at v2.6.14 507 lines 19 kB view raw
1#ifndef __ASM_SH64_PGTABLE_H 2#define __ASM_SH64_PGTABLE_H 3 4#include <asm-generic/4level-fixup.h> 5 6/* 7 * This file is subject to the terms and conditions of the GNU General Public 8 * License. See the file "COPYING" in the main directory of this archive 9 * for more details. 10 * 11 * include/asm-sh64/pgtable.h 12 * 13 * Copyright (C) 2000, 2001 Paolo Alberelli 14 * Copyright (C) 2003, 2004 Paul Mundt 15 * Copyright (C) 2003, 2004 Richard Curnow 16 * 17 * This file contains the functions and defines necessary to modify and use 18 * the SuperH page table tree. 19 */ 20 21#ifndef __ASSEMBLY__ 22#include <asm/processor.h> 23#include <asm/page.h> 24#include <linux/threads.h> 25#include <linux/config.h> 26 27extern void paging_init(void); 28 29/* We provide our own get_unmapped_area to avoid cache synonym issue */ 30#define HAVE_ARCH_UNMAPPED_AREA 31 32/* 33 * Basically we have the same two-level (which is the logical three level 34 * Linux page table layout folded) page tables as the i386. 35 */ 36 37/* 38 * ZERO_PAGE is a global shared page that is always zero: used 39 * for zero-mapped memory areas etc.. 40 */ 41extern unsigned char empty_zero_page[PAGE_SIZE]; 42#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page)) 43 44#endif /* !__ASSEMBLY__ */ 45 46/* 47 * NEFF and NPHYS related defines. 48 * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103 49 * implement 32 bits effective and 32 bits physical. But future implementations may 50 * extend beyond this. 51 */ 52#define NEFF 32 53#define NEFF_SIGN (1LL << (NEFF - 1)) 54#define NEFF_MASK (-1LL << NEFF) 55 56#define NPHYS 32 57#define NPHYS_SIGN (1LL << (NPHYS - 1)) 58#define NPHYS_MASK (-1LL << NPHYS) 59 60/* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond 61 that 3-level would be appropriate. */ 62#if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 63/* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */ 64#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) 65#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ 66#define PTE_SHIFT PAGE_SHIFT 67#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) 68 69/* top level: PMD. */ 70#define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS) 71#define PGD_BITS (NEFF - PGDIR_SHIFT) 72#define PTRS_PER_PGD (1<<PGD_BITS) 73 74/* middle level: PMD. This doesn't do anything for the 2-level case. */ 75#define PTRS_PER_PMD (1) 76 77#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 78#define PGDIR_MASK (~(PGDIR_SIZE-1)) 79#define PMD_SHIFT PGDIR_SHIFT 80#define PMD_SIZE PGDIR_SIZE 81#define PMD_MASK PGDIR_MASK 82 83#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 84/* 85 * three-level asymmetric paging structure: PGD is top level. 86 * The asymmetry comes from 32-bit pointers and 64-bit PTEs. 87 */ 88/* bottom level: PTE. It's 9 bits = 512 pointers */ 89#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) 90#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ 91#define PTE_SHIFT PAGE_SHIFT 92#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) 93 94/* middle level: PMD. It's 10 bits = 1024 pointers */ 95#define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *)) 96#define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */ 97#define PMD_SHIFT (PTE_SHIFT + PTE_BITS) 98#define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE) 99 100/* top level: PMD. It's 1 bit = 2 pointers */ 101#define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS) 102#define PGD_BITS (NEFF - PGDIR_SHIFT) 103#define PTRS_PER_PGD (1<<PGD_BITS) 104 105#define PMD_SIZE (1UL << PMD_SHIFT) 106#define PMD_MASK (~(PMD_SIZE-1)) 107#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 108#define PGDIR_MASK (~(PGDIR_SIZE-1)) 109 110#else 111#error "No defined number of page table levels" 112#endif 113 114/* 115 * Error outputs. 116 */ 117#define pte_ERROR(e) \ 118 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) 119#define pmd_ERROR(e) \ 120 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 121#define pgd_ERROR(e) \ 122 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 123 124/* 125 * Table setting routines. Used within arch/mm only. 126 */ 127#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval) 128#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) 129 130static __inline__ void set_pte(pte_t *pteptr, pte_t pteval) 131{ 132 unsigned long long x = ((unsigned long long) pteval.pte); 133 unsigned long long *xp = (unsigned long long *) pteptr; 134 /* 135 * Sign-extend based on NPHYS. 136 */ 137 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x; 138} 139#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 140 141static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep) 142{ 143 pmd_val(*pmdp) = (unsigned long) ptep; 144} 145 146/* 147 * PGD defines. Top level. 148 */ 149 150/* To find an entry in a generic PGD. */ 151#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 152#define __pgd_offset(address) pgd_index(address) 153#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) 154 155/* To find an entry in a kernel PGD. */ 156#define pgd_offset_k(address) pgd_offset(&init_mm, address) 157 158/* 159 * PGD level access routines. 160 * 161 * Note1: 162 * There's no need to use physical addresses since the tree walk is all 163 * in performed in software, until the PTE translation. 164 * 165 * Note 2: 166 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad, 167 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain 168 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must 169 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and 170 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a 171 * bad pgd that must be notified via printk(). 172 * 173 */ 174#define _PGD_EMPTY 0x0 175 176#if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 177static inline int pgd_none(pgd_t pgd) { return 0; } 178static inline int pgd_bad(pgd_t pgd) { return 0; } 179#define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0) 180#define pgd_clear(xx) do { } while(0) 181 182#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 183#define pgd_present(pgd_entry) (1) 184#define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY) 185/* TODO: Think later about what a useful definition of 'bad' would be now. */ 186#define pgd_bad(pgd_entry) (0) 187#define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY))) 188 189#endif 190 191 192#define pgd_page(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK)) 193 194/* 195 * PMD defines. Middle level. 196 */ 197 198/* PGD to PMD dereferencing */ 199#if defined(CONFIG_SH64_PGTABLE_2_LEVEL) 200static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) 201{ 202 return (pmd_t *) dir; 203} 204#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) 205#define __pmd_offset(address) \ 206 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 207#define pmd_offset(dir, addr) \ 208 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr))) 209#endif 210 211/* 212 * PMD level access routines. Same notes as above. 213 */ 214#define _PMD_EMPTY 0x0 215/* Either the PMD is empty or present, it's not paged out */ 216#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT) 217#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY))) 218#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY) 219#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) 220 221#define pmd_page_kernel(pmd_entry) \ 222 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK)) 223 224#define pmd_page(pmd) \ 225 (virt_to_page(pmd_val(pmd))) 226 227/* PMD to PTE dereferencing */ 228#define pte_index(address) \ 229 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 230 231#define pte_offset_kernel(dir, addr) \ 232 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr))) 233 234#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 235#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr) 236#define pte_unmap(pte) do { } while (0) 237#define pte_unmap_nested(pte) do { } while (0) 238 239/* Round it up ! */ 240#define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE) 241#define FIRST_USER_ADDRESS 0 242 243#ifndef __ASSEMBLY__ 244#define VMALLOC_END 0xff000000 245#define VMALLOC_START 0xf0000000 246#define VMALLOC_VMADDR(x) ((unsigned long)(x)) 247 248#define IOBASE_VADDR 0xff000000 249#define IOBASE_END 0xffffffff 250 251/* 252 * PTEL coherent flags. 253 * See Chapter 17 ST50 CPU Core Volume 1, Architecture. 254 */ 255/* The bits that are required in the SH-5 TLB are placed in the h/w-defined 256 positions, to avoid expensive bit shuffling on every refill. The remaining 257 bits are used for s/w purposes and masked out on each refill. 258 259 Note, the PTE slots are used to hold data of type swp_entry_t when a page is 260 swapped out. Only the _PAGE_PRESENT flag is significant when the page is 261 swapped out, and it must be placed so that it doesn't overlap either the 262 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type 263 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This 264 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit 265 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split 266 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */ 267#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */ 268#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */ 269#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */ 270#define _PAGE_PRESENT 0x004 /* software: page referenced */ 271#define _PAGE_FILE 0x004 /* software: only when !present */ 272#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */ 273#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */ 274#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */ 275#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */ 276#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */ 277#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */ 278#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */ 279#define _PAGE_DIRTY 0x400 /* software: page accessed in write */ 280#define _PAGE_ACCESSED 0x800 /* software: page referenced */ 281 282/* Mask which drops software flags */ 283#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL 284 285/* 286 * HugeTLB support 287 */ 288#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K) 289#define _PAGE_SZHUGE (_PAGE_SIZE0) 290#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB) 291#define _PAGE_SZHUGE (_PAGE_SIZE1) 292#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB) 293#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1) 294#endif 295 296/* 297 * Default flags for a Kernel page. 298 * This is fundametally also SHARED because the main use of this define 299 * (other than for PGD/PMD entries) is for the VMALLOC pool which is 300 * contextless. 301 * 302 * _PAGE_EXECUTE is required for modules 303 * 304 */ 305#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 306 _PAGE_EXECUTE | \ 307 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \ 308 _PAGE_SHARED) 309 310/* Default flags for a User page */ 311#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER) 312 313#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) 314 315#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED) 316#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 317 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \ 318 _PAGE_SHARED) 319/* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default 320 * protection mode for the stack. */ 321#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ 322 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE) 323#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ 324 _PAGE_ACCESSED | _PAGE_USER) 325#define PAGE_KERNEL __pgprot(_KERNPG_TABLE) 326 327 328/* 329 * In ST50 we have full permissions (Read/Write/Execute/Shared). 330 * Just match'em all. These are for mmap(), therefore all at least 331 * User/Cachable/Present/Accessed. No point in making Fault on Write. 332 */ 333#define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED) 334 /* sxwr */ 335#define __P000 __pgprot(__MMAP_COMMON) 336#define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ) 337#define __P010 __pgprot(__MMAP_COMMON) 338#define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ) 339#define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) 340#define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) 341#define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) 342#define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) 343 344#define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED) 345#define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ) 346#define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE) 347#define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE) 348#define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE) 349#define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ) 350#define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE) 351#define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE) 352 353/* Make it a device mapping for maximum safety (e.g. for mapping device 354 registers into user-space via /dev/map). */ 355#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE) 356#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE) 357 358/* 359 * Handling allocation failures during page table setup. 360 */ 361extern void __handle_bad_pmd_kernel(pmd_t * pmd); 362#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x) 363 364/* 365 * PTE level access routines. 366 * 367 * Note1: 368 * It's the tree walk leaf. This is physical address to be stored. 369 * 370 * Note 2: 371 * Regarding the choice of _PTE_EMPTY: 372 373 We must choose a bit pattern that cannot be valid, whether or not the page 374 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped 375 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is 376 left for us to select. If we force bit[7]==0 when swapped out, we could use 377 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if 378 we force bit[7]==1 when swapped out, we can use all zeroes to indicate 379 empty. This is convenient, because the page tables get cleared to zero 380 when they are allocated. 381 382 */ 383#define _PTE_EMPTY 0x0 384#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 385#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY))) 386#define pte_none(x) (pte_val(x) == _PTE_EMPTY) 387 388/* 389 * Some definitions to translate between mem_map, PTEs, and page 390 * addresses: 391 */ 392 393/* 394 * Given a PTE, return the index of the mem_map[] entry corresponding 395 * to the page frame the PTE. Get the absolute physical address, make 396 * a relative physical address and translate it to an index. 397 */ 398#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \ 399 __MEMORY_START) >> PAGE_SHIFT) 400 401/* 402 * Given a PTE, return the "struct page *". 403 */ 404#define pte_page(x) (mem_map + pte_pagenr(x)) 405 406/* 407 * Return number of (down rounded) MB corresponding to x pages. 408 */ 409#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) 410 411 412/* 413 * The following have defined behavior only work if pte_present() is true. 414 */ 415static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } 416static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; } 417static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; } 418static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; } 419static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } 420static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; } 421 422extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; } 423extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; } 424extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; } 425extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } 426extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } 427 428extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; } 429extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; } 430extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; } 431extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } 432extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } 433extern inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; } 434 435 436/* 437 * Conversion functions: convert a page and protection to a page entry. 438 * 439 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) 440 */ 441#define mk_pte(page,pgprot) \ 442({ \ 443 pte_t __pte; \ 444 \ 445 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \ 446 __MEMORY_START | pgprot_val((pgprot)))); \ 447 __pte; \ 448}) 449 450/* 451 * This takes a (absolute) physical page address that is used 452 * by the remapping functions 453 */ 454#define mk_pte_phys(physpage, pgprot) \ 455({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; }) 456 457extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 458{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } 459 460#define page_pte_prot(page, prot) mk_pte(page, prot) 461#define page_pte(page) page_pte_prot(page, __pgprot(0)) 462 463typedef pte_t *pte_addr_t; 464#define pgtable_cache_init() do { } while (0) 465 466extern void update_mmu_cache(struct vm_area_struct * vma, 467 unsigned long address, pte_t pte); 468 469/* Encode and decode a swap entry */ 470#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c)) 471#define __swp_offset(x) ((x).val >> 8) 472#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) }) 473#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 474#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 475 476/* Encode and decode a nonlinear file mapping entry */ 477#define PTE_FILE_MAX_BITS 29 478#define pte_to_pgoff(pte) (pte_val(pte)) 479#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE }) 480 481/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 482#define PageSkip(page) (0) 483#define kern_addr_valid(addr) (1) 484 485#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 486 remap_pfn_range(vma, vaddr, pfn, size, prot) 487 488#define MK_IOSPACE_PFN(space, pfn) (pfn) 489#define GET_IOSPACE(pfn) 0 490#define GET_PFN(pfn) (pfn) 491 492#endif /* !__ASSEMBLY__ */ 493 494/* 495 * No page table caches to initialise 496 */ 497#define pgtable_cache_init() do { } while (0) 498 499#define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT) 500#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 501#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) 502 503extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 504 505#include <asm-generic/pgtable.h> 506 507#endif /* __ASM_SH64_PGTABLE_H */