at v2.6.14 565 lines 20 kB view raw
1#ifndef _ASM_IA64_PGTABLE_H 2#define _ASM_IA64_PGTABLE_H 3 4/* 5 * This file contains the functions and defines necessary to modify and use 6 * the IA-64 page table tree. 7 * 8 * This hopefully works with any (fixed) IA-64 page-size, as defined 9 * in <asm/page.h>. 10 * 11 * Copyright (C) 1998-2005 Hewlett-Packard Co 12 * David Mosberger-Tang <davidm@hpl.hp.com> 13 */ 14 15#include <linux/config.h> 16 17#include <asm/mman.h> 18#include <asm/page.h> 19#include <asm/processor.h> 20#include <asm/system.h> 21#include <asm/types.h> 22 23#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ 24 25/* 26 * First, define the various bits in a PTE. Note that the PTE format 27 * matches the VHPT short format, the firt doubleword of the VHPD long 28 * format, and the first doubleword of the TLB insertion format. 29 */ 30#define _PAGE_P_BIT 0 31#define _PAGE_A_BIT 5 32#define _PAGE_D_BIT 6 33 34#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ 35#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ 36#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ 37#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ 38#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ 39#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ 40#define _PAGE_MA_MASK (0x7 << 2) 41#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ 42#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ 43#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ 44#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ 45#define _PAGE_PL_MASK (3 << 7) 46#define _PAGE_AR_R (0 << 9) /* read only */ 47#define _PAGE_AR_RX (1 << 9) /* read & execute */ 48#define _PAGE_AR_RW (2 << 9) /* read & write */ 49#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ 50#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ 51#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ 52#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ 53#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ 54#define _PAGE_AR_MASK (7 << 9) 55#define _PAGE_AR_SHIFT 9 56#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ 57#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ 58#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) 59#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ 60#define _PAGE_PROTNONE (__IA64_UL(1) << 63) 61 62/* Valid only for a PTE with the present bit cleared: */ 63#define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */ 64 65#define _PFN_MASK _PAGE_PPN_MASK 66/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ 67#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) 68 69#define _PAGE_SIZE_4K 12 70#define _PAGE_SIZE_8K 13 71#define _PAGE_SIZE_16K 14 72#define _PAGE_SIZE_64K 16 73#define _PAGE_SIZE_256K 18 74#define _PAGE_SIZE_1M 20 75#define _PAGE_SIZE_4M 22 76#define _PAGE_SIZE_16M 24 77#define _PAGE_SIZE_64M 26 78#define _PAGE_SIZE_256M 28 79#define _PAGE_SIZE_1G 30 80#define _PAGE_SIZE_4G 32 81 82#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB 83#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB 84#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED 85 86/* 87 * Definitions for first level: 88 * 89 * PGDIR_SHIFT determines what a first-level page table entry can map. 90 */ 91#define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3)) 92#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) 93#define PGDIR_MASK (~(PGDIR_SIZE-1)) 94#define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3)) 95#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ 96#define FIRST_USER_ADDRESS 0 97 98/* 99 * Definitions for second level: 100 * 101 * PMD_SHIFT determines the size of the area a second-level page table 102 * can map. 103 */ 104#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3)) 105#define PMD_SIZE (1UL << PMD_SHIFT) 106#define PMD_MASK (~(PMD_SIZE-1)) 107#define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3)) 108 109/* 110 * Definitions for third level: 111 */ 112#define PTRS_PER_PTE (__IA64_UL(1) << (PAGE_SHIFT-3)) 113 114/* 115 * All the normal masks have the "page accessed" bits on, as any time 116 * they are used, the page is accessed. They are cleared only by the 117 * page-out routines. 118 */ 119#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) 120#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) 121#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 122#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 123#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 124#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) 125#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) 126#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) 127 128# ifndef __ASSEMBLY__ 129 130#include <asm/bitops.h> 131#include <asm/cacheflush.h> 132#include <asm/mmu_context.h> 133#include <asm/processor.h> 134 135/* 136 * Next come the mappings that determine how mmap() protection bits 137 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The 138 * _P version gets used for a private shared memory segment, the _S 139 * version gets used for a shared memory segment with MAP_SHARED on. 140 * In a private shared memory segment, we do a copy-on-write if a task 141 * attempts to write to the page. 142 */ 143 /* xwr */ 144#define __P000 PAGE_NONE 145#define __P001 PAGE_READONLY 146#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ 147#define __P011 PAGE_READONLY /* ditto */ 148#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 149#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 150#define __P110 PAGE_COPY_EXEC 151#define __P111 PAGE_COPY_EXEC 152 153#define __S000 PAGE_NONE 154#define __S001 PAGE_READONLY 155#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ 156#define __S011 PAGE_SHARED 157#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 158#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 159#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 160#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 161 162#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 163#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 164#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 165 166 167/* 168 * Some definitions to translate between mem_map, PTEs, and page addresses: 169 */ 170 171 172/* Quick test to see if ADDR is a (potentially) valid physical address. */ 173static inline long 174ia64_phys_addr_valid (unsigned long addr) 175{ 176 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; 177} 178 179/* 180 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 181 * memory. For the return value to be meaningful, ADDR must be >= 182 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 183 * require a hash-, or multi-level tree-lookup or something of that 184 * sort) but it guarantees to return TRUE only if accessing the page 185 * at that address does not cause an error. Note that there may be 186 * addresses for which kern_addr_valid() returns FALSE even though an 187 * access would not cause an error (e.g., this is typically true for 188 * memory mapped I/O regions. 189 * 190 * XXX Need to implement this for IA-64. 191 */ 192#define kern_addr_valid(addr) (1) 193 194 195/* 196 * Now come the defines and routines to manage and access the three-level 197 * page table. 198 */ 199 200/* 201 * On some architectures, special things need to be done when setting 202 * the PTE in a page table. Nothing special needs to be on IA-64. 203 */ 204#define set_pte(ptep, pteval) (*(ptep) = (pteval)) 205#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 206 207#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) 208#ifdef CONFIG_VIRTUAL_MEM_MAP 209# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 210# define VMALLOC_END vmalloc_end 211 extern unsigned long vmalloc_end; 212#else 213# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 214#endif 215 216/* fs/proc/kcore.c */ 217#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) 218#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) 219 220/* 221 * Conversion functions: convert page frame number (pfn) and a protection value to a page 222 * table entry (pte). 223 */ 224#define pfn_pte(pfn, pgprot) \ 225({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) 226 227/* Extract pfn from pte. */ 228#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) 229 230#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 231 232/* This takes a physical page address that is used by the remapping functions */ 233#define mk_pte_phys(physpage, pgprot) \ 234({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) 235 236#define pte_modify(_pte, newprot) \ 237 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) 238 239#define page_pte_prot(page,prot) mk_pte(page, prot) 240#define page_pte(page) page_pte_prot(page, __pgprot(0)) 241 242#define pte_none(pte) (!pte_val(pte)) 243#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) 244#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) 245/* pte_page() returns the "struct page *" corresponding to the PTE: */ 246#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) 247 248#define pmd_none(pmd) (!pmd_val(pmd)) 249#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) 250#define pmd_present(pmd) (pmd_val(pmd) != 0UL) 251#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) 252#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) 253#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) 254 255#define pud_none(pud) (!pud_val(pud)) 256#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) 257#define pud_present(pud) (pud_val(pud) != 0UL) 258#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) 259 260#define pud_page(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK)) 261 262/* 263 * The following have defined behavior only work if pte_present() is true. 264 */ 265#define pte_user(pte) ((pte_val(pte) & _PAGE_PL_MASK) == _PAGE_PL_3) 266#define pte_read(pte) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) < 6) 267#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) 268#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) 269#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) 270#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) 271#define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0) 272/* 273 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the 274 * access rights: 275 */ 276#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) 277#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) 278#define pte_mkexec(pte) (__pte(pte_val(pte) | _PAGE_AR_RX)) 279#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) 280#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) 281#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) 282#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) 283#define pte_mkhuge(pte) (__pte(pte_val(pte) | _PAGE_P)) 284 285/* 286 * Macro to a page protection value as "uncacheable". Note that "protection" is really a 287 * misnomer here as the protection value contains the memory attribute bits, dirty bits, 288 * and various other bits as well. 289 */ 290#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) 291 292/* 293 * Macro to make mark a page protection value as "write-combining". 294 * Note that "protection" is really a misnomer here as the protection 295 * value contains the memory attribute bits, dirty bits, and various 296 * other bits as well. Accesses through a write-combining translation 297 * works bypasses the caches, but does allow for consecutive writes to 298 * be combined into single (but larger) write transactions. 299 */ 300#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) 301 302static inline unsigned long 303pgd_index (unsigned long address) 304{ 305 unsigned long region = address >> 61; 306 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); 307 308 return (region << (PAGE_SHIFT - 6)) | l1index; 309} 310 311/* The offset in the 1-level directory is given by the 3 region bits 312 (61..63) and the level-1 bits. */ 313static inline pgd_t* 314pgd_offset (struct mm_struct *mm, unsigned long address) 315{ 316 return mm->pgd + pgd_index(address); 317} 318 319/* In the kernel's mapped region we completely ignore the region number 320 (since we know it's in region number 5). */ 321#define pgd_offset_k(addr) \ 322 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) 323 324/* Look up a pgd entry in the gate area. On IA-64, the gate-area 325 resides in the kernel-mapped segment, hence we use pgd_offset_k() 326 here. */ 327#define pgd_offset_gate(mm, addr) pgd_offset_k(addr) 328 329/* Find an entry in the second-level page table.. */ 330#define pmd_offset(dir,addr) \ 331 ((pmd_t *) pud_page(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) 332 333/* 334 * Find an entry in the third-level page table. This looks more complicated than it 335 * should be because some platforms place page tables in high memory. 336 */ 337#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 338#define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(addr)) 339#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 340#define pte_offset_map_nested(dir,addr) pte_offset_map(dir, addr) 341#define pte_unmap(pte) do { } while (0) 342#define pte_unmap_nested(pte) do { } while (0) 343 344/* atomic versions of the some PTE manipulations: */ 345 346static inline int 347ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 348{ 349#ifdef CONFIG_SMP 350 if (!pte_young(*ptep)) 351 return 0; 352 return test_and_clear_bit(_PAGE_A_BIT, ptep); 353#else 354 pte_t pte = *ptep; 355 if (!pte_young(pte)) 356 return 0; 357 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 358 return 1; 359#endif 360} 361 362static inline int 363ptep_test_and_clear_dirty (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 364{ 365#ifdef CONFIG_SMP 366 if (!pte_dirty(*ptep)) 367 return 0; 368 return test_and_clear_bit(_PAGE_D_BIT, ptep); 369#else 370 pte_t pte = *ptep; 371 if (!pte_dirty(pte)) 372 return 0; 373 set_pte_at(vma->vm_mm, addr, ptep, pte_mkclean(pte)); 374 return 1; 375#endif 376} 377 378static inline pte_t 379ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 380{ 381#ifdef CONFIG_SMP 382 return __pte(xchg((long *) ptep, 0)); 383#else 384 pte_t pte = *ptep; 385 pte_clear(mm, addr, ptep); 386 return pte; 387#endif 388} 389 390static inline void 391ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 392{ 393#ifdef CONFIG_SMP 394 unsigned long new, old; 395 396 do { 397 old = pte_val(*ptep); 398 new = pte_val(pte_wrprotect(__pte (old))); 399 } while (cmpxchg((unsigned long *) ptep, old, new) != old); 400#else 401 pte_t old_pte = *ptep; 402 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 403#endif 404} 405 406static inline int 407pte_same (pte_t a, pte_t b) 408{ 409 return pte_val(a) == pte_val(b); 410} 411 412#define update_mmu_cache(vma, address, pte) do { } while (0) 413 414extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 415extern void paging_init (void); 416 417/* 418 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of 419 * bits in the swap-type field of the swap pte. It would be nice to 420 * enforce that, but we can't easily include <linux/swap.h> here. 421 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). 422 * 423 * Format of swap pte: 424 * bit 0 : present bit (must be zero) 425 * bit 1 : _PAGE_FILE (must be zero) 426 * bits 2- 8: swap-type 427 * bits 9-62: swap offset 428 * bit 63 : _PAGE_PROTNONE bit 429 * 430 * Format of file pte: 431 * bit 0 : present bit (must be zero) 432 * bit 1 : _PAGE_FILE (must be one) 433 * bits 2-62: file_offset/PAGE_SIZE 434 * bit 63 : _PAGE_PROTNONE bit 435 */ 436#define __swp_type(entry) (((entry).val >> 2) & 0x7f) 437#define __swp_offset(entry) (((entry).val << 1) >> 10) 438#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) }) 439#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 440#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 441 442#define PTE_FILE_MAX_BITS 61 443#define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3) 444#define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE }) 445 446#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 447 remap_pfn_range(vma, vaddr, pfn, size, prot) 448 449#define MK_IOSPACE_PFN(space, pfn) (pfn) 450#define GET_IOSPACE(pfn) 0 451#define GET_PFN(pfn) (pfn) 452 453/* 454 * ZERO_PAGE is a global shared page that is always zero: used 455 * for zero-mapped memory areas etc.. 456 */ 457extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 458extern struct page *zero_page_memmap_ptr; 459#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) 460 461/* We provide our own get_unmapped_area to cope with VA holes for userland */ 462#define HAVE_ARCH_UNMAPPED_AREA 463 464#ifdef CONFIG_HUGETLB_PAGE 465#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) 466#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) 467#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) 468struct mmu_gather; 469void hugetlb_free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 470 unsigned long end, unsigned long floor, unsigned long ceiling); 471#endif 472 473/* 474 * IA-64 doesn't have any external MMU info: the page tables contain all the necessary 475 * information. However, we use this routine to take care of any (delayed) i-cache 476 * flushing that may be necessary. 477 */ 478extern void lazy_mmu_prot_update (pte_t pte); 479 480#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 481/* 482 * Update PTEP with ENTRY, which is guaranteed to be a less 483 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and 484 * WRITABLE bits turned on, when the value at PTEP did not. The 485 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. 486 * 487 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without 488 * having to worry about races. On SMP machines, there are only two 489 * cases where this is true: 490 * 491 * (1) *PTEP has the PRESENT bit turned OFF 492 * (2) ENTRY has the DIRTY bit turned ON 493 * 494 * On ia64, we could implement this routine with a cmpxchg()-loop 495 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. 496 * However, like on x86, we can get a more streamlined version by 497 * observing that it is OK to drop ACCESSED bit updates when 498 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is 499 * result in an extra Access-bit fault, which would then turn on the 500 * ACCESSED bit in the low-level fault handler (iaccess_bit or 501 * daccess_bit in ivt.S). 502 */ 503#ifdef CONFIG_SMP 504# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 505do { \ 506 if (__safely_writable) { \ 507 set_pte(__ptep, __entry); \ 508 flush_tlb_page(__vma, __addr); \ 509 } \ 510} while (0) 511#else 512# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 513 ptep_establish(__vma, __addr, __ptep, __entry) 514#endif 515 516# ifdef CONFIG_VIRTUAL_MEM_MAP 517 /* arch mem_map init routine is needed due to holes in a virtual mem_map */ 518# define __HAVE_ARCH_MEMMAP_INIT 519 extern void memmap_init (unsigned long size, int nid, unsigned long zone, 520 unsigned long start_pfn); 521# endif /* CONFIG_VIRTUAL_MEM_MAP */ 522# endif /* !__ASSEMBLY__ */ 523 524/* 525 * Identity-mapped regions use a large page size. We'll call such large pages 526 * "granules". If you can think of a better name that's unambiguous, let me 527 * know... 528 */ 529#if defined(CONFIG_IA64_GRANULE_64MB) 530# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M 531#elif defined(CONFIG_IA64_GRANULE_16MB) 532# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M 533#endif 534#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) 535/* 536 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): 537 */ 538#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M 539#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) 540 541/* 542 * No page table caches to initialise 543 */ 544#define pgtable_cache_init() do { } while (0) 545 546/* These tell get_user_pages() that the first gate page is accessible from user-level. */ 547#define FIXADDR_USER_START GATE_ADDR 548#ifdef HAVE_BUGGY_SEGREL 549# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) 550#else 551# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) 552#endif 553 554#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 555#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY 556#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 557#define __HAVE_ARCH_PTEP_SET_WRPROTECT 558#define __HAVE_ARCH_PTE_SAME 559#define __HAVE_ARCH_PGD_OFFSET_GATE 560#define __HAVE_ARCH_LAZY_MMU_PROT_UPDATE 561 562#include <asm-generic/pgtable-nopud.h> 563#include <asm-generic/pgtable.h> 564 565#endif /* _ASM_IA64_PGTABLE_H */