at v2.6.14 1397 lines 44 kB view raw
1#ifndef _LINUX_SCHED_H 2#define _LINUX_SCHED_H 3 4#include <asm/param.h> /* for HZ */ 5 6#include <linux/config.h> 7#include <linux/capability.h> 8#include <linux/threads.h> 9#include <linux/kernel.h> 10#include <linux/types.h> 11#include <linux/timex.h> 12#include <linux/jiffies.h> 13#include <linux/rbtree.h> 14#include <linux/thread_info.h> 15#include <linux/cpumask.h> 16#include <linux/errno.h> 17#include <linux/nodemask.h> 18 19#include <asm/system.h> 20#include <asm/semaphore.h> 21#include <asm/page.h> 22#include <asm/ptrace.h> 23#include <asm/mmu.h> 24#include <asm/cputime.h> 25 26#include <linux/smp.h> 27#include <linux/sem.h> 28#include <linux/signal.h> 29#include <linux/securebits.h> 30#include <linux/fs_struct.h> 31#include <linux/compiler.h> 32#include <linux/completion.h> 33#include <linux/pid.h> 34#include <linux/percpu.h> 35#include <linux/topology.h> 36#include <linux/seccomp.h> 37 38#include <linux/auxvec.h> /* For AT_VECTOR_SIZE */ 39 40struct exec_domain; 41 42/* 43 * cloning flags: 44 */ 45#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */ 46#define CLONE_VM 0x00000100 /* set if VM shared between processes */ 47#define CLONE_FS 0x00000200 /* set if fs info shared between processes */ 48#define CLONE_FILES 0x00000400 /* set if open files shared between processes */ 49#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */ 50#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */ 51#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */ 52#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */ 53#define CLONE_THREAD 0x00010000 /* Same thread group? */ 54#define CLONE_NEWNS 0x00020000 /* New namespace group? */ 55#define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */ 56#define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */ 57#define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */ 58#define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */ 59#define CLONE_DETACHED 0x00400000 /* Unused, ignored */ 60#define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */ 61#define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */ 62#define CLONE_STOPPED 0x02000000 /* Start in stopped state */ 63 64/* 65 * List of flags we want to share for kernel threads, 66 * if only because they are not used by them anyway. 67 */ 68#define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND) 69 70/* 71 * These are the constant used to fake the fixed-point load-average 72 * counting. Some notes: 73 * - 11 bit fractions expand to 22 bits by the multiplies: this gives 74 * a load-average precision of 10 bits integer + 11 bits fractional 75 * - if you want to count load-averages more often, you need more 76 * precision, or rounding will get you. With 2-second counting freq, 77 * the EXP_n values would be 1981, 2034 and 2043 if still using only 78 * 11 bit fractions. 79 */ 80extern unsigned long avenrun[]; /* Load averages */ 81 82#define FSHIFT 11 /* nr of bits of precision */ 83#define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */ 84#define LOAD_FREQ (5*HZ) /* 5 sec intervals */ 85#define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */ 86#define EXP_5 2014 /* 1/exp(5sec/5min) */ 87#define EXP_15 2037 /* 1/exp(5sec/15min) */ 88 89#define CALC_LOAD(load,exp,n) \ 90 load *= exp; \ 91 load += n*(FIXED_1-exp); \ 92 load >>= FSHIFT; 93 94extern unsigned long total_forks; 95extern int nr_threads; 96extern int last_pid; 97DECLARE_PER_CPU(unsigned long, process_counts); 98extern int nr_processes(void); 99extern unsigned long nr_running(void); 100extern unsigned long nr_uninterruptible(void); 101extern unsigned long nr_iowait(void); 102 103#include <linux/time.h> 104#include <linux/param.h> 105#include <linux/resource.h> 106#include <linux/timer.h> 107 108#include <asm/processor.h> 109 110/* 111 * Task state bitmask. NOTE! These bits are also 112 * encoded in fs/proc/array.c: get_task_state(). 113 * 114 * We have two separate sets of flags: task->state 115 * is about runnability, while task->exit_state are 116 * about the task exiting. Confusing, but this way 117 * modifying one set can't modify the other one by 118 * mistake. 119 */ 120#define TASK_RUNNING 0 121#define TASK_INTERRUPTIBLE 1 122#define TASK_UNINTERRUPTIBLE 2 123#define TASK_STOPPED 4 124#define TASK_TRACED 8 125/* in tsk->exit_state */ 126#define EXIT_ZOMBIE 16 127#define EXIT_DEAD 32 128/* in tsk->state again */ 129#define TASK_NONINTERACTIVE 64 130 131#define __set_task_state(tsk, state_value) \ 132 do { (tsk)->state = (state_value); } while (0) 133#define set_task_state(tsk, state_value) \ 134 set_mb((tsk)->state, (state_value)) 135 136/* 137 * set_current_state() includes a barrier so that the write of current->state 138 * is correctly serialised wrt the caller's subsequent test of whether to 139 * actually sleep: 140 * 141 * set_current_state(TASK_UNINTERRUPTIBLE); 142 * if (do_i_need_to_sleep()) 143 * schedule(); 144 * 145 * If the caller does not need such serialisation then use __set_current_state() 146 */ 147#define __set_current_state(state_value) \ 148 do { current->state = (state_value); } while (0) 149#define set_current_state(state_value) \ 150 set_mb(current->state, (state_value)) 151 152/* Task command name length */ 153#define TASK_COMM_LEN 16 154 155/* 156 * Scheduling policies 157 */ 158#define SCHED_NORMAL 0 159#define SCHED_FIFO 1 160#define SCHED_RR 2 161 162struct sched_param { 163 int sched_priority; 164}; 165 166#ifdef __KERNEL__ 167 168#include <linux/spinlock.h> 169 170/* 171 * This serializes "schedule()" and also protects 172 * the run-queue from deletions/modifications (but 173 * _adding_ to the beginning of the run-queue has 174 * a separate lock). 175 */ 176extern rwlock_t tasklist_lock; 177extern spinlock_t mmlist_lock; 178 179typedef struct task_struct task_t; 180 181extern void sched_init(void); 182extern void sched_init_smp(void); 183extern void init_idle(task_t *idle, int cpu); 184 185extern cpumask_t nohz_cpu_mask; 186 187extern void show_state(void); 188extern void show_regs(struct pt_regs *); 189 190/* 191 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current 192 * task), SP is the stack pointer of the first frame that should be shown in the back 193 * trace (or NULL if the entire call-chain of the task should be shown). 194 */ 195extern void show_stack(struct task_struct *task, unsigned long *sp); 196 197void io_schedule(void); 198long io_schedule_timeout(long timeout); 199 200extern void cpu_init (void); 201extern void trap_init(void); 202extern void update_process_times(int user); 203extern void scheduler_tick(void); 204 205#ifdef CONFIG_DETECT_SOFTLOCKUP 206extern void softlockup_tick(struct pt_regs *regs); 207extern void spawn_softlockup_task(void); 208extern void touch_softlockup_watchdog(void); 209#else 210static inline void softlockup_tick(struct pt_regs *regs) 211{ 212} 213static inline void spawn_softlockup_task(void) 214{ 215} 216static inline void touch_softlockup_watchdog(void) 217{ 218} 219#endif 220 221 222/* Attach to any functions which should be ignored in wchan output. */ 223#define __sched __attribute__((__section__(".sched.text"))) 224/* Is this address in the __sched functions? */ 225extern int in_sched_functions(unsigned long addr); 226 227#define MAX_SCHEDULE_TIMEOUT LONG_MAX 228extern signed long FASTCALL(schedule_timeout(signed long timeout)); 229extern signed long schedule_timeout_interruptible(signed long timeout); 230extern signed long schedule_timeout_uninterruptible(signed long timeout); 231asmlinkage void schedule(void); 232 233struct namespace; 234 235/* Maximum number of active map areas.. This is a random (large) number */ 236#define DEFAULT_MAX_MAP_COUNT 65536 237 238extern int sysctl_max_map_count; 239 240#include <linux/aio.h> 241 242extern unsigned long 243arch_get_unmapped_area(struct file *, unsigned long, unsigned long, 244 unsigned long, unsigned long); 245extern unsigned long 246arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr, 247 unsigned long len, unsigned long pgoff, 248 unsigned long flags); 249extern void arch_unmap_area(struct mm_struct *, unsigned long); 250extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long); 251 252#define set_mm_counter(mm, member, value) (mm)->_##member = (value) 253#define get_mm_counter(mm, member) ((mm)->_##member) 254#define add_mm_counter(mm, member, value) (mm)->_##member += (value) 255#define inc_mm_counter(mm, member) (mm)->_##member++ 256#define dec_mm_counter(mm, member) (mm)->_##member-- 257typedef unsigned long mm_counter_t; 258 259struct mm_struct { 260 struct vm_area_struct * mmap; /* list of VMAs */ 261 struct rb_root mm_rb; 262 struct vm_area_struct * mmap_cache; /* last find_vma result */ 263 unsigned long (*get_unmapped_area) (struct file *filp, 264 unsigned long addr, unsigned long len, 265 unsigned long pgoff, unsigned long flags); 266 void (*unmap_area) (struct mm_struct *mm, unsigned long addr); 267 unsigned long mmap_base; /* base of mmap area */ 268 unsigned long cached_hole_size; /* if non-zero, the largest hole below free_area_cache */ 269 unsigned long free_area_cache; /* first hole of size cached_hole_size or larger */ 270 pgd_t * pgd; 271 atomic_t mm_users; /* How many users with user space? */ 272 atomic_t mm_count; /* How many references to "struct mm_struct" (users count as 1) */ 273 int map_count; /* number of VMAs */ 274 struct rw_semaphore mmap_sem; 275 spinlock_t page_table_lock; /* Protects page tables and some counters */ 276 277 struct list_head mmlist; /* List of maybe swapped mm's. These are globally strung 278 * together off init_mm.mmlist, and are protected 279 * by mmlist_lock 280 */ 281 282 unsigned long start_code, end_code, start_data, end_data; 283 unsigned long start_brk, brk, start_stack; 284 unsigned long arg_start, arg_end, env_start, env_end; 285 unsigned long total_vm, locked_vm, shared_vm; 286 unsigned long exec_vm, stack_vm, reserved_vm, def_flags, nr_ptes; 287 288 /* Special counters protected by the page_table_lock */ 289 mm_counter_t _rss; 290 mm_counter_t _anon_rss; 291 292 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 293 294 unsigned dumpable:2; 295 cpumask_t cpu_vm_mask; 296 297 /* Architecture-specific MM context */ 298 mm_context_t context; 299 300 /* Token based thrashing protection. */ 301 unsigned long swap_token_time; 302 char recent_pagein; 303 304 /* coredumping support */ 305 int core_waiters; 306 struct completion *core_startup_done, core_done; 307 308 /* aio bits */ 309 rwlock_t ioctx_list_lock; 310 struct kioctx *ioctx_list; 311 312 struct kioctx default_kioctx; 313 314 unsigned long hiwater_rss; /* High-water RSS usage */ 315 unsigned long hiwater_vm; /* High-water virtual memory usage */ 316}; 317 318struct sighand_struct { 319 atomic_t count; 320 struct k_sigaction action[_NSIG]; 321 spinlock_t siglock; 322}; 323 324/* 325 * NOTE! "signal_struct" does not have it's own 326 * locking, because a shared signal_struct always 327 * implies a shared sighand_struct, so locking 328 * sighand_struct is always a proper superset of 329 * the locking of signal_struct. 330 */ 331struct signal_struct { 332 atomic_t count; 333 atomic_t live; 334 335 wait_queue_head_t wait_chldexit; /* for wait4() */ 336 337 /* current thread group signal load-balancing target: */ 338 task_t *curr_target; 339 340 /* shared signal handling: */ 341 struct sigpending shared_pending; 342 343 /* thread group exit support */ 344 int group_exit_code; 345 /* overloaded: 346 * - notify group_exit_task when ->count is equal to notify_count 347 * - everyone except group_exit_task is stopped during signal delivery 348 * of fatal signals, group_exit_task processes the signal. 349 */ 350 struct task_struct *group_exit_task; 351 int notify_count; 352 353 /* thread group stop support, overloads group_exit_code too */ 354 int group_stop_count; 355 unsigned int flags; /* see SIGNAL_* flags below */ 356 357 /* POSIX.1b Interval Timers */ 358 struct list_head posix_timers; 359 360 /* ITIMER_REAL timer for the process */ 361 struct timer_list real_timer; 362 unsigned long it_real_value, it_real_incr; 363 364 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */ 365 cputime_t it_prof_expires, it_virt_expires; 366 cputime_t it_prof_incr, it_virt_incr; 367 368 /* job control IDs */ 369 pid_t pgrp; 370 pid_t tty_old_pgrp; 371 pid_t session; 372 /* boolean value for session group leader */ 373 int leader; 374 375 struct tty_struct *tty; /* NULL if no tty */ 376 377 /* 378 * Cumulative resource counters for dead threads in the group, 379 * and for reaped dead child processes forked by this group. 380 * Live threads maintain their own counters and add to these 381 * in __exit_signal, except for the group leader. 382 */ 383 cputime_t utime, stime, cutime, cstime; 384 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw; 385 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt; 386 387 /* 388 * Cumulative ns of scheduled CPU time for dead threads in the 389 * group, not including a zombie group leader. (This only differs 390 * from jiffies_to_ns(utime + stime) if sched_clock uses something 391 * other than jiffies.) 392 */ 393 unsigned long long sched_time; 394 395 /* 396 * We don't bother to synchronize most readers of this at all, 397 * because there is no reader checking a limit that actually needs 398 * to get both rlim_cur and rlim_max atomically, and either one 399 * alone is a single word that can safely be read normally. 400 * getrlimit/setrlimit use task_lock(current->group_leader) to 401 * protect this instead of the siglock, because they really 402 * have no need to disable irqs. 403 */ 404 struct rlimit rlim[RLIM_NLIMITS]; 405 406 struct list_head cpu_timers[3]; 407 408 /* keep the process-shared keyrings here so that they do the right 409 * thing in threads created with CLONE_THREAD */ 410#ifdef CONFIG_KEYS 411 struct key *session_keyring; /* keyring inherited over fork */ 412 struct key *process_keyring; /* keyring private to this process */ 413#endif 414}; 415 416/* Context switch must be unlocked if interrupts are to be enabled */ 417#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW 418# define __ARCH_WANT_UNLOCKED_CTXSW 419#endif 420 421/* 422 * Bits in flags field of signal_struct. 423 */ 424#define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */ 425#define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */ 426#define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */ 427#define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */ 428 429 430/* 431 * Priority of a process goes from 0..MAX_PRIO-1, valid RT 432 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL tasks are 433 * in the range MAX_RT_PRIO..MAX_PRIO-1. Priority values 434 * are inverted: lower p->prio value means higher priority. 435 * 436 * The MAX_USER_RT_PRIO value allows the actual maximum 437 * RT priority to be separate from the value exported to 438 * user-space. This allows kernel threads to set their 439 * priority to a value higher than any user task. Note: 440 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO. 441 */ 442 443#define MAX_USER_RT_PRIO 100 444#define MAX_RT_PRIO MAX_USER_RT_PRIO 445 446#define MAX_PRIO (MAX_RT_PRIO + 40) 447 448#define rt_task(p) (unlikely((p)->prio < MAX_RT_PRIO)) 449 450/* 451 * Some day this will be a full-fledged user tracking system.. 452 */ 453struct user_struct { 454 atomic_t __count; /* reference count */ 455 atomic_t processes; /* How many processes does this user have? */ 456 atomic_t files; /* How many open files does this user have? */ 457 atomic_t sigpending; /* How many pending signals does this user have? */ 458#ifdef CONFIG_INOTIFY 459 atomic_t inotify_watches; /* How many inotify watches does this user have? */ 460 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */ 461#endif 462 /* protected by mq_lock */ 463 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */ 464 unsigned long locked_shm; /* How many pages of mlocked shm ? */ 465 466#ifdef CONFIG_KEYS 467 struct key *uid_keyring; /* UID specific keyring */ 468 struct key *session_keyring; /* UID's default session keyring */ 469#endif 470 471 /* Hash table maintenance information */ 472 struct list_head uidhash_list; 473 uid_t uid; 474}; 475 476extern struct user_struct *find_user(uid_t); 477 478extern struct user_struct root_user; 479#define INIT_USER (&root_user) 480 481typedef struct prio_array prio_array_t; 482struct backing_dev_info; 483struct reclaim_state; 484 485#ifdef CONFIG_SCHEDSTATS 486struct sched_info { 487 /* cumulative counters */ 488 unsigned long cpu_time, /* time spent on the cpu */ 489 run_delay, /* time spent waiting on a runqueue */ 490 pcnt; /* # of timeslices run on this cpu */ 491 492 /* timestamps */ 493 unsigned long last_arrival, /* when we last ran on a cpu */ 494 last_queued; /* when we were last queued to run */ 495}; 496 497extern struct file_operations proc_schedstat_operations; 498#endif 499 500enum idle_type 501{ 502 SCHED_IDLE, 503 NOT_IDLE, 504 NEWLY_IDLE, 505 MAX_IDLE_TYPES 506}; 507 508/* 509 * sched-domains (multiprocessor balancing) declarations: 510 */ 511#ifdef CONFIG_SMP 512#define SCHED_LOAD_SCALE 128UL /* increase resolution of load */ 513 514#define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */ 515#define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */ 516#define SD_BALANCE_EXEC 4 /* Balance on exec */ 517#define SD_BALANCE_FORK 8 /* Balance on fork, clone */ 518#define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */ 519#define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */ 520#define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */ 521#define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */ 522 523struct sched_group { 524 struct sched_group *next; /* Must be a circular list */ 525 cpumask_t cpumask; 526 527 /* 528 * CPU power of this group, SCHED_LOAD_SCALE being max power for a 529 * single CPU. This is read only (except for setup, hotplug CPU). 530 */ 531 unsigned long cpu_power; 532}; 533 534struct sched_domain { 535 /* These fields must be setup */ 536 struct sched_domain *parent; /* top domain must be null terminated */ 537 struct sched_group *groups; /* the balancing groups of the domain */ 538 cpumask_t span; /* span of all CPUs in this domain */ 539 unsigned long min_interval; /* Minimum balance interval ms */ 540 unsigned long max_interval; /* Maximum balance interval ms */ 541 unsigned int busy_factor; /* less balancing by factor if busy */ 542 unsigned int imbalance_pct; /* No balance until over watermark */ 543 unsigned long long cache_hot_time; /* Task considered cache hot (ns) */ 544 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */ 545 unsigned int per_cpu_gain; /* CPU % gained by adding domain cpus */ 546 unsigned int busy_idx; 547 unsigned int idle_idx; 548 unsigned int newidle_idx; 549 unsigned int wake_idx; 550 unsigned int forkexec_idx; 551 int flags; /* See SD_* */ 552 553 /* Runtime fields. */ 554 unsigned long last_balance; /* init to jiffies. units in jiffies */ 555 unsigned int balance_interval; /* initialise to 1. units in ms. */ 556 unsigned int nr_balance_failed; /* initialise to 0 */ 557 558#ifdef CONFIG_SCHEDSTATS 559 /* load_balance() stats */ 560 unsigned long lb_cnt[MAX_IDLE_TYPES]; 561 unsigned long lb_failed[MAX_IDLE_TYPES]; 562 unsigned long lb_balanced[MAX_IDLE_TYPES]; 563 unsigned long lb_imbalance[MAX_IDLE_TYPES]; 564 unsigned long lb_gained[MAX_IDLE_TYPES]; 565 unsigned long lb_hot_gained[MAX_IDLE_TYPES]; 566 unsigned long lb_nobusyg[MAX_IDLE_TYPES]; 567 unsigned long lb_nobusyq[MAX_IDLE_TYPES]; 568 569 /* Active load balancing */ 570 unsigned long alb_cnt; 571 unsigned long alb_failed; 572 unsigned long alb_pushed; 573 574 /* SD_BALANCE_EXEC stats */ 575 unsigned long sbe_cnt; 576 unsigned long sbe_balanced; 577 unsigned long sbe_pushed; 578 579 /* SD_BALANCE_FORK stats */ 580 unsigned long sbf_cnt; 581 unsigned long sbf_balanced; 582 unsigned long sbf_pushed; 583 584 /* try_to_wake_up() stats */ 585 unsigned long ttwu_wake_remote; 586 unsigned long ttwu_move_affine; 587 unsigned long ttwu_move_balance; 588#endif 589}; 590 591extern void partition_sched_domains(cpumask_t *partition1, 592 cpumask_t *partition2); 593#endif /* CONFIG_SMP */ 594 595 596struct io_context; /* See blkdev.h */ 597void exit_io_context(void); 598struct cpuset; 599 600#define NGROUPS_SMALL 32 601#define NGROUPS_PER_BLOCK ((int)(PAGE_SIZE / sizeof(gid_t))) 602struct group_info { 603 int ngroups; 604 atomic_t usage; 605 gid_t small_block[NGROUPS_SMALL]; 606 int nblocks; 607 gid_t *blocks[0]; 608}; 609 610/* 611 * get_group_info() must be called with the owning task locked (via task_lock()) 612 * when task != current. The reason being that the vast majority of callers are 613 * looking at current->group_info, which can not be changed except by the 614 * current task. Changing current->group_info requires the task lock, too. 615 */ 616#define get_group_info(group_info) do { \ 617 atomic_inc(&(group_info)->usage); \ 618} while (0) 619 620#define put_group_info(group_info) do { \ 621 if (atomic_dec_and_test(&(group_info)->usage)) \ 622 groups_free(group_info); \ 623} while (0) 624 625extern struct group_info *groups_alloc(int gidsetsize); 626extern void groups_free(struct group_info *group_info); 627extern int set_current_groups(struct group_info *group_info); 628extern int groups_search(struct group_info *group_info, gid_t grp); 629/* access the groups "array" with this macro */ 630#define GROUP_AT(gi, i) \ 631 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK]) 632 633#ifdef ARCH_HAS_PREFETCH_SWITCH_STACK 634extern void prefetch_stack(struct task_struct*); 635#else 636static inline void prefetch_stack(struct task_struct *t) { } 637#endif 638 639struct audit_context; /* See audit.c */ 640struct mempolicy; 641 642struct task_struct { 643 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 644 struct thread_info *thread_info; 645 atomic_t usage; 646 unsigned long flags; /* per process flags, defined below */ 647 unsigned long ptrace; 648 649 int lock_depth; /* BKL lock depth */ 650 651#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) 652 int oncpu; 653#endif 654 int prio, static_prio; 655 struct list_head run_list; 656 prio_array_t *array; 657 658 unsigned short ioprio; 659 660 unsigned long sleep_avg; 661 unsigned long long timestamp, last_ran; 662 unsigned long long sched_time; /* sched_clock time spent running */ 663 int activated; 664 665 unsigned long policy; 666 cpumask_t cpus_allowed; 667 unsigned int time_slice, first_time_slice; 668 669#ifdef CONFIG_SCHEDSTATS 670 struct sched_info sched_info; 671#endif 672 673 struct list_head tasks; 674 /* 675 * ptrace_list/ptrace_children forms the list of my children 676 * that were stolen by a ptracer. 677 */ 678 struct list_head ptrace_children; 679 struct list_head ptrace_list; 680 681 struct mm_struct *mm, *active_mm; 682 683/* task state */ 684 struct linux_binfmt *binfmt; 685 long exit_state; 686 int exit_code, exit_signal; 687 int pdeath_signal; /* The signal sent when the parent dies */ 688 /* ??? */ 689 unsigned long personality; 690 unsigned did_exec:1; 691 pid_t pid; 692 pid_t tgid; 693 /* 694 * pointers to (original) parent process, youngest child, younger sibling, 695 * older sibling, respectively. (p->father can be replaced with 696 * p->parent->pid) 697 */ 698 struct task_struct *real_parent; /* real parent process (when being debugged) */ 699 struct task_struct *parent; /* parent process */ 700 /* 701 * children/sibling forms the list of my children plus the 702 * tasks I'm ptracing. 703 */ 704 struct list_head children; /* list of my children */ 705 struct list_head sibling; /* linkage in my parent's children list */ 706 struct task_struct *group_leader; /* threadgroup leader */ 707 708 /* PID/PID hash table linkage. */ 709 struct pid pids[PIDTYPE_MAX]; 710 711 struct completion *vfork_done; /* for vfork() */ 712 int __user *set_child_tid; /* CLONE_CHILD_SETTID */ 713 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ 714 715 unsigned long rt_priority; 716 cputime_t utime, stime; 717 unsigned long nvcsw, nivcsw; /* context switch counts */ 718 struct timespec start_time; 719/* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ 720 unsigned long min_flt, maj_flt; 721 722 cputime_t it_prof_expires, it_virt_expires; 723 unsigned long long it_sched_expires; 724 struct list_head cpu_timers[3]; 725 726/* process credentials */ 727 uid_t uid,euid,suid,fsuid; 728 gid_t gid,egid,sgid,fsgid; 729 struct group_info *group_info; 730 kernel_cap_t cap_effective, cap_inheritable, cap_permitted; 731 unsigned keep_capabilities:1; 732 struct user_struct *user; 733#ifdef CONFIG_KEYS 734 struct key *thread_keyring; /* keyring private to this thread */ 735 unsigned char jit_keyring; /* default keyring to attach requested keys to */ 736#endif 737 int oomkilladj; /* OOM kill score adjustment (bit shift). */ 738 char comm[TASK_COMM_LEN]; /* executable name excluding path 739 - access with [gs]et_task_comm (which lock 740 it with task_lock()) 741 - initialized normally by flush_old_exec */ 742/* file system info */ 743 int link_count, total_link_count; 744/* ipc stuff */ 745 struct sysv_sem sysvsem; 746/* CPU-specific state of this task */ 747 struct thread_struct thread; 748/* filesystem information */ 749 struct fs_struct *fs; 750/* open file information */ 751 struct files_struct *files; 752/* namespace */ 753 struct namespace *namespace; 754/* signal handlers */ 755 struct signal_struct *signal; 756 struct sighand_struct *sighand; 757 758 sigset_t blocked, real_blocked; 759 struct sigpending pending; 760 761 unsigned long sas_ss_sp; 762 size_t sas_ss_size; 763 int (*notifier)(void *priv); 764 void *notifier_data; 765 sigset_t *notifier_mask; 766 767 void *security; 768 struct audit_context *audit_context; 769 seccomp_t seccomp; 770 771/* Thread group tracking */ 772 u32 parent_exec_id; 773 u32 self_exec_id; 774/* Protection of (de-)allocation: mm, files, fs, tty, keyrings */ 775 spinlock_t alloc_lock; 776/* Protection of proc_dentry: nesting proc_lock, dcache_lock, write_lock_irq(&tasklist_lock); */ 777 spinlock_t proc_lock; 778 779/* journalling filesystem info */ 780 void *journal_info; 781 782/* VM state */ 783 struct reclaim_state *reclaim_state; 784 785 struct dentry *proc_dentry; 786 struct backing_dev_info *backing_dev_info; 787 788 struct io_context *io_context; 789 790 unsigned long ptrace_message; 791 siginfo_t *last_siginfo; /* For ptrace use. */ 792/* 793 * current io wait handle: wait queue entry to use for io waits 794 * If this thread is processing aio, this points at the waitqueue 795 * inside the currently handled kiocb. It may be NULL (i.e. default 796 * to a stack based synchronous wait) if its doing sync IO. 797 */ 798 wait_queue_t *io_wait; 799/* i/o counters(bytes read/written, #syscalls */ 800 u64 rchar, wchar, syscr, syscw; 801#if defined(CONFIG_BSD_PROCESS_ACCT) 802 u64 acct_rss_mem1; /* accumulated rss usage */ 803 u64 acct_vm_mem1; /* accumulated virtual memory usage */ 804 clock_t acct_stimexpd; /* clock_t-converted stime since last update */ 805#endif 806#ifdef CONFIG_NUMA 807 struct mempolicy *mempolicy; 808 short il_next; 809#endif 810#ifdef CONFIG_CPUSETS 811 struct cpuset *cpuset; 812 nodemask_t mems_allowed; 813 int cpuset_mems_generation; 814#endif 815 atomic_t fs_excl; /* holding fs exclusive resources */ 816}; 817 818static inline pid_t process_group(struct task_struct *tsk) 819{ 820 return tsk->signal->pgrp; 821} 822 823/** 824 * pid_alive - check that a task structure is not stale 825 * @p: Task structure to be checked. 826 * 827 * Test if a process is not yet dead (at most zombie state) 828 * If pid_alive fails, then pointers within the task structure 829 * can be stale and must not be dereferenced. 830 */ 831static inline int pid_alive(struct task_struct *p) 832{ 833 return p->pids[PIDTYPE_PID].nr != 0; 834} 835 836extern void free_task(struct task_struct *tsk); 837extern void __put_task_struct(struct task_struct *tsk); 838#define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) 839#define put_task_struct(tsk) \ 840do { if (atomic_dec_and_test(&(tsk)->usage)) __put_task_struct(tsk); } while(0) 841 842/* 843 * Per process flags 844 */ 845#define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */ 846 /* Not implemented yet, only for 486*/ 847#define PF_STARTING 0x00000002 /* being created */ 848#define PF_EXITING 0x00000004 /* getting shut down */ 849#define PF_DEAD 0x00000008 /* Dead */ 850#define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ 851#define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ 852#define PF_DUMPCORE 0x00000200 /* dumped core */ 853#define PF_SIGNALED 0x00000400 /* killed by a signal */ 854#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 855#define PF_FLUSHER 0x00001000 /* responsible for disk writeback */ 856#define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ 857#define PF_FREEZE 0x00004000 /* this task is being frozen for suspend now */ 858#define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ 859#define PF_FROZEN 0x00010000 /* frozen for system suspend */ 860#define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ 861#define PF_KSWAPD 0x00040000 /* I am kswapd */ 862#define PF_SWAPOFF 0x00080000 /* I am in swapoff */ 863#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 864#define PF_SYNCWRITE 0x00200000 /* I am doing a sync write */ 865#define PF_BORROWED_MM 0x00400000 /* I am a kthread doing use_mm */ 866#define PF_RANDOMIZE 0x00800000 /* randomize virtual address space */ 867 868/* 869 * Only the _current_ task can read/write to tsk->flags, but other 870 * tasks can access tsk->flags in readonly mode for example 871 * with tsk_used_math (like during threaded core dumping). 872 * There is however an exception to this rule during ptrace 873 * or during fork: the ptracer task is allowed to write to the 874 * child->flags of its traced child (same goes for fork, the parent 875 * can write to the child->flags), because we're guaranteed the 876 * child is not running and in turn not changing child->flags 877 * at the same time the parent does it. 878 */ 879#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 880#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 881#define clear_used_math() clear_stopped_child_used_math(current) 882#define set_used_math() set_stopped_child_used_math(current) 883#define conditional_stopped_child_used_math(condition, child) \ 884 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 885#define conditional_used_math(condition) \ 886 conditional_stopped_child_used_math(condition, current) 887#define copy_to_stopped_child_used_math(child) \ 888 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 889/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 890#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 891#define used_math() tsk_used_math(current) 892 893#ifdef CONFIG_SMP 894extern int set_cpus_allowed(task_t *p, cpumask_t new_mask); 895#else 896static inline int set_cpus_allowed(task_t *p, cpumask_t new_mask) 897{ 898 if (!cpus_intersects(new_mask, cpu_online_map)) 899 return -EINVAL; 900 return 0; 901} 902#endif 903 904extern unsigned long long sched_clock(void); 905extern unsigned long long current_sched_time(const task_t *current_task); 906 907/* sched_exec is called by processes performing an exec */ 908#ifdef CONFIG_SMP 909extern void sched_exec(void); 910#else 911#define sched_exec() {} 912#endif 913 914#ifdef CONFIG_HOTPLUG_CPU 915extern void idle_task_exit(void); 916#else 917static inline void idle_task_exit(void) {} 918#endif 919 920extern void sched_idle_next(void); 921extern void set_user_nice(task_t *p, long nice); 922extern int task_prio(const task_t *p); 923extern int task_nice(const task_t *p); 924extern int can_nice(const task_t *p, const int nice); 925extern int task_curr(const task_t *p); 926extern int idle_cpu(int cpu); 927extern int sched_setscheduler(struct task_struct *, int, struct sched_param *); 928extern task_t *idle_task(int cpu); 929extern task_t *curr_task(int cpu); 930extern void set_curr_task(int cpu, task_t *p); 931 932void yield(void); 933 934/* 935 * The default (Linux) execution domain. 936 */ 937extern struct exec_domain default_exec_domain; 938 939union thread_union { 940 struct thread_info thread_info; 941 unsigned long stack[THREAD_SIZE/sizeof(long)]; 942}; 943 944#ifndef __HAVE_ARCH_KSTACK_END 945static inline int kstack_end(void *addr) 946{ 947 /* Reliable end of stack detection: 948 * Some APM bios versions misalign the stack 949 */ 950 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); 951} 952#endif 953 954extern union thread_union init_thread_union; 955extern struct task_struct init_task; 956 957extern struct mm_struct init_mm; 958 959#define find_task_by_pid(nr) find_task_by_pid_type(PIDTYPE_PID, nr) 960extern struct task_struct *find_task_by_pid_type(int type, int pid); 961extern void set_special_pids(pid_t session, pid_t pgrp); 962extern void __set_special_pids(pid_t session, pid_t pgrp); 963 964/* per-UID process charging. */ 965extern struct user_struct * alloc_uid(uid_t); 966static inline struct user_struct *get_uid(struct user_struct *u) 967{ 968 atomic_inc(&u->__count); 969 return u; 970} 971extern void free_uid(struct user_struct *); 972extern void switch_uid(struct user_struct *); 973 974#include <asm/current.h> 975 976extern void do_timer(struct pt_regs *); 977 978extern int FASTCALL(wake_up_state(struct task_struct * tsk, unsigned int state)); 979extern int FASTCALL(wake_up_process(struct task_struct * tsk)); 980extern void FASTCALL(wake_up_new_task(struct task_struct * tsk, 981 unsigned long clone_flags)); 982#ifdef CONFIG_SMP 983 extern void kick_process(struct task_struct *tsk); 984#else 985 static inline void kick_process(struct task_struct *tsk) { } 986#endif 987extern void FASTCALL(sched_fork(task_t * p, int clone_flags)); 988extern void FASTCALL(sched_exit(task_t * p)); 989 990extern int in_group_p(gid_t); 991extern int in_egroup_p(gid_t); 992 993extern void proc_caches_init(void); 994extern void flush_signals(struct task_struct *); 995extern void flush_signal_handlers(struct task_struct *, int force_default); 996extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info); 997 998static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 999{ 1000 unsigned long flags; 1001 int ret; 1002 1003 spin_lock_irqsave(&tsk->sighand->siglock, flags); 1004 ret = dequeue_signal(tsk, mask, info); 1005 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 1006 1007 return ret; 1008} 1009 1010extern void block_all_signals(int (*notifier)(void *priv), void *priv, 1011 sigset_t *mask); 1012extern void unblock_all_signals(void); 1013extern void release_task(struct task_struct * p); 1014extern int send_sig_info(int, struct siginfo *, struct task_struct *); 1015extern int send_group_sig_info(int, struct siginfo *, struct task_struct *); 1016extern int force_sigsegv(int, struct task_struct *); 1017extern int force_sig_info(int, struct siginfo *, struct task_struct *); 1018extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp); 1019extern int kill_pg_info(int, struct siginfo *, pid_t); 1020extern int kill_proc_info(int, struct siginfo *, pid_t); 1021extern int kill_proc_info_as_uid(int, struct siginfo *, pid_t, uid_t, uid_t); 1022extern void do_notify_parent(struct task_struct *, int); 1023extern void force_sig(int, struct task_struct *); 1024extern void force_sig_specific(int, struct task_struct *); 1025extern int send_sig(int, struct task_struct *, int); 1026extern void zap_other_threads(struct task_struct *p); 1027extern int kill_pg(pid_t, int, int); 1028extern int kill_sl(pid_t, int, int); 1029extern int kill_proc(pid_t, int, int); 1030extern struct sigqueue *sigqueue_alloc(void); 1031extern void sigqueue_free(struct sigqueue *); 1032extern int send_sigqueue(int, struct sigqueue *, struct task_struct *); 1033extern int send_group_sigqueue(int, struct sigqueue *, struct task_struct *); 1034extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *); 1035extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long); 1036 1037/* These can be the second arg to send_sig_info/send_group_sig_info. */ 1038#define SEND_SIG_NOINFO ((struct siginfo *) 0) 1039#define SEND_SIG_PRIV ((struct siginfo *) 1) 1040#define SEND_SIG_FORCED ((struct siginfo *) 2) 1041 1042/* True if we are on the alternate signal stack. */ 1043 1044static inline int on_sig_stack(unsigned long sp) 1045{ 1046 return (sp - current->sas_ss_sp < current->sas_ss_size); 1047} 1048 1049static inline int sas_ss_flags(unsigned long sp) 1050{ 1051 return (current->sas_ss_size == 0 ? SS_DISABLE 1052 : on_sig_stack(sp) ? SS_ONSTACK : 0); 1053} 1054 1055 1056#ifdef CONFIG_SECURITY 1057/* code is in security.c */ 1058extern int capable(int cap); 1059#else 1060static inline int capable(int cap) 1061{ 1062 if (cap_raised(current->cap_effective, cap)) { 1063 current->flags |= PF_SUPERPRIV; 1064 return 1; 1065 } 1066 return 0; 1067} 1068#endif 1069 1070/* 1071 * Routines for handling mm_structs 1072 */ 1073extern struct mm_struct * mm_alloc(void); 1074 1075/* mmdrop drops the mm and the page tables */ 1076extern void FASTCALL(__mmdrop(struct mm_struct *)); 1077static inline void mmdrop(struct mm_struct * mm) 1078{ 1079 if (atomic_dec_and_test(&mm->mm_count)) 1080 __mmdrop(mm); 1081} 1082 1083/* mmput gets rid of the mappings and all user-space */ 1084extern void mmput(struct mm_struct *); 1085/* Grab a reference to a task's mm, if it is not already going away */ 1086extern struct mm_struct *get_task_mm(struct task_struct *task); 1087/* Remove the current tasks stale references to the old mm_struct */ 1088extern void mm_release(struct task_struct *, struct mm_struct *); 1089 1090extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *); 1091extern void flush_thread(void); 1092extern void exit_thread(void); 1093 1094extern void exit_files(struct task_struct *); 1095extern void exit_signal(struct task_struct *); 1096extern void __exit_signal(struct task_struct *); 1097extern void exit_sighand(struct task_struct *); 1098extern void __exit_sighand(struct task_struct *); 1099extern void exit_itimers(struct signal_struct *); 1100 1101extern NORET_TYPE void do_group_exit(int); 1102 1103extern void daemonize(const char *, ...); 1104extern int allow_signal(int); 1105extern int disallow_signal(int); 1106extern task_t *child_reaper; 1107 1108extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *); 1109extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *); 1110task_t *fork_idle(int); 1111 1112extern void set_task_comm(struct task_struct *tsk, char *from); 1113extern void get_task_comm(char *to, struct task_struct *tsk); 1114 1115#ifdef CONFIG_SMP 1116extern void wait_task_inactive(task_t * p); 1117#else 1118#define wait_task_inactive(p) do { } while (0) 1119#endif 1120 1121#define remove_parent(p) list_del_init(&(p)->sibling) 1122#define add_parent(p, parent) list_add_tail(&(p)->sibling,&(parent)->children) 1123 1124#define REMOVE_LINKS(p) do { \ 1125 if (thread_group_leader(p)) \ 1126 list_del_init(&(p)->tasks); \ 1127 remove_parent(p); \ 1128 } while (0) 1129 1130#define SET_LINKS(p) do { \ 1131 if (thread_group_leader(p)) \ 1132 list_add_tail(&(p)->tasks,&init_task.tasks); \ 1133 add_parent(p, (p)->parent); \ 1134 } while (0) 1135 1136#define next_task(p) list_entry((p)->tasks.next, struct task_struct, tasks) 1137#define prev_task(p) list_entry((p)->tasks.prev, struct task_struct, tasks) 1138 1139#define for_each_process(p) \ 1140 for (p = &init_task ; (p = next_task(p)) != &init_task ; ) 1141 1142/* 1143 * Careful: do_each_thread/while_each_thread is a double loop so 1144 * 'break' will not work as expected - use goto instead. 1145 */ 1146#define do_each_thread(g, t) \ 1147 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do 1148 1149#define while_each_thread(g, t) \ 1150 while ((t = next_thread(t)) != g) 1151 1152extern task_t * FASTCALL(next_thread(const task_t *p)); 1153 1154#define thread_group_leader(p) (p->pid == p->tgid) 1155 1156static inline int thread_group_empty(task_t *p) 1157{ 1158 return list_empty(&p->pids[PIDTYPE_TGID].pid_list); 1159} 1160 1161#define delay_group_leader(p) \ 1162 (thread_group_leader(p) && !thread_group_empty(p)) 1163 1164extern void unhash_process(struct task_struct *p); 1165 1166/* 1167 * Protects ->fs, ->files, ->mm, ->ptrace, ->group_info, ->comm, keyring 1168 * subscriptions and synchronises with wait4(). Also used in procfs. Also 1169 * pins the final release of task.io_context. 1170 * 1171 * Nests both inside and outside of read_lock(&tasklist_lock). 1172 * It must not be nested with write_lock_irq(&tasklist_lock), 1173 * neither inside nor outside. 1174 */ 1175static inline void task_lock(struct task_struct *p) 1176{ 1177 spin_lock(&p->alloc_lock); 1178} 1179 1180static inline void task_unlock(struct task_struct *p) 1181{ 1182 spin_unlock(&p->alloc_lock); 1183} 1184 1185/* set thread flags in other task's structures 1186 * - see asm/thread_info.h for TIF_xxxx flags available 1187 */ 1188static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1189{ 1190 set_ti_thread_flag(tsk->thread_info,flag); 1191} 1192 1193static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1194{ 1195 clear_ti_thread_flag(tsk->thread_info,flag); 1196} 1197 1198static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1199{ 1200 return test_and_set_ti_thread_flag(tsk->thread_info,flag); 1201} 1202 1203static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1204{ 1205 return test_and_clear_ti_thread_flag(tsk->thread_info,flag); 1206} 1207 1208static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1209{ 1210 return test_ti_thread_flag(tsk->thread_info,flag); 1211} 1212 1213static inline void set_tsk_need_resched(struct task_struct *tsk) 1214{ 1215 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1216} 1217 1218static inline void clear_tsk_need_resched(struct task_struct *tsk) 1219{ 1220 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1221} 1222 1223static inline int signal_pending(struct task_struct *p) 1224{ 1225 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING)); 1226} 1227 1228static inline int need_resched(void) 1229{ 1230 return unlikely(test_thread_flag(TIF_NEED_RESCHED)); 1231} 1232 1233/* 1234 * cond_resched() and cond_resched_lock(): latency reduction via 1235 * explicit rescheduling in places that are safe. The return 1236 * value indicates whether a reschedule was done in fact. 1237 * cond_resched_lock() will drop the spinlock before scheduling, 1238 * cond_resched_softirq() will enable bhs before scheduling. 1239 */ 1240extern int cond_resched(void); 1241extern int cond_resched_lock(spinlock_t * lock); 1242extern int cond_resched_softirq(void); 1243 1244/* 1245 * Does a critical section need to be broken due to another 1246 * task waiting?: 1247 */ 1248#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) 1249# define need_lockbreak(lock) ((lock)->break_lock) 1250#else 1251# define need_lockbreak(lock) 0 1252#endif 1253 1254/* 1255 * Does a critical section need to be broken due to another 1256 * task waiting or preemption being signalled: 1257 */ 1258static inline int lock_need_resched(spinlock_t *lock) 1259{ 1260 if (need_lockbreak(lock) || need_resched()) 1261 return 1; 1262 return 0; 1263} 1264 1265/* Reevaluate whether the task has signals pending delivery. 1266 This is required every time the blocked sigset_t changes. 1267 callers must hold sighand->siglock. */ 1268 1269extern FASTCALL(void recalc_sigpending_tsk(struct task_struct *t)); 1270extern void recalc_sigpending(void); 1271 1272extern void signal_wake_up(struct task_struct *t, int resume_stopped); 1273 1274/* 1275 * Wrappers for p->thread_info->cpu access. No-op on UP. 1276 */ 1277#ifdef CONFIG_SMP 1278 1279static inline unsigned int task_cpu(const struct task_struct *p) 1280{ 1281 return p->thread_info->cpu; 1282} 1283 1284static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1285{ 1286 p->thread_info->cpu = cpu; 1287} 1288 1289#else 1290 1291static inline unsigned int task_cpu(const struct task_struct *p) 1292{ 1293 return 0; 1294} 1295 1296static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1297{ 1298} 1299 1300#endif /* CONFIG_SMP */ 1301 1302#ifdef HAVE_ARCH_PICK_MMAP_LAYOUT 1303extern void arch_pick_mmap_layout(struct mm_struct *mm); 1304#else 1305static inline void arch_pick_mmap_layout(struct mm_struct *mm) 1306{ 1307 mm->mmap_base = TASK_UNMAPPED_BASE; 1308 mm->get_unmapped_area = arch_get_unmapped_area; 1309 mm->unmap_area = arch_unmap_area; 1310} 1311#endif 1312 1313extern long sched_setaffinity(pid_t pid, cpumask_t new_mask); 1314extern long sched_getaffinity(pid_t pid, cpumask_t *mask); 1315 1316#ifdef CONFIG_MAGIC_SYSRQ 1317 1318extern void normalize_rt_tasks(void); 1319 1320#endif 1321 1322#ifdef CONFIG_PM 1323/* 1324 * Check if a process has been frozen 1325 */ 1326static inline int frozen(struct task_struct *p) 1327{ 1328 return p->flags & PF_FROZEN; 1329} 1330 1331/* 1332 * Check if there is a request to freeze a process 1333 */ 1334static inline int freezing(struct task_struct *p) 1335{ 1336 return p->flags & PF_FREEZE; 1337} 1338 1339/* 1340 * Request that a process be frozen 1341 * FIXME: SMP problem. We may not modify other process' flags! 1342 */ 1343static inline void freeze(struct task_struct *p) 1344{ 1345 p->flags |= PF_FREEZE; 1346} 1347 1348/* 1349 * Wake up a frozen process 1350 */ 1351static inline int thaw_process(struct task_struct *p) 1352{ 1353 if (frozen(p)) { 1354 p->flags &= ~PF_FROZEN; 1355 wake_up_process(p); 1356 return 1; 1357 } 1358 return 0; 1359} 1360 1361/* 1362 * freezing is complete, mark process as frozen 1363 */ 1364static inline void frozen_process(struct task_struct *p) 1365{ 1366 p->flags = (p->flags & ~PF_FREEZE) | PF_FROZEN; 1367} 1368 1369extern void refrigerator(void); 1370extern int freeze_processes(void); 1371extern void thaw_processes(void); 1372 1373static inline int try_to_freeze(void) 1374{ 1375 if (freezing(current)) { 1376 refrigerator(); 1377 return 1; 1378 } else 1379 return 0; 1380} 1381#else 1382static inline int frozen(struct task_struct *p) { return 0; } 1383static inline int freezing(struct task_struct *p) { return 0; } 1384static inline void freeze(struct task_struct *p) { BUG(); } 1385static inline int thaw_process(struct task_struct *p) { return 1; } 1386static inline void frozen_process(struct task_struct *p) { BUG(); } 1387 1388static inline void refrigerator(void) {} 1389static inline int freeze_processes(void) { BUG(); return 0; } 1390static inline void thaw_processes(void) {} 1391 1392static inline int try_to_freeze(void) { return 0; } 1393 1394#endif /* CONFIG_PM */ 1395#endif /* __KERNEL__ */ 1396 1397#endif