref; 137 unsigned int nr_frags; 138 unsigned short tso_size; 139 unsigned short tso_segs; 140 struct sk_buff *frag_list; 141 skb_frag_t frags[MAX_SKB_FRAGS]; 142}; 143 144/* We divide dataref into two halves. The higher 16 bits hold references 145 * to the payload part of skb->data. The lower 16 bits hold references to 146 * the entire skb->data. It is up to the users of the skb to agree on 147 * where the payload starts. 148 * 149 * All users must obey the rule that the skb->data reference count must be 150 * greater than or equal to the payload reference count. 151 * 152 * Holding a reference to the payload part means that the user does not 153 * care about modifications to the header part of skb->data. 154 */ 155#define SKB_DATAREF_SHIFT 16 156#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 157 158struct skb_timeval { 159 u32 off_sec; 160 u32 off_usec; 161}; 162 163 164enum { 165 SKB_FCLONE_UNAVAILABLE, 166 SKB_FCLONE_ORIG, 167 SKB_FCLONE_CLONE, 168}; 169 170/** 171 * struct sk_buff - socket buffer 172 * @next: Next buffer in list 173 * @prev: Previous buffer in list 174 * @list: List we are on 175 * @sk: Socket we are owned by 176 * @tstamp: Time we arrived 177 * @dev: Device we arrived on/are leaving by 178 * @input_dev: Device we arrived on 179 * @h: Transport layer header 180 * @nh: Network layer header 181 * @mac: Link layer header 182 * @dst: destination entry 183 * @sp: the security path, used for xfrm 184 * @cb: Control buffer. Free for use by every layer. Put private vars here 185 * @len: Length of actual data 186 * @data_len: Data length 187 * @mac_len: Length of link layer header 188 * @csum: Checksum 189 * @local_df: allow local fragmentation 190 * @cloned: Head may be cloned (check refcnt to be sure) 191 * @nohdr: Payload reference only, must not modify header 192 * @pkt_type: Packet class 193 * @ip_summed: Driver fed us an IP checksum 194 * @priority: Packet queueing priority 195 * @users: User count - see {datagram,tcp}.c 196 * @protocol: Packet protocol from driver 197 * @truesize: Buffer size 198 * @head: Head of buffer 199 * @data: Data head pointer 200 * @tail: Tail pointer 201 * @end: End pointer 202 * @destructor: Destruct function 203 * @nfmark: Can be used for communication between hooks 204 * @nfct: Associated connection, if any 205 * @nfctinfo: Relationship of this skb to the connection 206 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 207 * @tc_index: Traffic control index 208 * @tc_verd: traffic control verdict 209 */ 210 211struct sk_buff { 212 /* These two members must be first. */ 213 struct sk_buff *next; 214 struct sk_buff *prev; 215 216 struct sock *sk; 217 struct skb_timeval tstamp; 218 struct net_device *dev; 219 struct net_device *input_dev; 220 221 union { 222 struct tcphdr *th; 223 struct udphdr *uh; 224 struct icmphdr *icmph; 225 struct igmphdr *igmph; 226 struct iphdr *ipiph; 227 struct ipv6hdr *ipv6h; 228 unsigned char *raw; 229 } h; 230 231 union { 232 struct iphdr *iph; 233 struct ipv6hdr *ipv6h; 234 struct arphdr *arph; 235 unsigned char *raw; 236 } nh; 237 238 union { 239 unsigned char *raw; 240 } mac; 241 242 struct dst_entry *dst; 243 struct sec_path *sp; 244 245 /* 246 * This is the control buffer. It is free to use for every 247 * layer. Please put your private variables there. If you 248 * want to keep them across layers you have to do a skb_clone() 249 * first. This is owned by whoever has the skb queued ATM. 250 */ 251 char cb[40]; 252 253 unsigned int len, 254 data_len, 255 mac_len, 256 csum; 257 __u32 priority; 258 __u8 local_df:1, 259 cloned:1, 260 ip_summed:2, 261 nohdr:1, 262 nfctinfo:3; 263 __u8 pkt_type:3, 264 fclone:2; 265 __be16 protocol; 266 267 void (*destructor)(struct sk_buff *skb); 268#ifdef CONFIG_NETFILTER 269 __u32 nfmark; 270 struct nf_conntrack *nfct; 271#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE) 272 __u8 ipvs_property:1; 273#endif 274#ifdef CONFIG_BRIDGE_NETFILTER 275 struct nf_bridge_info *nf_bridge; 276#endif 277#endif /* CONFIG_NETFILTER */ 278#ifdef CONFIG_NET_SCHED 279 __u16 tc_index; /* traffic control index */ 280#ifdef CONFIG_NET_CLS_ACT 281 __u16 tc_verd; /* traffic control verdict */ 282#endif 283#endif 284 285 286 /* These elements must be at the end, see alloc_skb() for details. */ 287 unsigned int truesize; 288 atomic_t users; 289 unsigned char *head, 290 *data, 291 *tail, 292 *end; 293}; 294 295#ifdef __KERNEL__ 296/* 297 * Handling routines are only of interest to the kernel 298 */ 299#include <linux/slab.h> 300 301#include <asm/system.h> 302 303extern void __kfree_skb(struct sk_buff *skb); 304extern struct sk_buff *__alloc_skb(unsigned int size, 305 gfp_t priority, int fclone); 306static inline struct sk_buff *alloc_skb(unsigned int size, 307 gfp_t priority) 308{ 309 return __alloc_skb(size, priority, 0); 310} 311 312static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 313 gfp_t priority) 314{ 315 return __alloc_skb(size, priority, 1); 316} 317 318extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp, 319 unsigned int size, 320 gfp_t priority); 321extern void kfree_skbmem(struct sk_buff *skb); 322extern struct sk_buff *skb_clone(struct sk_buff *skb, 323 gfp_t priority); 324extern struct sk_buff *skb_copy(const struct sk_buff *skb, 325 gfp_t priority); 326extern struct sk_buff *pskb_copy(struct sk_buff *skb, 327 gfp_t gfp_mask); 328extern int pskb_expand_head(struct sk_buff *skb, 329 int nhead, int ntail, 330 gfp_t gfp_mask); 331extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 332 unsigned int headroom); 333extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb, 334 int newheadroom, int newtailroom, 335 gfp_t priority); 336extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad); 337#define dev_kfree_skb(a) kfree_skb(a) 338extern void skb_over_panic(struct sk_buff *skb, int len, 339 void *here); 340extern void skb_under_panic(struct sk_buff *skb, int len, 341 void *here); 342 343struct skb_seq_state 344{ 345 __u32 lower_offset; 346 __u32 upper_offset; 347 __u32 frag_idx; 348 __u32 stepped_offset; 349 struct sk_buff *root_skb; 350 struct sk_buff *cur_skb; 351 __u8 *frag_data; 352}; 353 354extern void skb_prepare_seq_read(struct sk_buff *skb, 355 unsigned int from, unsigned int to, 356 struct skb_seq_state *st); 357extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 358 struct skb_seq_state *st); 359extern void skb_abort_seq_read(struct skb_seq_state *st); 360 361extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 362 unsigned int to, struct ts_config *config, 363 struct ts_state *state); 364 365/* Internal */ 366#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end)) 367 368/** 369 * skb_queue_empty - check if a queue is empty 370 * @list: queue head 371 * 372 * Returns true if the queue is empty, false otherwise. 373 */ 374static inline int skb_queue_empty(const struct sk_buff_head *list) 375{ 376 return list->next == (struct sk_buff *)list; 377} 378 379/** 380 * skb_get - reference buffer 381 * @skb: buffer to reference 382 * 383 * Makes another reference to a socket buffer and returns a pointer 384 * to the buffer. 385 */ 386static inline struct sk_buff *skb_get(struct sk_buff *skb) 387{ 388 atomic_inc(&skb->users); 389 return skb; 390} 391 392/* 393 * If users == 1, we are the only owner and are can avoid redundant 394 * atomic change. 395 */ 396 397/** 398 * kfree_skb - free an sk_buff 399 * @skb: buffer to free 400 * 401 * Drop a reference to the buffer and free it if the usage count has 402 * hit zero. 403 */ 404static inline void kfree_skb(struct sk_buff *skb) 405{ 406 if (likely(atomic_read(&skb->users) == 1)) 407 smp_rmb(); 408 else if (likely(!atomic_dec_and_test(&skb->users))) 409 return; 410 __kfree_skb(skb); 411} 412 413/** 414 * skb_cloned - is the buffer a clone 415 * @skb: buffer to check 416 * 417 * Returns true if the buffer was generated with skb_clone() and is 418 * one of multiple shared copies of the buffer. Cloned buffers are 419 * shared data so must not be written to under normal circumstances. 420 */ 421static inline int skb_cloned(const struct sk_buff *skb) 422{ 423 return skb->cloned && 424 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 425} 426 427/** 428 * skb_header_cloned - is the header a clone 429 * @skb: buffer to check 430 * 431 * Returns true if modifying the header part of the buffer requires 432 * the data to be copied. 433 */ 434static inline int skb_header_cloned(const struct sk_buff *skb) 435{ 436 int dataref; 437 438 if (!skb->cloned) 439 return 0; 440 441 dataref = atomic_read(&skb_shinfo(skb)->dataref); 442 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 443 return dataref != 1; 444} 445 446/** 447 * skb_header_release - release reference to header 448 * @skb: buffer to operate on 449 * 450 * Drop a reference to the header part of the buffer. This is done 451 * by acquiring a payload reference. You must not read from the header 452 * part of skb->data after this. 453 */ 454static inline void skb_header_release(struct sk_buff *skb) 455{ 456 BUG_ON(skb->nohdr); 457 skb->nohdr = 1; 458 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 459} 460 461/** 462 * skb_shared - is the buffer shared 463 * @skb: buffer to check 464 * 465 * Returns true if more than one person has a reference to this 466 * buffer. 467 */ 468static inline int skb_shared(const struct sk_buff *skb) 469{ 470 return atomic_read(&skb->users) != 1; 471} 472 473/** 474 * skb_share_check - check if buffer is shared and if so clone it 475 * @skb: buffer to check 476 * @pri: priority for memory allocation 477 * 478 * If the buffer is shared the buffer is cloned and the old copy 479 * drops a reference. A new clone with a single reference is returned. 480 * If the buffer is not shared the original buffer is returned. When 481 * being called from interrupt status or with spinlocks held pri must 482 * be GFP_ATOMIC. 483 * 484 * NULL is returned on a memory allocation failure. 485 */ 486static inline struct sk_buff *skb_share_check(struct sk_buff *skb, 487 gfp_t pri) 488{ 489 might_sleep_if(pri & __GFP_WAIT); 490 if (skb_shared(skb)) { 491 struct sk_buff *nskb = skb_clone(skb, pri); 492 kfree_skb(skb); 493 skb = nskb; 494 } 495 return skb; 496} 497 498/* 499 * Copy shared buffers into a new sk_buff. We effectively do COW on 500 * packets to handle cases where we have a local reader and forward 501 * and a couple of other messy ones. The normal one is tcpdumping 502 * a packet thats being forwarded. 503 */ 504 505/** 506 * skb_unshare - make a copy of a shared buffer 507 * @skb: buffer to check 508 * @pri: priority for memory allocation 509 * 510 * If the socket buffer is a clone then this function creates a new 511 * copy of the data, drops a reference count on the old copy and returns 512 * the new copy with the reference count at 1. If the buffer is not a clone 513 * the original buffer is returned. When called with a spinlock held or 514 * from interrupt state @pri must be %GFP_ATOMIC 515 * 516 * %NULL is returned on a memory allocation failure. 517 */ 518static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 519 gfp_t pri) 520{ 521 might_sleep_if(pri & __GFP_WAIT); 522 if (skb_cloned(skb)) { 523 struct sk_buff *nskb = skb_copy(skb, pri); 524 kfree_skb(skb); /* Free our shared copy */ 525 skb = nskb; 526 } 527 return skb; 528} 529 530/** 531 * skb_peek 532 * @list_: list to peek at 533 * 534 * Peek an &sk_buff. Unlike most other operations you _MUST_ 535 * be careful with this one. A peek leaves the buffer on the 536 * list and someone else may run off with it. You must hold 537 * the appropriate locks or have a private queue to do this. 538 * 539 * Returns %NULL for an empty list or a pointer to the head element. 540 * The reference count is not incremented and the reference is therefore 541 * volatile. Use with caution. 542 */ 543static inline struct sk_buff *skb_peek(struct sk_buff_head *list_) 544{ 545 struct sk_buff *list = ((struct sk_buff *)list_)->next; 546 if (list == (struct sk_buff *)list_) 547 list = NULL; 548 return list; 549} 550 551/** 552 * skb_peek_tail 553 * @list_: list to peek at 554 * 555 * Peek an &sk_buff. Unlike most other operations you _MUST_ 556 * be careful with this one. A peek leaves the buffer on the 557 * list and someone else may run off with it. You must hold 558 * the appropriate locks or have a private queue to do this. 559 * 560 * Returns %NULL for an empty list or a pointer to the tail element. 561 * The reference count is not incremented and the reference is therefore 562 * volatile. Use with caution. 563 */ 564static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_) 565{ 566 struct sk_buff *list = ((struct sk_buff *)list_)->prev; 567 if (list == (struct sk_buff *)list_) 568 list = NULL; 569 return list; 570} 571 572/** 573 * skb_queue_len - get queue length 574 * @list_: list to measure 575 * 576 * Return the length of an &sk_buff queue. 577 */ 578static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 579{ 580 return list_->qlen; 581} 582 583static inline void skb_queue_head_init(struct sk_buff_head *list) 584{ 585 spin_lock_init(&list->lock); 586 list->prev = list->next = (struct sk_buff *)list; 587 list->qlen = 0; 588} 589 590/* 591 * Insert an sk_buff at the start of a list. 592 * 593 * The "__skb_xxxx()" functions are the non-atomic ones that 594 * can only be called with interrupts disabled. 595 */ 596 597/** 598 * __skb_queue_head - queue a buffer at the list head 599 * @list: list to use 600 * @newsk: buffer to queue 601 * 602 * Queue a buffer at the start of a list. This function takes no locks 603 * and you must therefore hold required locks before calling it. 604 * 605 * A buffer cannot be placed on two lists at the same time. 606 */ 607extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 608static inline void __skb_queue_head(struct sk_buff_head *list, 609 struct sk_buff *newsk) 610{ 611 struct sk_buff *prev, *next; 612 613 list->qlen++; 614 prev = (struct sk_buff *)list; 615 next = prev->next; 616 newsk->next = next; 617 newsk->prev = prev; 618 next->prev = prev->next = newsk; 619} 620 621/** 622 * __skb_queue_tail - queue a buffer at the list tail 623 * @list: list to use 624 * @newsk: buffer to queue 625 * 626 * Queue a buffer at the end of a list. This function takes no locks 627 * and you must therefore hold required locks before calling it. 628 * 629 * A buffer cannot be placed on two lists at the same time. 630 */ 631extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 632static inline void __skb_queue_tail(struct sk_buff_head *list, 633 struct sk_buff *newsk) 634{ 635 struct sk_buff *prev, *next; 636 637 list->qlen++; 638 next = (struct sk_buff *)list; 639 prev = next->prev; 640 newsk->next = next; 641 newsk->prev = prev; 642 next->prev = prev->next = newsk; 643} 644 645 646/** 647 * __skb_dequeue - remove from the head of the queue 648 * @list: list to dequeue from 649 * 650 * Remove the head of the list. This function does not take any locks 651 * so must be used with appropriate locks held only. The head item is 652 * returned or %NULL if the list is empty. 653 */ 654extern struct sk_buff *skb_dequeue(struct sk_buff_head *list); 655static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 656{ 657 struct sk_buff *next, *prev, *result; 658 659 prev = (struct sk_buff *) list; 660 next = prev->next; 661 result = NULL; 662 if (next != prev) { 663 result = next; 664 next = next->next; 665 list->qlen--; 666 next->prev = prev; 667 prev->next = next; 668 result->next = result->prev = NULL; 669 } 670 return result; 671} 672 673 674/* 675 * Insert a packet on a list. 676 */ 677extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 678static inline void __skb_insert(struct sk_buff *newsk, 679 struct sk_buff *prev, struct sk_buff *next, 680 struct sk_buff_head *list) 681{ 682 newsk->next = next; 683 newsk->prev = prev; 684 next->prev = prev->next = newsk; 685 list->qlen++; 686} 687 688/* 689 * Place a packet after a given packet in a list. 690 */ 691extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list); 692static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list) 693{ 694 __skb_insert(newsk, old, old->next, list); 695} 696 697/* 698 * remove sk_buff from list. _Must_ be called atomically, and with 699 * the list known.. 700 */ 701extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 702static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 703{ 704 struct sk_buff *next, *prev; 705 706 list->qlen--; 707 next = skb->next; 708 prev = skb->prev; 709 skb->next = skb->prev = NULL; 710 next->prev = prev; 711 prev->next = next; 712} 713 714 715/* XXX: more streamlined implementation */ 716 717/** 718 * __skb_dequeue_tail - remove from the tail of the queue 719 * @list: list to dequeue from 720 * 721 * Remove the tail of the list. This function does not take any locks 722 * so must be used with appropriate locks held only. The tail item is 723 * returned or %NULL if the list is empty. 724 */ 725extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 726static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 727{ 728 struct sk_buff *skb = skb_peek_tail(list); 729 if (skb) 730 __skb_unlink(skb, list); 731 return skb; 732} 733 734 735static inline int skb_is_nonlinear(const struct sk_buff *skb) 736{ 737 return skb->data_len; 738} 739 740static inline unsigned int skb_headlen(const struct sk_buff *skb) 741{ 742 return skb->len - skb->data_len; 743} 744 745static inline int skb_pagelen(const struct sk_buff *skb) 746{ 747 int i, len = 0; 748 749 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 750 len += skb_shinfo(skb)->frags[i].size; 751 return len + skb_headlen(skb); 752} 753 754static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 755 struct page *page, int off, int size) 756{ 757 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 758 759 frag->page = page; 760 frag->page_offset = off; 761 frag->size = size; 762 skb_shinfo(skb)->nr_frags = i + 1; 763} 764 765#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 766#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list) 767#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 768 769/* 770 * Add data to an sk_buff 771 */ 772static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 773{ 774 unsigned char *tmp = skb->tail; 775 SKB_LINEAR_ASSERT(skb); 776 skb->tail += len; 777 skb->len += len; 778 return tmp; 779} 780 781/** 782 * skb_put - add data to a buffer 783 * @skb: buffer to use 784 * @len: amount of data to add 785 * 786 * This function extends the used data area of the buffer. If this would 787 * exceed the total buffer size the kernel will panic. A pointer to the 788 * first byte of the extra data is returned. 789 */ 790static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len) 791{ 792 unsigned char *tmp = skb->tail; 793 SKB_LINEAR_ASSERT(skb); 794 skb->tail += len; 795 skb->len += len; 796 if (unlikely(skb->tail>skb->end)) 797 skb_over_panic(skb, len, current_text_addr()); 798 return tmp; 799} 800 801static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 802{ 803 skb->data -= len; 804 skb->len += len; 805 return skb->data; 806} 807 808/** 809 * skb_push - add data to the start of a buffer 810 * @skb: buffer to use 811 * @len: amount of data to add 812 * 813 * This function extends the used data area of the buffer at the buffer 814 * start. If this would exceed the total buffer headroom the kernel will 815 * panic. A pointer to the first byte of the extra data is returned. 816 */ 817static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len) 818{ 819 skb->data -= len; 820 skb->len += len; 821 if (unlikely(skb->data<skb->head)) 822 skb_under_panic(skb, len, current_text_addr()); 823 return skb->data; 824} 825 826static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 827{ 828 skb->len -= len; 829 BUG_ON(skb->len < skb->data_len); 830 return skb->data += len; 831} 832 833/** 834 * skb_pull - remove data from the start of a buffer 835 * @skb: buffer to use 836 * @len: amount of data to remove 837 * 838 * This function removes data from the start of a buffer, returning 839 * the memory to the headroom. A pointer to the next data in the buffer 840 * is returned. Once the data has been pulled future pushes will overwrite 841 * the old data. 842 */ 843static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len) 844{ 845 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 846} 847 848extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 849 850static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 851{ 852 if (len > skb_headlen(skb) && 853 !__pskb_pull_tail(skb, len-skb_headlen(skb))) 854 return NULL; 855 skb->len -= len; 856 return skb->data += len; 857} 858 859static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 860{ 861 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 862} 863 864static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 865{ 866 if (likely(len <= skb_headlen(skb))) 867 return 1; 868 if (unlikely(len > skb->len)) 869 return 0; 870 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL; 871} 872 873/** 874 * skb_headroom - bytes at buffer head 875 * @skb: buffer to check 876 * 877 * Return the number of bytes of free space at the head of an &sk_buff. 878 */ 879static inline int skb_headroom(const struct sk_buff *skb) 880{ 881 return skb->data - skb->head; 882} 883 884/** 885 * skb_tailroom - bytes at buffer end 886 * @skb: buffer to check 887 * 888 * Return the number of bytes of free space at the tail of an sk_buff 889 */ 890static inline int skb_tailroom(const struct sk_buff *skb) 891{ 892 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 893} 894 895/** 896 * skb_reserve - adjust headroom 897 * @skb: buffer to alter 898 * @len: bytes to move 899 * 900 * Increase the headroom of an empty &sk_buff by reducing the tail 901 * room. This is only allowed for an empty buffer. 902 */ 903static inline void skb_reserve(struct sk_buff *skb, unsigned int len) 904{ 905 skb->data += len; 906 skb->tail += len; 907} 908 909/* 910 * CPUs often take a performance hit when accessing unaligned memory 911 * locations. The actual performance hit varies, it can be small if the 912 * hardware handles it or large if we have to take an exception and fix it 913 * in software. 914 * 915 * Since an ethernet header is 14 bytes network drivers often end up with 916 * the IP header at an unaligned offset. The IP header can be aligned by 917 * shifting the start of the packet by 2 bytes. Drivers should do this 918 * with: 919 * 920 * skb_reserve(NET_IP_ALIGN); 921 * 922 * The downside to this alignment of the IP header is that the DMA is now 923 * unaligned. On some architectures the cost of an unaligned DMA is high 924 * and this cost outweighs the gains made by aligning the IP header. 925 * 926 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 927 * to be overridden. 928 */ 929#ifndef NET_IP_ALIGN 930#define NET_IP_ALIGN 2 931#endif 932 933extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc); 934 935static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 936{ 937 if (!skb->data_len) { 938 skb->len = len; 939 skb->tail = skb->data + len; 940 } else 941 ___pskb_trim(skb, len, 0); 942} 943 944/** 945 * skb_trim - remove end from a buffer 946 * @skb: buffer to alter 947 * @len: new length 948 * 949 * Cut the length of a buffer down by removing data from the tail. If 950 * the buffer is already under the length specified it is not modified. 951 */ 952static inline void skb_trim(struct sk_buff *skb, unsigned int len) 953{ 954 if (skb->len > len) 955 __skb_trim(skb, len); 956} 957 958 959static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 960{ 961 if (!skb->data_len) { 962 skb->len = len; 963 skb->tail = skb->data+len; 964 return 0; 965 } 966 return ___pskb_trim(skb, len, 1); 967} 968 969static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 970{ 971 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 972} 973 974/** 975 * skb_orphan - orphan a buffer 976 * @skb: buffer to orphan 977 * 978 * If a buffer currently has an owner then we call the owner's 979 * destructor function and make the @skb unowned. The buffer continues 980 * to exist but is no longer charged to its former owner. 981 */ 982static inline void skb_orphan(struct sk_buff *skb) 983{ 984 if (skb->destructor) 985 skb->destructor(skb); 986 skb->destructor = NULL; 987 skb->sk = NULL; 988} 989 990/** 991 * __skb_queue_purge - empty a list 992 * @list: list to empty 993 * 994 * Delete all buffers on an &sk_buff list. Each buffer is removed from 995 * the list and one reference dropped. This function does not take the 996 * list lock and the caller must hold the relevant locks to use it. 997 */ 998extern void skb_queue_purge(struct sk_buff_head *list); 999static inline void __skb_queue_purge(struct sk_buff_head *list) 1000{ 1001 struct sk_buff *skb; 1002 while ((skb = __skb_dequeue(list)) != NULL) 1003 kfree_skb(skb); 1004} 1005 1006#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB 1007/** 1008 * __dev_alloc_skb - allocate an skbuff for sending 1009 * @length: length to allocate 1010 * @gfp_mask: get_free_pages mask, passed to alloc_skb 1011 * 1012 * Allocate a new &sk_buff and assign it a usage count of one. The 1013 * buffer has unspecified headroom built in. Users should allocate 1014 * the headroom they think they need without accounting for the 1015 * built in space. The built in space is used for optimisations. 1016 * 1017 * %NULL is returned in there is no free memory. 1018 */ 1019static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 1020 gfp_t gfp_mask) 1021{ 1022 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask); 1023 if (likely(skb)) 1024 skb_reserve(skb, 16); 1025 return skb; 1026} 1027#else 1028extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask); 1029#endif 1030 1031/** 1032 * dev_alloc_skb - allocate an skbuff for sending 1033 * @length: length to allocate 1034 * 1035 * Allocate a new &sk_buff and assign it a usage count of one. The 1036 * buffer has unspecified headroom built in. Users should allocate 1037 * the headroom they think they need without accounting for the 1038 * built in space. The built in space is used for optimisations. 1039 * 1040 * %NULL is returned in there is no free memory. Although this function 1041 * allocates memory it can be called from an interrupt. 1042 */ 1043static inline struct sk_buff *dev_alloc_skb(unsigned int length) 1044{ 1045 return __dev_alloc_skb(length, GFP_ATOMIC); 1046} 1047 1048/** 1049 * skb_cow - copy header of skb when it is required 1050 * @skb: buffer to cow 1051 * @headroom: needed headroom 1052 * 1053 * If the skb passed lacks sufficient headroom or its data part 1054 * is shared, data is reallocated. If reallocation fails, an error 1055 * is returned and original skb is not changed. 1056 * 1057 * The result is skb with writable area skb->head...skb->tail 1058 * and at least @headroom of space at head. 1059 */ 1060static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 1061{ 1062 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb); 1063 1064 if (delta < 0) 1065 delta = 0; 1066 1067 if (delta || skb_cloned(skb)) 1068 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC); 1069 return 0; 1070} 1071 1072/** 1073 * skb_padto - pad an skbuff up to a minimal size 1074 * @skb: buffer to pad 1075 * @len: minimal length 1076 * 1077 * Pads up a buffer to ensure the trailing bytes exist and are 1078 * blanked. If the buffer already contains sufficient data it 1079 * is untouched. Returns the buffer, which may be a replacement 1080 * for the original, or NULL for out of memory - in which case 1081 * the original buffer is still freed. 1082 */ 1083 1084static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len) 1085{ 1086 unsigned int size = skb->len; 1087 if (likely(size >= len)) 1088 return skb; 1089 return skb_pad(skb, len-size); 1090} 1091 1092static inline int skb_add_data(struct sk_buff *skb, 1093 char __user *from, int copy) 1094{ 1095 const int off = skb->len; 1096 1097 if (skb->ip_summed == CHECKSUM_NONE) { 1098 int err = 0; 1099 unsigned int csum = csum_and_copy_from_user(from, 1100 skb_put(skb, copy), 1101 copy, 0, &err); 1102 if (!err) { 1103 skb->csum = csum_block_add(skb->csum, csum, off); 1104 return 0; 1105 } 1106 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 1107 return 0; 1108 1109 __skb_trim(skb, off); 1110 return -EFAULT; 1111} 1112 1113static inline int skb_can_coalesce(struct sk_buff *skb, int i, 1114 struct page *page, int off) 1115{ 1116 if (i) { 1117 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 1118 1119 return page == frag->page && 1120 off == frag->page_offset + frag->size; 1121 } 1122 return 0; 1123} 1124 1125/** 1126 * skb_linearize - convert paged skb to linear one 1127 * @skb: buffer to linarize 1128 * @gfp: allocation mode 1129 * 1130 * If there is no free memory -ENOMEM is returned, otherwise zero 1131 * is returned and the old skb data released. 1132 */ 1133extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp); 1134static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp) 1135{ 1136 return __skb_linearize(skb, gfp); 1137} 1138 1139/** 1140 * skb_postpull_rcsum - update checksum for received skb after pull 1141 * @skb: buffer to update 1142 * @start: start of data before pull 1143 * @len: length of data pulled 1144 * 1145 * After doing a pull on a received packet, you need to call this to 1146 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE 1147 * so that it can be recomputed from scratch. 1148 */ 1149 1150static inline void skb_postpull_rcsum(struct sk_buff *skb, 1151 const void *start, int len) 1152{ 1153 if (skb->ip_summed == CHECKSUM_HW) 1154 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 1155} 1156 1157/** 1158 * pskb_trim_rcsum - trim received skb and update checksum 1159 * @skb: buffer to trim 1160 * @len: new length 1161 * 1162 * This is exactly the same as pskb_trim except that it ensures the 1163 * checksum of received packets are still valid after the operation. 1164 */ 1165 1166static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 1167{ 1168 if (likely(len >= skb->len)) 1169 return 0; 1170 if (skb->ip_summed == CHECKSUM_HW) 1171 skb->ip_summed = CHECKSUM_NONE; 1172 return __pskb_trim(skb, len); 1173} 1174 1175static inline void *kmap_skb_frag(const skb_frag_t *frag) 1176{ 1177#ifdef CONFIG_HIGHMEM 1178 BUG_ON(in_irq()); 1179 1180 local_bh_disable(); 1181#endif 1182 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ); 1183} 1184 1185static inline void kunmap_skb_frag(void *vaddr) 1186{ 1187 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ); 1188#ifdef CONFIG_HIGHMEM 1189 local_bh_enable(); 1190#endif 1191} 1192 1193#define skb_queue_walk(queue, skb) \ 1194 for (skb = (queue)->next; \ 1195 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ 1196 skb = skb->next) 1197 1198 1199extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, 1200 int noblock, int *err); 1201extern unsigned int datagram_poll(struct file *file, struct socket *sock, 1202 struct poll_table_struct *wait); 1203extern int skb_copy_datagram_iovec(const struct sk_buff *from, 1204 int offset, struct iovec *to, 1205 int size); 1206extern int skb_copy_and_csum_datagram_iovec(const 1207 struct sk_buff *skb, 1208 int hlen, 1209 struct iovec *iov); 1210extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 1211extern unsigned int skb_checksum(const struct sk_buff *skb, int offset, 1212 int len, unsigned int csum); 1213extern int skb_copy_bits(const struct sk_buff *skb, int offset, 1214 void *to, int len); 1215extern int skb_store_bits(const struct sk_buff *skb, int offset, 1216 void *from, int len); 1217extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb, 1218 int offset, u8 *to, int len, 1219 unsigned int csum); 1220extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 1221extern void skb_split(struct sk_buff *skb, 1222 struct sk_buff *skb1, const u32 len); 1223 1224extern void skb_release_data(struct sk_buff *skb); 1225 1226static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 1227 int len, void *buffer) 1228{ 1229 int hlen = skb_headlen(skb); 1230 1231 if (hlen - offset >= len) 1232 return skb->data + offset; 1233 1234 if (skb_copy_bits(skb, offset, buffer, len) < 0) 1235 return NULL; 1236 1237 return buffer; 1238} 1239 1240extern void skb_init(void); 1241extern void skb_add_mtu(int mtu); 1242 1243/** 1244 * skb_get_timestamp - get timestamp from a skb 1245 * @skb: skb to get stamp from 1246 * @stamp: pointer to struct timeval to store stamp in 1247 * 1248 * Timestamps are stored in the skb as offsets to a base timestamp. 1249 * This function converts the offset back to a struct timeval and stores 1250 * it in stamp. 1251 */ 1252static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp) 1253{ 1254 stamp->tv_sec = skb->tstamp.off_sec; 1255 stamp->tv_usec = skb->tstamp.off_usec; 1256} 1257 1258/** 1259 * skb_set_timestamp - set timestamp of a skb 1260 * @skb: skb to set stamp of 1261 * @stamp: pointer to struct timeval to get stamp from 1262 * 1263 * Timestamps are stored in the skb as offsets to a base timestamp. 1264 * This function converts a struct timeval to an offset and stores 1265 * it in the skb. 1266 */ 1267static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp) 1268{ 1269 skb->tstamp.off_sec = stamp->tv_sec; 1270 skb->tstamp.off_usec = stamp->tv_usec; 1271} 1272 1273extern void __net_timestamp(struct sk_buff *skb); 1274 1275#ifdef CONFIG_NETFILTER 1276static inline void nf_conntrack_put(struct nf_conntrack *nfct) 1277{ 1278 if (nfct && atomic_dec_and_test(&nfct->use)) 1279 nfct->destroy(nfct); 1280} 1281static inline void nf_conntrack_get(struct nf_conntrack *nfct) 1282{ 1283 if (nfct) 1284 atomic_inc(&nfct->use); 1285} 1286static inline void nf_reset(struct sk_buff *skb) 1287{ 1288 nf_conntrack_put(skb->nfct); 1289 skb->nfct = NULL; 1290} 1291 1292#ifdef CONFIG_BRIDGE_NETFILTER 1293static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 1294{ 1295 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 1296 kfree(nf_bridge); 1297} 1298static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 1299{ 1300 if (nf_bridge) 1301 atomic_inc(&nf_bridge->use); 1302} 1303#endif /* CONFIG_BRIDGE_NETFILTER */ 1304#else /* CONFIG_NETFILTER */ 1305static inline void nf_reset(struct sk_buff *skb) {} 1306#endif /* CONFIG_NETFILTER */ 1307 1308#endif /* __KERNEL__ */ 1309#endif /* _LINUX_SKBUFF_H */