at v2.6.14 24 kB view raw
1#ifndef _LINUX_LIST_H 2#define _LINUX_LIST_H 3 4#ifdef __KERNEL__ 5 6#include <linux/stddef.h> 7#include <linux/prefetch.h> 8#include <asm/system.h> 9 10/* 11 * These are non-NULL pointers that will result in page faults 12 * under normal circumstances, used to verify that nobody uses 13 * non-initialized list entries. 14 */ 15#define LIST_POISON1 ((void *) 0x00100100) 16#define LIST_POISON2 ((void *) 0x00200200) 17 18/* 19 * Simple doubly linked list implementation. 20 * 21 * Some of the internal functions ("__xxx") are useful when 22 * manipulating whole lists rather than single entries, as 23 * sometimes we already know the next/prev entries and we can 24 * generate better code by using them directly rather than 25 * using the generic single-entry routines. 26 */ 27 28struct list_head { 29 struct list_head *next, *prev; 30}; 31 32#define LIST_HEAD_INIT(name) { &(name), &(name) } 33 34#define LIST_HEAD(name) \ 35 struct list_head name = LIST_HEAD_INIT(name) 36 37#define INIT_LIST_HEAD(ptr) do { \ 38 (ptr)->next = (ptr); (ptr)->prev = (ptr); \ 39} while (0) 40 41/* 42 * Insert a new entry between two known consecutive entries. 43 * 44 * This is only for internal list manipulation where we know 45 * the prev/next entries already! 46 */ 47static inline void __list_add(struct list_head *new, 48 struct list_head *prev, 49 struct list_head *next) 50{ 51 next->prev = new; 52 new->next = next; 53 new->prev = prev; 54 prev->next = new; 55} 56 57/** 58 * list_add - add a new entry 59 * @new: new entry to be added 60 * @head: list head to add it after 61 * 62 * Insert a new entry after the specified head. 63 * This is good for implementing stacks. 64 */ 65static inline void list_add(struct list_head *new, struct list_head *head) 66{ 67 __list_add(new, head, head->next); 68} 69 70/** 71 * list_add_tail - add a new entry 72 * @new: new entry to be added 73 * @head: list head to add it before 74 * 75 * Insert a new entry before the specified head. 76 * This is useful for implementing queues. 77 */ 78static inline void list_add_tail(struct list_head *new, struct list_head *head) 79{ 80 __list_add(new, head->prev, head); 81} 82 83/* 84 * Insert a new entry between two known consecutive entries. 85 * 86 * This is only for internal list manipulation where we know 87 * the prev/next entries already! 88 */ 89static inline void __list_add_rcu(struct list_head * new, 90 struct list_head * prev, struct list_head * next) 91{ 92 new->next = next; 93 new->prev = prev; 94 smp_wmb(); 95 next->prev = new; 96 prev->next = new; 97} 98 99/** 100 * list_add_rcu - add a new entry to rcu-protected list 101 * @new: new entry to be added 102 * @head: list head to add it after 103 * 104 * Insert a new entry after the specified head. 105 * This is good for implementing stacks. 106 * 107 * The caller must take whatever precautions are necessary 108 * (such as holding appropriate locks) to avoid racing 109 * with another list-mutation primitive, such as list_add_rcu() 110 * or list_del_rcu(), running on this same list. 111 * However, it is perfectly legal to run concurrently with 112 * the _rcu list-traversal primitives, such as 113 * list_for_each_entry_rcu(). 114 */ 115static inline void list_add_rcu(struct list_head *new, struct list_head *head) 116{ 117 __list_add_rcu(new, head, head->next); 118} 119 120/** 121 * list_add_tail_rcu - add a new entry to rcu-protected list 122 * @new: new entry to be added 123 * @head: list head to add it before 124 * 125 * Insert a new entry before the specified head. 126 * This is useful for implementing queues. 127 * 128 * The caller must take whatever precautions are necessary 129 * (such as holding appropriate locks) to avoid racing 130 * with another list-mutation primitive, such as list_add_tail_rcu() 131 * or list_del_rcu(), running on this same list. 132 * However, it is perfectly legal to run concurrently with 133 * the _rcu list-traversal primitives, such as 134 * list_for_each_entry_rcu(). 135 */ 136static inline void list_add_tail_rcu(struct list_head *new, 137 struct list_head *head) 138{ 139 __list_add_rcu(new, head->prev, head); 140} 141 142/* 143 * Delete a list entry by making the prev/next entries 144 * point to each other. 145 * 146 * This is only for internal list manipulation where we know 147 * the prev/next entries already! 148 */ 149static inline void __list_del(struct list_head * prev, struct list_head * next) 150{ 151 next->prev = prev; 152 prev->next = next; 153} 154 155/** 156 * list_del - deletes entry from list. 157 * @entry: the element to delete from the list. 158 * Note: list_empty on entry does not return true after this, the entry is 159 * in an undefined state. 160 */ 161static inline void list_del(struct list_head *entry) 162{ 163 __list_del(entry->prev, entry->next); 164 entry->next = LIST_POISON1; 165 entry->prev = LIST_POISON2; 166} 167 168/** 169 * list_del_rcu - deletes entry from list without re-initialization 170 * @entry: the element to delete from the list. 171 * 172 * Note: list_empty on entry does not return true after this, 173 * the entry is in an undefined state. It is useful for RCU based 174 * lockfree traversal. 175 * 176 * In particular, it means that we can not poison the forward 177 * pointers that may still be used for walking the list. 178 * 179 * The caller must take whatever precautions are necessary 180 * (such as holding appropriate locks) to avoid racing 181 * with another list-mutation primitive, such as list_del_rcu() 182 * or list_add_rcu(), running on this same list. 183 * However, it is perfectly legal to run concurrently with 184 * the _rcu list-traversal primitives, such as 185 * list_for_each_entry_rcu(). 186 * 187 * Note that the caller is not permitted to immediately free 188 * the newly deleted entry. Instead, either synchronize_rcu() 189 * or call_rcu() must be used to defer freeing until an RCU 190 * grace period has elapsed. 191 */ 192static inline void list_del_rcu(struct list_head *entry) 193{ 194 __list_del(entry->prev, entry->next); 195 entry->prev = LIST_POISON2; 196} 197 198/* 199 * list_replace_rcu - replace old entry by new one 200 * @old : the element to be replaced 201 * @new : the new element to insert 202 * 203 * The old entry will be replaced with the new entry atomically. 204 */ 205static inline void list_replace_rcu(struct list_head *old, struct list_head *new){ 206 new->next = old->next; 207 new->prev = old->prev; 208 smp_wmb(); 209 new->next->prev = new; 210 new->prev->next = new; 211} 212 213/** 214 * list_del_init - deletes entry from list and reinitialize it. 215 * @entry: the element to delete from the list. 216 */ 217static inline void list_del_init(struct list_head *entry) 218{ 219 __list_del(entry->prev, entry->next); 220 INIT_LIST_HEAD(entry); 221} 222 223/** 224 * list_move - delete from one list and add as another's head 225 * @list: the entry to move 226 * @head: the head that will precede our entry 227 */ 228static inline void list_move(struct list_head *list, struct list_head *head) 229{ 230 __list_del(list->prev, list->next); 231 list_add(list, head); 232} 233 234/** 235 * list_move_tail - delete from one list and add as another's tail 236 * @list: the entry to move 237 * @head: the head that will follow our entry 238 */ 239static inline void list_move_tail(struct list_head *list, 240 struct list_head *head) 241{ 242 __list_del(list->prev, list->next); 243 list_add_tail(list, head); 244} 245 246/** 247 * list_empty - tests whether a list is empty 248 * @head: the list to test. 249 */ 250static inline int list_empty(const struct list_head *head) 251{ 252 return head->next == head; 253} 254 255/** 256 * list_empty_careful - tests whether a list is 257 * empty _and_ checks that no other CPU might be 258 * in the process of still modifying either member 259 * 260 * NOTE: using list_empty_careful() without synchronization 261 * can only be safe if the only activity that can happen 262 * to the list entry is list_del_init(). Eg. it cannot be used 263 * if another CPU could re-list_add() it. 264 * 265 * @head: the list to test. 266 */ 267static inline int list_empty_careful(const struct list_head *head) 268{ 269 struct list_head *next = head->next; 270 return (next == head) && (next == head->prev); 271} 272 273static inline void __list_splice(struct list_head *list, 274 struct list_head *head) 275{ 276 struct list_head *first = list->next; 277 struct list_head *last = list->prev; 278 struct list_head *at = head->next; 279 280 first->prev = head; 281 head->next = first; 282 283 last->next = at; 284 at->prev = last; 285} 286 287/** 288 * list_splice - join two lists 289 * @list: the new list to add. 290 * @head: the place to add it in the first list. 291 */ 292static inline void list_splice(struct list_head *list, struct list_head *head) 293{ 294 if (!list_empty(list)) 295 __list_splice(list, head); 296} 297 298/** 299 * list_splice_init - join two lists and reinitialise the emptied list. 300 * @list: the new list to add. 301 * @head: the place to add it in the first list. 302 * 303 * The list at @list is reinitialised 304 */ 305static inline void list_splice_init(struct list_head *list, 306 struct list_head *head) 307{ 308 if (!list_empty(list)) { 309 __list_splice(list, head); 310 INIT_LIST_HEAD(list); 311 } 312} 313 314/** 315 * list_entry - get the struct for this entry 316 * @ptr: the &struct list_head pointer. 317 * @type: the type of the struct this is embedded in. 318 * @member: the name of the list_struct within the struct. 319 */ 320#define list_entry(ptr, type, member) \ 321 container_of(ptr, type, member) 322 323/** 324 * list_for_each - iterate over a list 325 * @pos: the &struct list_head to use as a loop counter. 326 * @head: the head for your list. 327 */ 328#define list_for_each(pos, head) \ 329 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 330 pos = pos->next) 331 332/** 333 * __list_for_each - iterate over a list 334 * @pos: the &struct list_head to use as a loop counter. 335 * @head: the head for your list. 336 * 337 * This variant differs from list_for_each() in that it's the 338 * simplest possible list iteration code, no prefetching is done. 339 * Use this for code that knows the list to be very short (empty 340 * or 1 entry) most of the time. 341 */ 342#define __list_for_each(pos, head) \ 343 for (pos = (head)->next; pos != (head); pos = pos->next) 344 345/** 346 * list_for_each_prev - iterate over a list backwards 347 * @pos: the &struct list_head to use as a loop counter. 348 * @head: the head for your list. 349 */ 350#define list_for_each_prev(pos, head) \ 351 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 352 pos = pos->prev) 353 354/** 355 * list_for_each_safe - iterate over a list safe against removal of list entry 356 * @pos: the &struct list_head to use as a loop counter. 357 * @n: another &struct list_head to use as temporary storage 358 * @head: the head for your list. 359 */ 360#define list_for_each_safe(pos, n, head) \ 361 for (pos = (head)->next, n = pos->next; pos != (head); \ 362 pos = n, n = pos->next) 363 364/** 365 * list_for_each_entry - iterate over list of given type 366 * @pos: the type * to use as a loop counter. 367 * @head: the head for your list. 368 * @member: the name of the list_struct within the struct. 369 */ 370#define list_for_each_entry(pos, head, member) \ 371 for (pos = list_entry((head)->next, typeof(*pos), member); \ 372 prefetch(pos->member.next), &pos->member != (head); \ 373 pos = list_entry(pos->member.next, typeof(*pos), member)) 374 375/** 376 * list_for_each_entry_reverse - iterate backwards over list of given type. 377 * @pos: the type * to use as a loop counter. 378 * @head: the head for your list. 379 * @member: the name of the list_struct within the struct. 380 */ 381#define list_for_each_entry_reverse(pos, head, member) \ 382 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 383 prefetch(pos->member.prev), &pos->member != (head); \ 384 pos = list_entry(pos->member.prev, typeof(*pos), member)) 385 386/** 387 * list_prepare_entry - prepare a pos entry for use as a start point in 388 * list_for_each_entry_continue 389 * @pos: the type * to use as a start point 390 * @head: the head of the list 391 * @member: the name of the list_struct within the struct. 392 */ 393#define list_prepare_entry(pos, head, member) \ 394 ((pos) ? : list_entry(head, typeof(*pos), member)) 395 396/** 397 * list_for_each_entry_continue - iterate over list of given type 398 * continuing after existing point 399 * @pos: the type * to use as a loop counter. 400 * @head: the head for your list. 401 * @member: the name of the list_struct within the struct. 402 */ 403#define list_for_each_entry_continue(pos, head, member) \ 404 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 405 prefetch(pos->member.next), &pos->member != (head); \ 406 pos = list_entry(pos->member.next, typeof(*pos), member)) 407 408/** 409 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 410 * @pos: the type * to use as a loop counter. 411 * @n: another type * to use as temporary storage 412 * @head: the head for your list. 413 * @member: the name of the list_struct within the struct. 414 */ 415#define list_for_each_entry_safe(pos, n, head, member) \ 416 for (pos = list_entry((head)->next, typeof(*pos), member), \ 417 n = list_entry(pos->member.next, typeof(*pos), member); \ 418 &pos->member != (head); \ 419 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 420 421/** 422 * list_for_each_entry_safe_continue - iterate over list of given type 423 * continuing after existing point safe against removal of list entry 424 * @pos: the type * to use as a loop counter. 425 * @n: another type * to use as temporary storage 426 * @head: the head for your list. 427 * @member: the name of the list_struct within the struct. 428 */ 429#define list_for_each_entry_safe_continue(pos, n, head, member) \ 430 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 431 n = list_entry(pos->member.next, typeof(*pos), member); \ 432 &pos->member != (head); \ 433 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 434 435/** 436 * list_for_each_rcu - iterate over an rcu-protected list 437 * @pos: the &struct list_head to use as a loop counter. 438 * @head: the head for your list. 439 * 440 * This list-traversal primitive may safely run concurrently with 441 * the _rcu list-mutation primitives such as list_add_rcu() 442 * as long as the traversal is guarded by rcu_read_lock(). 443 */ 444#define list_for_each_rcu(pos, head) \ 445 for (pos = (head)->next; \ 446 prefetch(rcu_dereference(pos)->next), pos != (head); \ 447 pos = pos->next) 448 449#define __list_for_each_rcu(pos, head) \ 450 for (pos = (head)->next; \ 451 rcu_dereference(pos) != (head); \ 452 pos = pos->next) 453 454/** 455 * list_for_each_safe_rcu - iterate over an rcu-protected list safe 456 * against removal of list entry 457 * @pos: the &struct list_head to use as a loop counter. 458 * @n: another &struct list_head to use as temporary storage 459 * @head: the head for your list. 460 * 461 * This list-traversal primitive may safely run concurrently with 462 * the _rcu list-mutation primitives such as list_add_rcu() 463 * as long as the traversal is guarded by rcu_read_lock(). 464 */ 465#define list_for_each_safe_rcu(pos, n, head) \ 466 for (pos = (head)->next; \ 467 n = rcu_dereference(pos)->next, pos != (head); \ 468 pos = n) 469 470/** 471 * list_for_each_entry_rcu - iterate over rcu list of given type 472 * @pos: the type * to use as a loop counter. 473 * @head: the head for your list. 474 * @member: the name of the list_struct within the struct. 475 * 476 * This list-traversal primitive may safely run concurrently with 477 * the _rcu list-mutation primitives such as list_add_rcu() 478 * as long as the traversal is guarded by rcu_read_lock(). 479 */ 480#define list_for_each_entry_rcu(pos, head, member) \ 481 for (pos = list_entry((head)->next, typeof(*pos), member); \ 482 prefetch(rcu_dereference(pos)->member.next), \ 483 &pos->member != (head); \ 484 pos = list_entry(pos->member.next, typeof(*pos), member)) 485 486 487/** 488 * list_for_each_continue_rcu - iterate over an rcu-protected list 489 * continuing after existing point. 490 * @pos: the &struct list_head to use as a loop counter. 491 * @head: the head for your list. 492 * 493 * This list-traversal primitive may safely run concurrently with 494 * the _rcu list-mutation primitives such as list_add_rcu() 495 * as long as the traversal is guarded by rcu_read_lock(). 496 */ 497#define list_for_each_continue_rcu(pos, head) \ 498 for ((pos) = (pos)->next; \ 499 prefetch(rcu_dereference((pos))->next), (pos) != (head); \ 500 (pos) = (pos)->next) 501 502/* 503 * Double linked lists with a single pointer list head. 504 * Mostly useful for hash tables where the two pointer list head is 505 * too wasteful. 506 * You lose the ability to access the tail in O(1). 507 */ 508 509struct hlist_head { 510 struct hlist_node *first; 511}; 512 513struct hlist_node { 514 struct hlist_node *next, **pprev; 515}; 516 517#define HLIST_HEAD_INIT { .first = NULL } 518#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 519#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 520#define INIT_HLIST_NODE(ptr) ((ptr)->next = NULL, (ptr)->pprev = NULL) 521 522static inline int hlist_unhashed(const struct hlist_node *h) 523{ 524 return !h->pprev; 525} 526 527static inline int hlist_empty(const struct hlist_head *h) 528{ 529 return !h->first; 530} 531 532static inline void __hlist_del(struct hlist_node *n) 533{ 534 struct hlist_node *next = n->next; 535 struct hlist_node **pprev = n->pprev; 536 *pprev = next; 537 if (next) 538 next->pprev = pprev; 539} 540 541static inline void hlist_del(struct hlist_node *n) 542{ 543 __hlist_del(n); 544 n->next = LIST_POISON1; 545 n->pprev = LIST_POISON2; 546} 547 548/** 549 * hlist_del_rcu - deletes entry from hash list without re-initialization 550 * @n: the element to delete from the hash list. 551 * 552 * Note: list_unhashed() on entry does not return true after this, 553 * the entry is in an undefined state. It is useful for RCU based 554 * lockfree traversal. 555 * 556 * In particular, it means that we can not poison the forward 557 * pointers that may still be used for walking the hash list. 558 * 559 * The caller must take whatever precautions are necessary 560 * (such as holding appropriate locks) to avoid racing 561 * with another list-mutation primitive, such as hlist_add_head_rcu() 562 * or hlist_del_rcu(), running on this same list. 563 * However, it is perfectly legal to run concurrently with 564 * the _rcu list-traversal primitives, such as 565 * hlist_for_each_entry(). 566 */ 567static inline void hlist_del_rcu(struct hlist_node *n) 568{ 569 __hlist_del(n); 570 n->pprev = LIST_POISON2; 571} 572 573static inline void hlist_del_init(struct hlist_node *n) 574{ 575 if (n->pprev) { 576 __hlist_del(n); 577 INIT_HLIST_NODE(n); 578 } 579} 580 581static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 582{ 583 struct hlist_node *first = h->first; 584 n->next = first; 585 if (first) 586 first->pprev = &n->next; 587 h->first = n; 588 n->pprev = &h->first; 589} 590 591 592/** 593 * hlist_add_head_rcu - adds the specified element to the specified hlist, 594 * while permitting racing traversals. 595 * @n: the element to add to the hash list. 596 * @h: the list to add to. 597 * 598 * The caller must take whatever precautions are necessary 599 * (such as holding appropriate locks) to avoid racing 600 * with another list-mutation primitive, such as hlist_add_head_rcu() 601 * or hlist_del_rcu(), running on this same list. 602 * However, it is perfectly legal to run concurrently with 603 * the _rcu list-traversal primitives, such as 604 * hlist_for_each_rcu(), used to prevent memory-consistency 605 * problems on Alpha CPUs. Regardless of the type of CPU, the 606 * list-traversal primitive must be guarded by rcu_read_lock(). 607 */ 608static inline void hlist_add_head_rcu(struct hlist_node *n, 609 struct hlist_head *h) 610{ 611 struct hlist_node *first = h->first; 612 n->next = first; 613 n->pprev = &h->first; 614 smp_wmb(); 615 if (first) 616 first->pprev = &n->next; 617 h->first = n; 618} 619 620/* next must be != NULL */ 621static inline void hlist_add_before(struct hlist_node *n, 622 struct hlist_node *next) 623{ 624 n->pprev = next->pprev; 625 n->next = next; 626 next->pprev = &n->next; 627 *(n->pprev) = n; 628} 629 630static inline void hlist_add_after(struct hlist_node *n, 631 struct hlist_node *next) 632{ 633 next->next = n->next; 634 n->next = next; 635 next->pprev = &n->next; 636 637 if(next->next) 638 next->next->pprev = &next->next; 639} 640 641/** 642 * hlist_add_before_rcu - adds the specified element to the specified hlist 643 * before the specified node while permitting racing traversals. 644 * @n: the new element to add to the hash list. 645 * @next: the existing element to add the new element before. 646 * 647 * The caller must take whatever precautions are necessary 648 * (such as holding appropriate locks) to avoid racing 649 * with another list-mutation primitive, such as hlist_add_head_rcu() 650 * or hlist_del_rcu(), running on this same list. 651 * However, it is perfectly legal to run concurrently with 652 * the _rcu list-traversal primitives, such as 653 * hlist_for_each_rcu(), used to prevent memory-consistency 654 * problems on Alpha CPUs. 655 */ 656static inline void hlist_add_before_rcu(struct hlist_node *n, 657 struct hlist_node *next) 658{ 659 n->pprev = next->pprev; 660 n->next = next; 661 smp_wmb(); 662 next->pprev = &n->next; 663 *(n->pprev) = n; 664} 665 666/** 667 * hlist_add_after_rcu - adds the specified element to the specified hlist 668 * after the specified node while permitting racing traversals. 669 * @prev: the existing element to add the new element after. 670 * @n: the new element to add to the hash list. 671 * 672 * The caller must take whatever precautions are necessary 673 * (such as holding appropriate locks) to avoid racing 674 * with another list-mutation primitive, such as hlist_add_head_rcu() 675 * or hlist_del_rcu(), running on this same list. 676 * However, it is perfectly legal to run concurrently with 677 * the _rcu list-traversal primitives, such as 678 * hlist_for_each_rcu(), used to prevent memory-consistency 679 * problems on Alpha CPUs. 680 */ 681static inline void hlist_add_after_rcu(struct hlist_node *prev, 682 struct hlist_node *n) 683{ 684 n->next = prev->next; 685 n->pprev = &prev->next; 686 smp_wmb(); 687 prev->next = n; 688 if (n->next) 689 n->next->pprev = &n->next; 690} 691 692#define hlist_entry(ptr, type, member) container_of(ptr,type,member) 693 694#define hlist_for_each(pos, head) \ 695 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 696 pos = pos->next) 697 698#define hlist_for_each_safe(pos, n, head) \ 699 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 700 pos = n) 701 702#define hlist_for_each_rcu(pos, head) \ 703 for ((pos) = (head)->first; \ 704 rcu_dereference((pos)) && ({ prefetch((pos)->next); 1; }); \ 705 (pos) = (pos)->next) 706 707/** 708 * hlist_for_each_entry - iterate over list of given type 709 * @tpos: the type * to use as a loop counter. 710 * @pos: the &struct hlist_node to use as a loop counter. 711 * @head: the head for your list. 712 * @member: the name of the hlist_node within the struct. 713 */ 714#define hlist_for_each_entry(tpos, pos, head, member) \ 715 for (pos = (head)->first; \ 716 pos && ({ prefetch(pos->next); 1;}) && \ 717 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 718 pos = pos->next) 719 720/** 721 * hlist_for_each_entry_continue - iterate over a hlist continuing after existing point 722 * @tpos: the type * to use as a loop counter. 723 * @pos: the &struct hlist_node to use as a loop counter. 724 * @member: the name of the hlist_node within the struct. 725 */ 726#define hlist_for_each_entry_continue(tpos, pos, member) \ 727 for (pos = (pos)->next; \ 728 pos && ({ prefetch(pos->next); 1;}) && \ 729 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 730 pos = pos->next) 731 732/** 733 * hlist_for_each_entry_from - iterate over a hlist continuing from existing point 734 * @tpos: the type * to use as a loop counter. 735 * @pos: the &struct hlist_node to use as a loop counter. 736 * @member: the name of the hlist_node within the struct. 737 */ 738#define hlist_for_each_entry_from(tpos, pos, member) \ 739 for (; pos && ({ prefetch(pos->next); 1;}) && \ 740 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 741 pos = pos->next) 742 743/** 744 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 745 * @tpos: the type * to use as a loop counter. 746 * @pos: the &struct hlist_node to use as a loop counter. 747 * @n: another &struct hlist_node to use as temporary storage 748 * @head: the head for your list. 749 * @member: the name of the hlist_node within the struct. 750 */ 751#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 752 for (pos = (head)->first; \ 753 pos && ({ n = pos->next; 1; }) && \ 754 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 755 pos = n) 756 757/** 758 * hlist_for_each_entry_rcu - iterate over rcu list of given type 759 * @pos: the type * to use as a loop counter. 760 * @pos: the &struct hlist_node to use as a loop counter. 761 * @head: the head for your list. 762 * @member: the name of the hlist_node within the struct. 763 * 764 * This list-traversal primitive may safely run concurrently with 765 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 766 * as long as the traversal is guarded by rcu_read_lock(). 767 */ 768#define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 769 for (pos = (head)->first; \ 770 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \ 771 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 772 pos = pos->next) 773 774#else 775#warning "don't include kernel headers in userspace" 776#endif /* __KERNEL__ */ 777#endif