at v2.6.14 66 kB view raw
1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="LKLockingGuide"> 6 <bookinfo> 7 <title>Unreliable Guide To Locking</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Rusty</firstname> 12 <surname>Russell</surname> 13 <affiliation> 14 <address> 15 <email>rusty@rustcorp.com.au</email> 16 </address> 17 </affiliation> 18 </author> 19 </authorgroup> 20 21 <copyright> 22 <year>2003</year> 23 <holder>Rusty Russell</holder> 24 </copyright> 25 26 <legalnotice> 27 <para> 28 This documentation is free software; you can redistribute 29 it and/or modify it under the terms of the GNU General Public 30 License as published by the Free Software Foundation; either 31 version 2 of the License, or (at your option) any later 32 version. 33 </para> 34 35 <para> 36 This program is distributed in the hope that it will be 37 useful, but WITHOUT ANY WARRANTY; without even the implied 38 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 39 See the GNU General Public License for more details. 40 </para> 41 42 <para> 43 You should have received a copy of the GNU General Public 44 License along with this program; if not, write to the Free 45 Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, 46 MA 02111-1307 USA 47 </para> 48 49 <para> 50 For more details see the file COPYING in the source 51 distribution of Linux. 52 </para> 53 </legalnotice> 54 </bookinfo> 55 56 <toc></toc> 57 <chapter id="intro"> 58 <title>Introduction</title> 59 <para> 60 Welcome, to Rusty's Remarkably Unreliable Guide to Kernel 61 Locking issues. This document describes the locking systems in 62 the Linux Kernel in 2.6. 63 </para> 64 <para> 65 With the wide availability of HyperThreading, and <firstterm 66 linkend="gloss-preemption">preemption </firstterm> in the Linux 67 Kernel, everyone hacking on the kernel needs to know the 68 fundamentals of concurrency and locking for 69 <firstterm linkend="gloss-smp"><acronym>SMP</acronym></firstterm>. 70 </para> 71 </chapter> 72 73 <chapter id="races"> 74 <title>The Problem With Concurrency</title> 75 <para> 76 (Skip this if you know what a Race Condition is). 77 </para> 78 <para> 79 In a normal program, you can increment a counter like so: 80 </para> 81 <programlisting> 82 very_important_count++; 83 </programlisting> 84 85 <para> 86 This is what they would expect to happen: 87 </para> 88 89 <table> 90 <title>Expected Results</title> 91 92 <tgroup cols="2" align="left"> 93 94 <thead> 95 <row> 96 <entry>Instance 1</entry> 97 <entry>Instance 2</entry> 98 </row> 99 </thead> 100 101 <tbody> 102 <row> 103 <entry>read very_important_count (5)</entry> 104 <entry></entry> 105 </row> 106 <row> 107 <entry>add 1 (6)</entry> 108 <entry></entry> 109 </row> 110 <row> 111 <entry>write very_important_count (6)</entry> 112 <entry></entry> 113 </row> 114 <row> 115 <entry></entry> 116 <entry>read very_important_count (6)</entry> 117 </row> 118 <row> 119 <entry></entry> 120 <entry>add 1 (7)</entry> 121 </row> 122 <row> 123 <entry></entry> 124 <entry>write very_important_count (7)</entry> 125 </row> 126 </tbody> 127 128 </tgroup> 129 </table> 130 131 <para> 132 This is what might happen: 133 </para> 134 135 <table> 136 <title>Possible Results</title> 137 138 <tgroup cols="2" align="left"> 139 <thead> 140 <row> 141 <entry>Instance 1</entry> 142 <entry>Instance 2</entry> 143 </row> 144 </thead> 145 146 <tbody> 147 <row> 148 <entry>read very_important_count (5)</entry> 149 <entry></entry> 150 </row> 151 <row> 152 <entry></entry> 153 <entry>read very_important_count (5)</entry> 154 </row> 155 <row> 156 <entry>add 1 (6)</entry> 157 <entry></entry> 158 </row> 159 <row> 160 <entry></entry> 161 <entry>add 1 (6)</entry> 162 </row> 163 <row> 164 <entry>write very_important_count (6)</entry> 165 <entry></entry> 166 </row> 167 <row> 168 <entry></entry> 169 <entry>write very_important_count (6)</entry> 170 </row> 171 </tbody> 172 </tgroup> 173 </table> 174 175 <sect1 id="race-condition"> 176 <title>Race Conditions and Critical Regions</title> 177 <para> 178 This overlap, where the result depends on the 179 relative timing of multiple tasks, is called a <firstterm>race condition</firstterm>. 180 The piece of code containing the concurrency issue is called a 181 <firstterm>critical region</firstterm>. And especially since Linux starting running 182 on SMP machines, they became one of the major issues in kernel 183 design and implementation. 184 </para> 185 <para> 186 Preemption can have the same effect, even if there is only one 187 CPU: by preempting one task during the critical region, we have 188 exactly the same race condition. In this case the thread which 189 preempts might run the critical region itself. 190 </para> 191 <para> 192 The solution is to recognize when these simultaneous accesses 193 occur, and use locks to make sure that only one instance can 194 enter the critical region at any time. There are many 195 friendly primitives in the Linux kernel to help you do this. 196 And then there are the unfriendly primitives, but I'll pretend 197 they don't exist. 198 </para> 199 </sect1> 200 </chapter> 201 202 <chapter id="locks"> 203 <title>Locking in the Linux Kernel</title> 204 205 <para> 206 If I could give you one piece of advice: never sleep with anyone 207 crazier than yourself. But if I had to give you advice on 208 locking: <emphasis>keep it simple</emphasis>. 209 </para> 210 211 <para> 212 Be reluctant to introduce new locks. 213 </para> 214 215 <para> 216 Strangely enough, this last one is the exact reverse of my advice when 217 you <emphasis>have</emphasis> slept with someone crazier than yourself. 218 And you should think about getting a big dog. 219 </para> 220 221 <sect1 id="lock-intro"> 222 <title>Two Main Types of Kernel Locks: Spinlocks and Semaphores</title> 223 224 <para> 225 There are two main types of kernel locks. The fundamental type 226 is the spinlock 227 (<filename class="headerfile">include/asm/spinlock.h</filename>), 228 which is a very simple single-holder lock: if you can't get the 229 spinlock, you keep trying (spinning) until you can. Spinlocks are 230 very small and fast, and can be used anywhere. 231 </para> 232 <para> 233 The second type is a semaphore 234 (<filename class="headerfile">include/asm/semaphore.h</filename>): it 235 can have more than one holder at any time (the number decided at 236 initialization time), although it is most commonly used as a 237 single-holder lock (a mutex). If you can't get a semaphore, 238 your task will put itself on the queue, and be woken up when the 239 semaphore is released. This means the CPU will do something 240 else while you are waiting, but there are many cases when you 241 simply can't sleep (see <xref linkend="sleeping-things"/>), and so 242 have to use a spinlock instead. 243 </para> 244 <para> 245 Neither type of lock is recursive: see 246 <xref linkend="deadlock"/>. 247 </para> 248 </sect1> 249 250 <sect1 id="uniprocessor"> 251 <title>Locks and Uniprocessor Kernels</title> 252 253 <para> 254 For kernels compiled without <symbol>CONFIG_SMP</symbol>, and 255 without <symbol>CONFIG_PREEMPT</symbol> spinlocks do not exist at 256 all. This is an excellent design decision: when no-one else can 257 run at the same time, there is no reason to have a lock. 258 </para> 259 260 <para> 261 If the kernel is compiled without <symbol>CONFIG_SMP</symbol>, 262 but <symbol>CONFIG_PREEMPT</symbol> is set, then spinlocks 263 simply disable preemption, which is sufficient to prevent any 264 races. For most purposes, we can think of preemption as 265 equivalent to SMP, and not worry about it separately. 266 </para> 267 268 <para> 269 You should always test your locking code with <symbol>CONFIG_SMP</symbol> 270 and <symbol>CONFIG_PREEMPT</symbol> enabled, even if you don't have an SMP test box, because it 271 will still catch some kinds of locking bugs. 272 </para> 273 274 <para> 275 Semaphores still exist, because they are required for 276 synchronization between <firstterm linkend="gloss-usercontext">user 277 contexts</firstterm>, as we will see below. 278 </para> 279 </sect1> 280 281 <sect1 id="usercontextlocking"> 282 <title>Locking Only In User Context</title> 283 284 <para> 285 If you have a data structure which is only ever accessed from 286 user context, then you can use a simple semaphore 287 (<filename>linux/asm/semaphore.h</filename>) to protect it. This 288 is the most trivial case: you initialize the semaphore to the number 289 of resources available (usually 1), and call 290 <function>down_interruptible()</function> to grab the semaphore, and 291 <function>up()</function> to release it. There is also a 292 <function>down()</function>, which should be avoided, because it 293 will not return if a signal is received. 294 </para> 295 296 <para> 297 Example: <filename>linux/net/core/netfilter.c</filename> allows 298 registration of new <function>setsockopt()</function> and 299 <function>getsockopt()</function> calls, with 300 <function>nf_register_sockopt()</function>. Registration and 301 de-registration are only done on module load and unload (and boot 302 time, where there is no concurrency), and the list of registrations 303 is only consulted for an unknown <function>setsockopt()</function> 304 or <function>getsockopt()</function> system call. The 305 <varname>nf_sockopt_mutex</varname> is perfect to protect this, 306 especially since the setsockopt and getsockopt calls may well 307 sleep. 308 </para> 309 </sect1> 310 311 <sect1 id="lock-user-bh"> 312 <title>Locking Between User Context and Softirqs</title> 313 314 <para> 315 If a <firstterm linkend="gloss-softirq">softirq</firstterm> shares 316 data with user context, you have two problems. Firstly, the current 317 user context can be interrupted by a softirq, and secondly, the 318 critical region could be entered from another CPU. This is where 319 <function>spin_lock_bh()</function> 320 (<filename class="headerfile">include/linux/spinlock.h</filename>) is 321 used. It disables softirqs on that CPU, then grabs the lock. 322 <function>spin_unlock_bh()</function> does the reverse. (The 323 '_bh' suffix is a historical reference to "Bottom Halves", the 324 old name for software interrupts. It should really be 325 called spin_lock_softirq()' in a perfect world). 326 </para> 327 328 <para> 329 Note that you can also use <function>spin_lock_irq()</function> 330 or <function>spin_lock_irqsave()</function> here, which stop 331 hardware interrupts as well: see <xref linkend="hardirq-context"/>. 332 </para> 333 334 <para> 335 This works perfectly for <firstterm linkend="gloss-up"><acronym>UP 336 </acronym></firstterm> as well: the spin lock vanishes, and this macro 337 simply becomes <function>local_bh_disable()</function> 338 (<filename class="headerfile">include/linux/interrupt.h</filename>), which 339 protects you from the softirq being run. 340 </para> 341 </sect1> 342 343 <sect1 id="lock-user-tasklet"> 344 <title>Locking Between User Context and Tasklets</title> 345 346 <para> 347 This is exactly the same as above, because <firstterm 348 linkend="gloss-tasklet">tasklets</firstterm> are actually run 349 from a softirq. 350 </para> 351 </sect1> 352 353 <sect1 id="lock-user-timers"> 354 <title>Locking Between User Context and Timers</title> 355 356 <para> 357 This, too, is exactly the same as above, because <firstterm 358 linkend="gloss-timers">timers</firstterm> are actually run from 359 a softirq. From a locking point of view, tasklets and timers 360 are identical. 361 </para> 362 </sect1> 363 364 <sect1 id="lock-tasklets"> 365 <title>Locking Between Tasklets/Timers</title> 366 367 <para> 368 Sometimes a tasklet or timer might want to share data with 369 another tasklet or timer. 370 </para> 371 372 <sect2 id="lock-tasklets-same"> 373 <title>The Same Tasklet/Timer</title> 374 <para> 375 Since a tasklet is never run on two CPUs at once, you don't 376 need to worry about your tasklet being reentrant (running 377 twice at once), even on SMP. 378 </para> 379 </sect2> 380 381 <sect2 id="lock-tasklets-different"> 382 <title>Different Tasklets/Timers</title> 383 <para> 384 If another tasklet/timer wants 385 to share data with your tasklet or timer , you will both need to use 386 <function>spin_lock()</function> and 387 <function>spin_unlock()</function> calls. 388 <function>spin_lock_bh()</function> is 389 unnecessary here, as you are already in a tasklet, and 390 none will be run on the same CPU. 391 </para> 392 </sect2> 393 </sect1> 394 395 <sect1 id="lock-softirqs"> 396 <title>Locking Between Softirqs</title> 397 398 <para> 399 Often a softirq might 400 want to share data with itself or a tasklet/timer. 401 </para> 402 403 <sect2 id="lock-softirqs-same"> 404 <title>The Same Softirq</title> 405 406 <para> 407 The same softirq can run on the other CPUs: you can use a 408 per-CPU array (see <xref linkend="per-cpu"/>) for better 409 performance. If you're going so far as to use a softirq, 410 you probably care about scalable performance enough 411 to justify the extra complexity. 412 </para> 413 414 <para> 415 You'll need to use <function>spin_lock()</function> and 416 <function>spin_unlock()</function> for shared data. 417 </para> 418 </sect2> 419 420 <sect2 id="lock-softirqs-different"> 421 <title>Different Softirqs</title> 422 423 <para> 424 You'll need to use <function>spin_lock()</function> and 425 <function>spin_unlock()</function> for shared data, whether it 426 be a timer, tasklet, different softirq or the same or another 427 softirq: any of them could be running on a different CPU. 428 </para> 429 </sect2> 430 </sect1> 431 </chapter> 432 433 <chapter id="hardirq-context"> 434 <title>Hard IRQ Context</title> 435 436 <para> 437 Hardware interrupts usually communicate with a 438 tasklet or softirq. Frequently this involves putting work in a 439 queue, which the softirq will take out. 440 </para> 441 442 <sect1 id="hardirq-softirq"> 443 <title>Locking Between Hard IRQ and Softirqs/Tasklets</title> 444 445 <para> 446 If a hardware irq handler shares data with a softirq, you have 447 two concerns. Firstly, the softirq processing can be 448 interrupted by a hardware interrupt, and secondly, the 449 critical region could be entered by a hardware interrupt on 450 another CPU. This is where <function>spin_lock_irq()</function> is 451 used. It is defined to disable interrupts on that cpu, then grab 452 the lock. <function>spin_unlock_irq()</function> does the reverse. 453 </para> 454 455 <para> 456 The irq handler does not to use 457 <function>spin_lock_irq()</function>, because the softirq cannot 458 run while the irq handler is running: it can use 459 <function>spin_lock()</function>, which is slightly faster. The 460 only exception would be if a different hardware irq handler uses 461 the same lock: <function>spin_lock_irq()</function> will stop 462 that from interrupting us. 463 </para> 464 465 <para> 466 This works perfectly for UP as well: the spin lock vanishes, 467 and this macro simply becomes <function>local_irq_disable()</function> 468 (<filename class="headerfile">include/asm/smp.h</filename>), which 469 protects you from the softirq/tasklet/BH being run. 470 </para> 471 472 <para> 473 <function>spin_lock_irqsave()</function> 474 (<filename>include/linux/spinlock.h</filename>) is a variant 475 which saves whether interrupts were on or off in a flags word, 476 which is passed to <function>spin_unlock_irqrestore()</function>. This 477 means that the same code can be used inside an hard irq handler (where 478 interrupts are already off) and in softirqs (where the irq 479 disabling is required). 480 </para> 481 482 <para> 483 Note that softirqs (and hence tasklets and timers) are run on 484 return from hardware interrupts, so 485 <function>spin_lock_irq()</function> also stops these. In that 486 sense, <function>spin_lock_irqsave()</function> is the most 487 general and powerful locking function. 488 </para> 489 490 </sect1> 491 <sect1 id="hardirq-hardirq"> 492 <title>Locking Between Two Hard IRQ Handlers</title> 493 <para> 494 It is rare to have to share data between two IRQ handlers, but 495 if you do, <function>spin_lock_irqsave()</function> should be 496 used: it is architecture-specific whether all interrupts are 497 disabled inside irq handlers themselves. 498 </para> 499 </sect1> 500 501 </chapter> 502 503 <chapter id="cheatsheet"> 504 <title>Cheat Sheet For Locking</title> 505 <para> 506 Pete Zaitcev gives the following summary: 507 </para> 508 <itemizedlist> 509 <listitem> 510 <para> 511 If you are in a process context (any syscall) and want to 512 lock other process out, use a semaphore. You can take a semaphore 513 and sleep (<function>copy_from_user*(</function> or 514 <function>kmalloc(x,GFP_KERNEL)</function>). 515 </para> 516 </listitem> 517 <listitem> 518 <para> 519 Otherwise (== data can be touched in an interrupt), use 520 <function>spin_lock_irqsave()</function> and 521 <function>spin_unlock_irqrestore()</function>. 522 </para> 523 </listitem> 524 <listitem> 525 <para> 526 Avoid holding spinlock for more than 5 lines of code and 527 across any function call (except accessors like 528 <function>readb</function>). 529 </para> 530 </listitem> 531 </itemizedlist> 532 533 <sect1 id="minimum-lock-reqirements"> 534 <title>Table of Minimum Requirements</title> 535 536 <para> The following table lists the <emphasis>minimum</emphasis> 537 locking requirements between various contexts. In some cases, 538 the same context can only be running on one CPU at a time, so 539 no locking is required for that context (eg. a particular 540 thread can only run on one CPU at a time, but if it needs 541 shares data with another thread, locking is required). 542 </para> 543 <para> 544 Remember the advice above: you can always use 545 <function>spin_lock_irqsave()</function>, which is a superset 546 of all other spinlock primitives. 547 </para> 548 <table> 549<title>Table of Locking Requirements</title> 550<tgroup cols="11"> 551<tbody> 552<row> 553<entry></entry> 554<entry>IRQ Handler A</entry> 555<entry>IRQ Handler B</entry> 556<entry>Softirq A</entry> 557<entry>Softirq B</entry> 558<entry>Tasklet A</entry> 559<entry>Tasklet B</entry> 560<entry>Timer A</entry> 561<entry>Timer B</entry> 562<entry>User Context A</entry> 563<entry>User Context B</entry> 564</row> 565 566<row> 567<entry>IRQ Handler A</entry> 568<entry>None</entry> 569</row> 570 571<row> 572<entry>IRQ Handler B</entry> 573<entry>spin_lock_irqsave</entry> 574<entry>None</entry> 575</row> 576 577<row> 578<entry>Softirq A</entry> 579<entry>spin_lock_irq</entry> 580<entry>spin_lock_irq</entry> 581<entry>spin_lock</entry> 582</row> 583 584<row> 585<entry>Softirq B</entry> 586<entry>spin_lock_irq</entry> 587<entry>spin_lock_irq</entry> 588<entry>spin_lock</entry> 589<entry>spin_lock</entry> 590</row> 591 592<row> 593<entry>Tasklet A</entry> 594<entry>spin_lock_irq</entry> 595<entry>spin_lock_irq</entry> 596<entry>spin_lock</entry> 597<entry>spin_lock</entry> 598<entry>None</entry> 599</row> 600 601<row> 602<entry>Tasklet B</entry> 603<entry>spin_lock_irq</entry> 604<entry>spin_lock_irq</entry> 605<entry>spin_lock</entry> 606<entry>spin_lock</entry> 607<entry>spin_lock</entry> 608<entry>None</entry> 609</row> 610 611<row> 612<entry>Timer A</entry> 613<entry>spin_lock_irq</entry> 614<entry>spin_lock_irq</entry> 615<entry>spin_lock</entry> 616<entry>spin_lock</entry> 617<entry>spin_lock</entry> 618<entry>spin_lock</entry> 619<entry>None</entry> 620</row> 621 622<row> 623<entry>Timer B</entry> 624<entry>spin_lock_irq</entry> 625<entry>spin_lock_irq</entry> 626<entry>spin_lock</entry> 627<entry>spin_lock</entry> 628<entry>spin_lock</entry> 629<entry>spin_lock</entry> 630<entry>spin_lock</entry> 631<entry>None</entry> 632</row> 633 634<row> 635<entry>User Context A</entry> 636<entry>spin_lock_irq</entry> 637<entry>spin_lock_irq</entry> 638<entry>spin_lock_bh</entry> 639<entry>spin_lock_bh</entry> 640<entry>spin_lock_bh</entry> 641<entry>spin_lock_bh</entry> 642<entry>spin_lock_bh</entry> 643<entry>spin_lock_bh</entry> 644<entry>None</entry> 645</row> 646 647<row> 648<entry>User Context B</entry> 649<entry>spin_lock_irq</entry> 650<entry>spin_lock_irq</entry> 651<entry>spin_lock_bh</entry> 652<entry>spin_lock_bh</entry> 653<entry>spin_lock_bh</entry> 654<entry>spin_lock_bh</entry> 655<entry>spin_lock_bh</entry> 656<entry>spin_lock_bh</entry> 657<entry>down_interruptible</entry> 658<entry>None</entry> 659</row> 660 661</tbody> 662</tgroup> 663</table> 664</sect1> 665</chapter> 666 667 <chapter id="Examples"> 668 <title>Common Examples</title> 669 <para> 670Let's step through a simple example: a cache of number to name 671mappings. The cache keeps a count of how often each of the objects is 672used, and when it gets full, throws out the least used one. 673 674 </para> 675 676 <sect1 id="examples-usercontext"> 677 <title>All In User Context</title> 678 <para> 679For our first example, we assume that all operations are in user 680context (ie. from system calls), so we can sleep. This means we can 681use a semaphore to protect the cache and all the objects within 682it. Here's the code: 683 </para> 684 685 <programlisting> 686#include &lt;linux/list.h&gt; 687#include &lt;linux/slab.h&gt; 688#include &lt;linux/string.h&gt; 689#include &lt;asm/semaphore.h&gt; 690#include &lt;asm/errno.h&gt; 691 692struct object 693{ 694 struct list_head list; 695 int id; 696 char name[32]; 697 int popularity; 698}; 699 700/* Protects the cache, cache_num, and the objects within it */ 701static DECLARE_MUTEX(cache_lock); 702static LIST_HEAD(cache); 703static unsigned int cache_num = 0; 704#define MAX_CACHE_SIZE 10 705 706/* Must be holding cache_lock */ 707static struct object *__cache_find(int id) 708{ 709 struct object *i; 710 711 list_for_each_entry(i, &amp;cache, list) 712 if (i-&gt;id == id) { 713 i-&gt;popularity++; 714 return i; 715 } 716 return NULL; 717} 718 719/* Must be holding cache_lock */ 720static void __cache_delete(struct object *obj) 721{ 722 BUG_ON(!obj); 723 list_del(&amp;obj-&gt;list); 724 kfree(obj); 725 cache_num--; 726} 727 728/* Must be holding cache_lock */ 729static void __cache_add(struct object *obj) 730{ 731 list_add(&amp;obj-&gt;list, &amp;cache); 732 if (++cache_num > MAX_CACHE_SIZE) { 733 struct object *i, *outcast = NULL; 734 list_for_each_entry(i, &amp;cache, list) { 735 if (!outcast || i-&gt;popularity &lt; outcast-&gt;popularity) 736 outcast = i; 737 } 738 __cache_delete(outcast); 739 } 740} 741 742int cache_add(int id, const char *name) 743{ 744 struct object *obj; 745 746 if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL) 747 return -ENOMEM; 748 749 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name)); 750 obj-&gt;id = id; 751 obj-&gt;popularity = 0; 752 753 down(&amp;cache_lock); 754 __cache_add(obj); 755 up(&amp;cache_lock); 756 return 0; 757} 758 759void cache_delete(int id) 760{ 761 down(&amp;cache_lock); 762 __cache_delete(__cache_find(id)); 763 up(&amp;cache_lock); 764} 765 766int cache_find(int id, char *name) 767{ 768 struct object *obj; 769 int ret = -ENOENT; 770 771 down(&amp;cache_lock); 772 obj = __cache_find(id); 773 if (obj) { 774 ret = 0; 775 strcpy(name, obj-&gt;name); 776 } 777 up(&amp;cache_lock); 778 return ret; 779} 780</programlisting> 781 782 <para> 783Note that we always make sure we have the cache_lock when we add, 784delete, or look up the cache: both the cache infrastructure itself and 785the contents of the objects are protected by the lock. In this case 786it's easy, since we copy the data for the user, and never let them 787access the objects directly. 788 </para> 789 <para> 790There is a slight (and common) optimization here: in 791<function>cache_add</function> we set up the fields of the object 792before grabbing the lock. This is safe, as no-one else can access it 793until we put it in cache. 794 </para> 795 </sect1> 796 797 <sect1 id="examples-interrupt"> 798 <title>Accessing From Interrupt Context</title> 799 <para> 800Now consider the case where <function>cache_find</function> can be 801called from interrupt context: either a hardware interrupt or a 802softirq. An example would be a timer which deletes object from the 803cache. 804 </para> 805 <para> 806The change is shown below, in standard patch format: the 807<symbol>-</symbol> are lines which are taken away, and the 808<symbol>+</symbol> are lines which are added. 809 </para> 810<programlisting> 811--- cache.c.usercontext 2003-12-09 13:58:54.000000000 +1100 812+++ cache.c.interrupt 2003-12-09 14:07:49.000000000 +1100 813@@ -12,7 +12,7 @@ 814 int popularity; 815 }; 816 817-static DECLARE_MUTEX(cache_lock); 818+static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED; 819 static LIST_HEAD(cache); 820 static unsigned int cache_num = 0; 821 #define MAX_CACHE_SIZE 10 822@@ -55,6 +55,7 @@ 823 int cache_add(int id, const char *name) 824 { 825 struct object *obj; 826+ unsigned long flags; 827 828 if ((obj = kmalloc(sizeof(*obj), GFP_KERNEL)) == NULL) 829 return -ENOMEM; 830@@ -63,30 +64,33 @@ 831 obj-&gt;id = id; 832 obj-&gt;popularity = 0; 833 834- down(&amp;cache_lock); 835+ spin_lock_irqsave(&amp;cache_lock, flags); 836 __cache_add(obj); 837- up(&amp;cache_lock); 838+ spin_unlock_irqrestore(&amp;cache_lock, flags); 839 return 0; 840 } 841 842 void cache_delete(int id) 843 { 844- down(&amp;cache_lock); 845+ unsigned long flags; 846+ 847+ spin_lock_irqsave(&amp;cache_lock, flags); 848 __cache_delete(__cache_find(id)); 849- up(&amp;cache_lock); 850+ spin_unlock_irqrestore(&amp;cache_lock, flags); 851 } 852 853 int cache_find(int id, char *name) 854 { 855 struct object *obj; 856 int ret = -ENOENT; 857+ unsigned long flags; 858 859- down(&amp;cache_lock); 860+ spin_lock_irqsave(&amp;cache_lock, flags); 861 obj = __cache_find(id); 862 if (obj) { 863 ret = 0; 864 strcpy(name, obj-&gt;name); 865 } 866- up(&amp;cache_lock); 867+ spin_unlock_irqrestore(&amp;cache_lock, flags); 868 return ret; 869 } 870</programlisting> 871 872 <para> 873Note that the <function>spin_lock_irqsave</function> will turn off 874interrupts if they are on, otherwise does nothing (if we are already 875in an interrupt handler), hence these functions are safe to call from 876any context. 877 </para> 878 <para> 879Unfortunately, <function>cache_add</function> calls 880<function>kmalloc</function> with the <symbol>GFP_KERNEL</symbol> 881flag, which is only legal in user context. I have assumed that 882<function>cache_add</function> is still only called in user context, 883otherwise this should become a parameter to 884<function>cache_add</function>. 885 </para> 886 </sect1> 887 <sect1 id="examples-refcnt"> 888 <title>Exposing Objects Outside This File</title> 889 <para> 890If our objects contained more information, it might not be sufficient 891to copy the information in and out: other parts of the code might want 892to keep pointers to these objects, for example, rather than looking up 893the id every time. This produces two problems. 894 </para> 895 <para> 896The first problem is that we use the <symbol>cache_lock</symbol> to 897protect objects: we'd need to make this non-static so the rest of the 898code can use it. This makes locking trickier, as it is no longer all 899in one place. 900 </para> 901 <para> 902The second problem is the lifetime problem: if another structure keeps 903a pointer to an object, it presumably expects that pointer to remain 904valid. Unfortunately, this is only guaranteed while you hold the 905lock, otherwise someone might call <function>cache_delete</function> 906and even worse, add another object, re-using the same address. 907 </para> 908 <para> 909As there is only one lock, you can't hold it forever: no-one else would 910get any work done. 911 </para> 912 <para> 913The solution to this problem is to use a reference count: everyone who 914has a pointer to the object increases it when they first get the 915object, and drops the reference count when they're finished with it. 916Whoever drops it to zero knows it is unused, and can actually delete it. 917 </para> 918 <para> 919Here is the code: 920 </para> 921 922<programlisting> 923--- cache.c.interrupt 2003-12-09 14:25:43.000000000 +1100 924+++ cache.c.refcnt 2003-12-09 14:33:05.000000000 +1100 925@@ -7,6 +7,7 @@ 926 struct object 927 { 928 struct list_head list; 929+ unsigned int refcnt; 930 int id; 931 char name[32]; 932 int popularity; 933@@ -17,6 +18,35 @@ 934 static unsigned int cache_num = 0; 935 #define MAX_CACHE_SIZE 10 936 937+static void __object_put(struct object *obj) 938+{ 939+ if (--obj-&gt;refcnt == 0) 940+ kfree(obj); 941+} 942+ 943+static void __object_get(struct object *obj) 944+{ 945+ obj-&gt;refcnt++; 946+} 947+ 948+void object_put(struct object *obj) 949+{ 950+ unsigned long flags; 951+ 952+ spin_lock_irqsave(&amp;cache_lock, flags); 953+ __object_put(obj); 954+ spin_unlock_irqrestore(&amp;cache_lock, flags); 955+} 956+ 957+void object_get(struct object *obj) 958+{ 959+ unsigned long flags; 960+ 961+ spin_lock_irqsave(&amp;cache_lock, flags); 962+ __object_get(obj); 963+ spin_unlock_irqrestore(&amp;cache_lock, flags); 964+} 965+ 966 /* Must be holding cache_lock */ 967 static struct object *__cache_find(int id) 968 { 969@@ -35,6 +65,7 @@ 970 { 971 BUG_ON(!obj); 972 list_del(&amp;obj-&gt;list); 973+ __object_put(obj); 974 cache_num--; 975 } 976 977@@ -63,6 +94,7 @@ 978 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name)); 979 obj-&gt;id = id; 980 obj-&gt;popularity = 0; 981+ obj-&gt;refcnt = 1; /* The cache holds a reference */ 982 983 spin_lock_irqsave(&amp;cache_lock, flags); 984 __cache_add(obj); 985@@ -79,18 +111,15 @@ 986 spin_unlock_irqrestore(&amp;cache_lock, flags); 987 } 988 989-int cache_find(int id, char *name) 990+struct object *cache_find(int id) 991 { 992 struct object *obj; 993- int ret = -ENOENT; 994 unsigned long flags; 995 996 spin_lock_irqsave(&amp;cache_lock, flags); 997 obj = __cache_find(id); 998- if (obj) { 999- ret = 0; 1000- strcpy(name, obj-&gt;name); 1001- } 1002+ if (obj) 1003+ __object_get(obj); 1004 spin_unlock_irqrestore(&amp;cache_lock, flags); 1005- return ret; 1006+ return obj; 1007 } 1008</programlisting> 1009 1010<para> 1011We encapsulate the reference counting in the standard 'get' and 'put' 1012functions. Now we can return the object itself from 1013<function>cache_find</function> which has the advantage that the user 1014can now sleep holding the object (eg. to 1015<function>copy_to_user</function> to name to userspace). 1016</para> 1017<para> 1018The other point to note is that I said a reference should be held for 1019every pointer to the object: thus the reference count is 1 when first 1020inserted into the cache. In some versions the framework does not hold 1021a reference count, but they are more complicated. 1022</para> 1023 1024 <sect2 id="examples-refcnt-atomic"> 1025 <title>Using Atomic Operations For The Reference Count</title> 1026<para> 1027In practice, <type>atomic_t</type> would usually be used for 1028<structfield>refcnt</structfield>. There are a number of atomic 1029operations defined in 1030 1031<filename class="headerfile">include/asm/atomic.h</filename>: these are 1032guaranteed to be seen atomically from all CPUs in the system, so no 1033lock is required. In this case, it is simpler than using spinlocks, 1034although for anything non-trivial using spinlocks is clearer. The 1035<function>atomic_inc</function> and 1036<function>atomic_dec_and_test</function> are used instead of the 1037standard increment and decrement operators, and the lock is no longer 1038used to protect the reference count itself. 1039</para> 1040 1041<programlisting> 1042--- cache.c.refcnt 2003-12-09 15:00:35.000000000 +1100 1043+++ cache.c.refcnt-atomic 2003-12-11 15:49:42.000000000 +1100 1044@@ -7,7 +7,7 @@ 1045 struct object 1046 { 1047 struct list_head list; 1048- unsigned int refcnt; 1049+ atomic_t refcnt; 1050 int id; 1051 char name[32]; 1052 int popularity; 1053@@ -18,33 +18,15 @@ 1054 static unsigned int cache_num = 0; 1055 #define MAX_CACHE_SIZE 10 1056 1057-static void __object_put(struct object *obj) 1058-{ 1059- if (--obj-&gt;refcnt == 0) 1060- kfree(obj); 1061-} 1062- 1063-static void __object_get(struct object *obj) 1064-{ 1065- obj-&gt;refcnt++; 1066-} 1067- 1068 void object_put(struct object *obj) 1069 { 1070- unsigned long flags; 1071- 1072- spin_lock_irqsave(&amp;cache_lock, flags); 1073- __object_put(obj); 1074- spin_unlock_irqrestore(&amp;cache_lock, flags); 1075+ if (atomic_dec_and_test(&amp;obj-&gt;refcnt)) 1076+ kfree(obj); 1077 } 1078 1079 void object_get(struct object *obj) 1080 { 1081- unsigned long flags; 1082- 1083- spin_lock_irqsave(&amp;cache_lock, flags); 1084- __object_get(obj); 1085- spin_unlock_irqrestore(&amp;cache_lock, flags); 1086+ atomic_inc(&amp;obj-&gt;refcnt); 1087 } 1088 1089 /* Must be holding cache_lock */ 1090@@ -65,7 +47,7 @@ 1091 { 1092 BUG_ON(!obj); 1093 list_del(&amp;obj-&gt;list); 1094- __object_put(obj); 1095+ object_put(obj); 1096 cache_num--; 1097 } 1098 1099@@ -94,7 +76,7 @@ 1100 strlcpy(obj-&gt;name, name, sizeof(obj-&gt;name)); 1101 obj-&gt;id = id; 1102 obj-&gt;popularity = 0; 1103- obj-&gt;refcnt = 1; /* The cache holds a reference */ 1104+ atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */ 1105 1106 spin_lock_irqsave(&amp;cache_lock, flags); 1107 __cache_add(obj); 1108@@ -119,7 +101,7 @@ 1109 spin_lock_irqsave(&amp;cache_lock, flags); 1110 obj = __cache_find(id); 1111 if (obj) 1112- __object_get(obj); 1113+ object_get(obj); 1114 spin_unlock_irqrestore(&amp;cache_lock, flags); 1115 return obj; 1116 } 1117</programlisting> 1118</sect2> 1119</sect1> 1120 1121 <sect1 id="examples-lock-per-obj"> 1122 <title>Protecting The Objects Themselves</title> 1123 <para> 1124In these examples, we assumed that the objects (except the reference 1125counts) never changed once they are created. If we wanted to allow 1126the name to change, there are three possibilities: 1127 </para> 1128 <itemizedlist> 1129 <listitem> 1130 <para> 1131You can make <symbol>cache_lock</symbol> non-static, and tell people 1132to grab that lock before changing the name in any object. 1133 </para> 1134 </listitem> 1135 <listitem> 1136 <para> 1137You can provide a <function>cache_obj_rename</function> which grabs 1138this lock and changes the name for the caller, and tell everyone to 1139use that function. 1140 </para> 1141 </listitem> 1142 <listitem> 1143 <para> 1144You can make the <symbol>cache_lock</symbol> protect only the cache 1145itself, and use another lock to protect the name. 1146 </para> 1147 </listitem> 1148 </itemizedlist> 1149 1150 <para> 1151Theoretically, you can make the locks as fine-grained as one lock for 1152every field, for every object. In practice, the most common variants 1153are: 1154</para> 1155 <itemizedlist> 1156 <listitem> 1157 <para> 1158One lock which protects the infrastructure (the <symbol>cache</symbol> 1159list in this example) and all the objects. This is what we have done 1160so far. 1161 </para> 1162 </listitem> 1163 <listitem> 1164 <para> 1165One lock which protects the infrastructure (including the list 1166pointers inside the objects), and one lock inside the object which 1167protects the rest of that object. 1168 </para> 1169 </listitem> 1170 <listitem> 1171 <para> 1172Multiple locks to protect the infrastructure (eg. one lock per hash 1173chain), possibly with a separate per-object lock. 1174 </para> 1175 </listitem> 1176 </itemizedlist> 1177 1178<para> 1179Here is the "lock-per-object" implementation: 1180</para> 1181<programlisting> 1182--- cache.c.refcnt-atomic 2003-12-11 15:50:54.000000000 +1100 1183+++ cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100 1184@@ -6,11 +6,17 @@ 1185 1186 struct object 1187 { 1188+ /* These two protected by cache_lock. */ 1189 struct list_head list; 1190+ int popularity; 1191+ 1192 atomic_t refcnt; 1193+ 1194+ /* Doesn't change once created. */ 1195 int id; 1196+ 1197+ spinlock_t lock; /* Protects the name */ 1198 char name[32]; 1199- int popularity; 1200 }; 1201 1202 static spinlock_t cache_lock = SPIN_LOCK_UNLOCKED; 1203@@ -77,6 +84,7 @@ 1204 obj-&gt;id = id; 1205 obj-&gt;popularity = 0; 1206 atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */ 1207+ spin_lock_init(&amp;obj-&gt;lock); 1208 1209 spin_lock_irqsave(&amp;cache_lock, flags); 1210 __cache_add(obj); 1211</programlisting> 1212 1213<para> 1214Note that I decide that the <structfield>popularity</structfield> 1215count should be protected by the <symbol>cache_lock</symbol> rather 1216than the per-object lock: this is because it (like the 1217<structname>struct list_head</structname> inside the object) is 1218logically part of the infrastructure. This way, I don't need to grab 1219the lock of every object in <function>__cache_add</function> when 1220seeking the least popular. 1221</para> 1222 1223<para> 1224I also decided that the <structfield>id</structfield> member is 1225unchangeable, so I don't need to grab each object lock in 1226<function>__cache_find()</function> to examine the 1227<structfield>id</structfield>: the object lock is only used by a 1228caller who wants to read or write the <structfield>name</structfield> 1229field. 1230</para> 1231 1232<para> 1233Note also that I added a comment describing what data was protected by 1234which locks. This is extremely important, as it describes the runtime 1235behavior of the code, and can be hard to gain from just reading. And 1236as Alan Cox says, <quote>Lock data, not code</quote>. 1237</para> 1238</sect1> 1239</chapter> 1240 1241 <chapter id="common-problems"> 1242 <title>Common Problems</title> 1243 <sect1 id="deadlock"> 1244 <title>Deadlock: Simple and Advanced</title> 1245 1246 <para> 1247 There is a coding bug where a piece of code tries to grab a 1248 spinlock twice: it will spin forever, waiting for the lock to 1249 be released (spinlocks, rwlocks and semaphores are not 1250 recursive in Linux). This is trivial to diagnose: not a 1251 stay-up-five-nights-talk-to-fluffy-code-bunnies kind of 1252 problem. 1253 </para> 1254 1255 <para> 1256 For a slightly more complex case, imagine you have a region 1257 shared by a softirq and user context. If you use a 1258 <function>spin_lock()</function> call to protect it, it is 1259 possible that the user context will be interrupted by the softirq 1260 while it holds the lock, and the softirq will then spin 1261 forever trying to get the same lock. 1262 </para> 1263 1264 <para> 1265 Both of these are called deadlock, and as shown above, it can 1266 occur even with a single CPU (although not on UP compiles, 1267 since spinlocks vanish on kernel compiles with 1268 <symbol>CONFIG_SMP</symbol>=n. You'll still get data corruption 1269 in the second example). 1270 </para> 1271 1272 <para> 1273 This complete lockup is easy to diagnose: on SMP boxes the 1274 watchdog timer or compiling with <symbol>DEBUG_SPINLOCKS</symbol> set 1275 (<filename>include/linux/spinlock.h</filename>) will show this up 1276 immediately when it happens. 1277 </para> 1278 1279 <para> 1280 A more complex problem is the so-called 'deadly embrace', 1281 involving two or more locks. Say you have a hash table: each 1282 entry in the table is a spinlock, and a chain of hashed 1283 objects. Inside a softirq handler, you sometimes want to 1284 alter an object from one place in the hash to another: you 1285 grab the spinlock of the old hash chain and the spinlock of 1286 the new hash chain, and delete the object from the old one, 1287 and insert it in the new one. 1288 </para> 1289 1290 <para> 1291 There are two problems here. First, if your code ever 1292 tries to move the object to the same chain, it will deadlock 1293 with itself as it tries to lock it twice. Secondly, if the 1294 same softirq on another CPU is trying to move another object 1295 in the reverse direction, the following could happen: 1296 </para> 1297 1298 <table> 1299 <title>Consequences</title> 1300 1301 <tgroup cols="2" align="left"> 1302 1303 <thead> 1304 <row> 1305 <entry>CPU 1</entry> 1306 <entry>CPU 2</entry> 1307 </row> 1308 </thead> 1309 1310 <tbody> 1311 <row> 1312 <entry>Grab lock A -&gt; OK</entry> 1313 <entry>Grab lock B -&gt; OK</entry> 1314 </row> 1315 <row> 1316 <entry>Grab lock B -&gt; spin</entry> 1317 <entry>Grab lock A -&gt; spin</entry> 1318 </row> 1319 </tbody> 1320 </tgroup> 1321 </table> 1322 1323 <para> 1324 The two CPUs will spin forever, waiting for the other to give up 1325 their lock. It will look, smell, and feel like a crash. 1326 </para> 1327 </sect1> 1328 1329 <sect1 id="techs-deadlock-prevent"> 1330 <title>Preventing Deadlock</title> 1331 1332 <para> 1333 Textbooks will tell you that if you always lock in the same 1334 order, you will never get this kind of deadlock. Practice 1335 will tell you that this approach doesn't scale: when I 1336 create a new lock, I don't understand enough of the kernel 1337 to figure out where in the 5000 lock hierarchy it will fit. 1338 </para> 1339 1340 <para> 1341 The best locks are encapsulated: they never get exposed in 1342 headers, and are never held around calls to non-trivial 1343 functions outside the same file. You can read through this 1344 code and see that it will never deadlock, because it never 1345 tries to grab another lock while it has that one. People 1346 using your code don't even need to know you are using a 1347 lock. 1348 </para> 1349 1350 <para> 1351 A classic problem here is when you provide callbacks or 1352 hooks: if you call these with the lock held, you risk simple 1353 deadlock, or a deadly embrace (who knows what the callback 1354 will do?). Remember, the other programmers are out to get 1355 you, so don't do this. 1356 </para> 1357 1358 <sect2 id="techs-deadlock-overprevent"> 1359 <title>Overzealous Prevention Of Deadlocks</title> 1360 1361 <para> 1362 Deadlocks are problematic, but not as bad as data 1363 corruption. Code which grabs a read lock, searches a list, 1364 fails to find what it wants, drops the read lock, grabs a 1365 write lock and inserts the object has a race condition. 1366 </para> 1367 1368 <para> 1369 If you don't see why, please stay the fuck away from my code. 1370 </para> 1371 </sect2> 1372 </sect1> 1373 1374 <sect1 id="racing-timers"> 1375 <title>Racing Timers: A Kernel Pastime</title> 1376 1377 <para> 1378 Timers can produce their own special problems with races. 1379 Consider a collection of objects (list, hash, etc) where each 1380 object has a timer which is due to destroy it. 1381 </para> 1382 1383 <para> 1384 If you want to destroy the entire collection (say on module 1385 removal), you might do the following: 1386 </para> 1387 1388 <programlisting> 1389 /* THIS CODE BAD BAD BAD BAD: IF IT WAS ANY WORSE IT WOULD USE 1390 HUNGARIAN NOTATION */ 1391 spin_lock_bh(&amp;list_lock); 1392 1393 while (list) { 1394 struct foo *next = list-&gt;next; 1395 del_timer(&amp;list-&gt;timer); 1396 kfree(list); 1397 list = next; 1398 } 1399 1400 spin_unlock_bh(&amp;list_lock); 1401 </programlisting> 1402 1403 <para> 1404 Sooner or later, this will crash on SMP, because a timer can 1405 have just gone off before the <function>spin_lock_bh()</function>, 1406 and it will only get the lock after we 1407 <function>spin_unlock_bh()</function>, and then try to free 1408 the element (which has already been freed!). 1409 </para> 1410 1411 <para> 1412 This can be avoided by checking the result of 1413 <function>del_timer()</function>: if it returns 1414 <returnvalue>1</returnvalue>, the timer has been deleted. 1415 If <returnvalue>0</returnvalue>, it means (in this 1416 case) that it is currently running, so we can do: 1417 </para> 1418 1419 <programlisting> 1420 retry: 1421 spin_lock_bh(&amp;list_lock); 1422 1423 while (list) { 1424 struct foo *next = list-&gt;next; 1425 if (!del_timer(&amp;list-&gt;timer)) { 1426 /* Give timer a chance to delete this */ 1427 spin_unlock_bh(&amp;list_lock); 1428 goto retry; 1429 } 1430 kfree(list); 1431 list = next; 1432 } 1433 1434 spin_unlock_bh(&amp;list_lock); 1435 </programlisting> 1436 1437 <para> 1438 Another common problem is deleting timers which restart 1439 themselves (by calling <function>add_timer()</function> at the end 1440 of their timer function). Because this is a fairly common case 1441 which is prone to races, you should use <function>del_timer_sync()</function> 1442 (<filename class="headerfile">include/linux/timer.h</filename>) 1443 to handle this case. It returns the number of times the timer 1444 had to be deleted before we finally stopped it from adding itself back 1445 in. 1446 </para> 1447 </sect1> 1448 1449 </chapter> 1450 1451 <chapter id="Efficiency"> 1452 <title>Locking Speed</title> 1453 1454 <para> 1455There are three main things to worry about when considering speed of 1456some code which does locking. First is concurrency: how many things 1457are going to be waiting while someone else is holding a lock. Second 1458is the time taken to actually acquire and release an uncontended lock. 1459Third is using fewer, or smarter locks. I'm assuming that the lock is 1460used fairly often: otherwise, you wouldn't be concerned about 1461efficiency. 1462</para> 1463 <para> 1464Concurrency depends on how long the lock is usually held: you should 1465hold the lock for as long as needed, but no longer. In the cache 1466example, we always create the object without the lock held, and then 1467grab the lock only when we are ready to insert it in the list. 1468</para> 1469 <para> 1470Acquisition times depend on how much damage the lock operations do to 1471the pipeline (pipeline stalls) and how likely it is that this CPU was 1472the last one to grab the lock (ie. is the lock cache-hot for this 1473CPU): on a machine with more CPUs, this likelihood drops fast. 1474Consider a 700MHz Intel Pentium III: an instruction takes about 0.7ns, 1475an atomic increment takes about 58ns, a lock which is cache-hot on 1476this CPU takes 160ns, and a cacheline transfer from another CPU takes 1477an additional 170 to 360ns. (These figures from Paul McKenney's 1478<ulink url="http://www.linuxjournal.com/article.php?sid=6993"> Linux 1479Journal RCU article</ulink>). 1480</para> 1481 <para> 1482These two aims conflict: holding a lock for a short time might be done 1483by splitting locks into parts (such as in our final per-object-lock 1484example), but this increases the number of lock acquisitions, and the 1485results are often slower than having a single lock. This is another 1486reason to advocate locking simplicity. 1487</para> 1488 <para> 1489The third concern is addressed below: there are some methods to reduce 1490the amount of locking which needs to be done. 1491</para> 1492 1493 <sect1 id="efficiency-rwlocks"> 1494 <title>Read/Write Lock Variants</title> 1495 1496 <para> 1497 Both spinlocks and semaphores have read/write variants: 1498 <type>rwlock_t</type> and <structname>struct rw_semaphore</structname>. 1499 These divide users into two classes: the readers and the writers. If 1500 you are only reading the data, you can get a read lock, but to write to 1501 the data you need the write lock. Many people can hold a read lock, 1502 but a writer must be sole holder. 1503 </para> 1504 1505 <para> 1506 If your code divides neatly along reader/writer lines (as our 1507 cache code does), and the lock is held by readers for 1508 significant lengths of time, using these locks can help. They 1509 are slightly slower than the normal locks though, so in practice 1510 <type>rwlock_t</type> is not usually worthwhile. 1511 </para> 1512 </sect1> 1513 1514 <sect1 id="efficiency-read-copy-update"> 1515 <title>Avoiding Locks: Read Copy Update</title> 1516 1517 <para> 1518 There is a special method of read/write locking called Read Copy 1519 Update. Using RCU, the readers can avoid taking a lock 1520 altogether: as we expect our cache to be read more often than 1521 updated (otherwise the cache is a waste of time), it is a 1522 candidate for this optimization. 1523 </para> 1524 1525 <para> 1526 How do we get rid of read locks? Getting rid of read locks 1527 means that writers may be changing the list underneath the 1528 readers. That is actually quite simple: we can read a linked 1529 list while an element is being added if the writer adds the 1530 element very carefully. For example, adding 1531 <symbol>new</symbol> to a single linked list called 1532 <symbol>list</symbol>: 1533 </para> 1534 1535 <programlisting> 1536 new-&gt;next = list-&gt;next; 1537 wmb(); 1538 list-&gt;next = new; 1539 </programlisting> 1540 1541 <para> 1542 The <function>wmb()</function> is a write memory barrier. It 1543 ensures that the first operation (setting the new element's 1544 <symbol>next</symbol> pointer) is complete and will be seen by 1545 all CPUs, before the second operation is (putting the new 1546 element into the list). This is important, since modern 1547 compilers and modern CPUs can both reorder instructions unless 1548 told otherwise: we want a reader to either not see the new 1549 element at all, or see the new element with the 1550 <symbol>next</symbol> pointer correctly pointing at the rest of 1551 the list. 1552 </para> 1553 <para> 1554 Fortunately, there is a function to do this for standard 1555 <structname>struct list_head</structname> lists: 1556 <function>list_add_rcu()</function> 1557 (<filename>include/linux/list.h</filename>). 1558 </para> 1559 <para> 1560 Removing an element from the list is even simpler: we replace 1561 the pointer to the old element with a pointer to its successor, 1562 and readers will either see it, or skip over it. 1563 </para> 1564 <programlisting> 1565 list-&gt;next = old-&gt;next; 1566 </programlisting> 1567 <para> 1568 There is <function>list_del_rcu()</function> 1569 (<filename>include/linux/list.h</filename>) which does this (the 1570 normal version poisons the old object, which we don't want). 1571 </para> 1572 <para> 1573 The reader must also be careful: some CPUs can look through the 1574 <symbol>next</symbol> pointer to start reading the contents of 1575 the next element early, but don't realize that the pre-fetched 1576 contents is wrong when the <symbol>next</symbol> pointer changes 1577 underneath them. Once again, there is a 1578 <function>list_for_each_entry_rcu()</function> 1579 (<filename>include/linux/list.h</filename>) to help you. Of 1580 course, writers can just use 1581 <function>list_for_each_entry()</function>, since there cannot 1582 be two simultaneous writers. 1583 </para> 1584 <para> 1585 Our final dilemma is this: when can we actually destroy the 1586 removed element? Remember, a reader might be stepping through 1587 this element in the list right now: it we free this element and 1588 the <symbol>next</symbol> pointer changes, the reader will jump 1589 off into garbage and crash. We need to wait until we know that 1590 all the readers who were traversing the list when we deleted the 1591 element are finished. We use <function>call_rcu()</function> to 1592 register a callback which will actually destroy the object once 1593 the readers are finished. 1594 </para> 1595 <para> 1596 But how does Read Copy Update know when the readers are 1597 finished? The method is this: firstly, the readers always 1598 traverse the list inside 1599 <function>rcu_read_lock()</function>/<function>rcu_read_unlock()</function> 1600 pairs: these simply disable preemption so the reader won't go to 1601 sleep while reading the list. 1602 </para> 1603 <para> 1604 RCU then waits until every other CPU has slept at least once: 1605 since readers cannot sleep, we know that any readers which were 1606 traversing the list during the deletion are finished, and the 1607 callback is triggered. The real Read Copy Update code is a 1608 little more optimized than this, but this is the fundamental 1609 idea. 1610 </para> 1611 1612<programlisting> 1613--- cache.c.perobjectlock 2003-12-11 17:15:03.000000000 +1100 1614+++ cache.c.rcupdate 2003-12-11 17:55:14.000000000 +1100 1615@@ -1,15 +1,18 @@ 1616 #include &lt;linux/list.h&gt; 1617 #include &lt;linux/slab.h&gt; 1618 #include &lt;linux/string.h&gt; 1619+#include &lt;linux/rcupdate.h&gt; 1620 #include &lt;asm/semaphore.h&gt; 1621 #include &lt;asm/errno.h&gt; 1622 1623 struct object 1624 { 1625- /* These two protected by cache_lock. */ 1626+ /* This is protected by RCU */ 1627 struct list_head list; 1628 int popularity; 1629 1630+ struct rcu_head rcu; 1631+ 1632 atomic_t refcnt; 1633 1634 /* Doesn't change once created. */ 1635@@ -40,7 +43,7 @@ 1636 { 1637 struct object *i; 1638 1639- list_for_each_entry(i, &amp;cache, list) { 1640+ list_for_each_entry_rcu(i, &amp;cache, list) { 1641 if (i-&gt;id == id) { 1642 i-&gt;popularity++; 1643 return i; 1644@@ -49,19 +52,25 @@ 1645 return NULL; 1646 } 1647 1648+/* Final discard done once we know no readers are looking. */ 1649+static void cache_delete_rcu(void *arg) 1650+{ 1651+ object_put(arg); 1652+} 1653+ 1654 /* Must be holding cache_lock */ 1655 static void __cache_delete(struct object *obj) 1656 { 1657 BUG_ON(!obj); 1658- list_del(&amp;obj-&gt;list); 1659- object_put(obj); 1660+ list_del_rcu(&amp;obj-&gt;list); 1661 cache_num--; 1662+ call_rcu(&amp;obj-&gt;rcu, cache_delete_rcu, obj); 1663 } 1664 1665 /* Must be holding cache_lock */ 1666 static void __cache_add(struct object *obj) 1667 { 1668- list_add(&amp;obj-&gt;list, &amp;cache); 1669+ list_add_rcu(&amp;obj-&gt;list, &amp;cache); 1670 if (++cache_num > MAX_CACHE_SIZE) { 1671 struct object *i, *outcast = NULL; 1672 list_for_each_entry(i, &amp;cache, list) { 1673@@ -85,6 +94,7 @@ 1674 obj-&gt;popularity = 0; 1675 atomic_set(&amp;obj-&gt;refcnt, 1); /* The cache holds a reference */ 1676 spin_lock_init(&amp;obj-&gt;lock); 1677+ INIT_RCU_HEAD(&amp;obj-&gt;rcu); 1678 1679 spin_lock_irqsave(&amp;cache_lock, flags); 1680 __cache_add(obj); 1681@@ -104,12 +114,11 @@ 1682 struct object *cache_find(int id) 1683 { 1684 struct object *obj; 1685- unsigned long flags; 1686 1687- spin_lock_irqsave(&amp;cache_lock, flags); 1688+ rcu_read_lock(); 1689 obj = __cache_find(id); 1690 if (obj) 1691 object_get(obj); 1692- spin_unlock_irqrestore(&amp;cache_lock, flags); 1693+ rcu_read_unlock(); 1694 return obj; 1695 } 1696</programlisting> 1697 1698<para> 1699Note that the reader will alter the 1700<structfield>popularity</structfield> member in 1701<function>__cache_find()</function>, and now it doesn't hold a lock. 1702One solution would be to make it an <type>atomic_t</type>, but for 1703this usage, we don't really care about races: an approximate result is 1704good enough, so I didn't change it. 1705</para> 1706 1707<para> 1708The result is that <function>cache_find()</function> requires no 1709synchronization with any other functions, so is almost as fast on SMP 1710as it would be on UP. 1711</para> 1712 1713<para> 1714There is a furthur optimization possible here: remember our original 1715cache code, where there were no reference counts and the caller simply 1716held the lock whenever using the object? This is still possible: if 1717you hold the lock, noone can delete the object, so you don't need to 1718get and put the reference count. 1719</para> 1720 1721<para> 1722Now, because the 'read lock' in RCU is simply disabling preemption, a 1723caller which always has preemption disabled between calling 1724<function>cache_find()</function> and 1725<function>object_put()</function> does not need to actually get and 1726put the reference count: we could expose 1727<function>__cache_find()</function> by making it non-static, and 1728such callers could simply call that. 1729</para> 1730<para> 1731The benefit here is that the reference count is not written to: the 1732object is not altered in any way, which is much faster on SMP 1733machines due to caching. 1734</para> 1735 </sect1> 1736 1737 <sect1 id="per-cpu"> 1738 <title>Per-CPU Data</title> 1739 1740 <para> 1741 Another technique for avoiding locking which is used fairly 1742 widely is to duplicate information for each CPU. For example, 1743 if you wanted to keep a count of a common condition, you could 1744 use a spin lock and a single counter. Nice and simple. 1745 </para> 1746 1747 <para> 1748 If that was too slow (it's usually not, but if you've got a 1749 really big machine to test on and can show that it is), you 1750 could instead use a counter for each CPU, then none of them need 1751 an exclusive lock. See <function>DEFINE_PER_CPU()</function>, 1752 <function>get_cpu_var()</function> and 1753 <function>put_cpu_var()</function> 1754 (<filename class="headerfile">include/linux/percpu.h</filename>). 1755 </para> 1756 1757 <para> 1758 Of particular use for simple per-cpu counters is the 1759 <type>local_t</type> type, and the 1760 <function>cpu_local_inc()</function> and related functions, 1761 which are more efficient than simple code on some architectures 1762 (<filename class="headerfile">include/asm/local.h</filename>). 1763 </para> 1764 1765 <para> 1766 Note that there is no simple, reliable way of getting an exact 1767 value of such a counter, without introducing more locks. This 1768 is not a problem for some uses. 1769 </para> 1770 </sect1> 1771 1772 <sect1 id="mostly-hardirq"> 1773 <title>Data Which Mostly Used By An IRQ Handler</title> 1774 1775 <para> 1776 If data is always accessed from within the same IRQ handler, you 1777 don't need a lock at all: the kernel already guarantees that the 1778 irq handler will not run simultaneously on multiple CPUs. 1779 </para> 1780 <para> 1781 Manfred Spraul points out that you can still do this, even if 1782 the data is very occasionally accessed in user context or 1783 softirqs/tasklets. The irq handler doesn't use a lock, and 1784 all other accesses are done as so: 1785 </para> 1786 1787<programlisting> 1788 spin_lock(&amp;lock); 1789 disable_irq(irq); 1790 ... 1791 enable_irq(irq); 1792 spin_unlock(&amp;lock); 1793</programlisting> 1794 <para> 1795 The <function>disable_irq()</function> prevents the irq handler 1796 from running (and waits for it to finish if it's currently 1797 running on other CPUs). The spinlock prevents any other 1798 accesses happening at the same time. Naturally, this is slower 1799 than just a <function>spin_lock_irq()</function> call, so it 1800 only makes sense if this type of access happens extremely 1801 rarely. 1802 </para> 1803 </sect1> 1804 </chapter> 1805 1806 <chapter id="sleeping-things"> 1807 <title>What Functions Are Safe To Call From Interrupts?</title> 1808 1809 <para> 1810 Many functions in the kernel sleep (ie. call schedule()) 1811 directly or indirectly: you can never call them while holding a 1812 spinlock, or with preemption disabled. This also means you need 1813 to be in user context: calling them from an interrupt is illegal. 1814 </para> 1815 1816 <sect1 id="sleeping"> 1817 <title>Some Functions Which Sleep</title> 1818 1819 <para> 1820 The most common ones are listed below, but you usually have to 1821 read the code to find out if other calls are safe. If everyone 1822 else who calls it can sleep, you probably need to be able to 1823 sleep, too. In particular, registration and deregistration 1824 functions usually expect to be called from user context, and can 1825 sleep. 1826 </para> 1827 1828 <itemizedlist> 1829 <listitem> 1830 <para> 1831 Accesses to 1832 <firstterm linkend="gloss-userspace">userspace</firstterm>: 1833 </para> 1834 <itemizedlist> 1835 <listitem> 1836 <para> 1837 <function>copy_from_user()</function> 1838 </para> 1839 </listitem> 1840 <listitem> 1841 <para> 1842 <function>copy_to_user()</function> 1843 </para> 1844 </listitem> 1845 <listitem> 1846 <para> 1847 <function>get_user()</function> 1848 </para> 1849 </listitem> 1850 <listitem> 1851 <para> 1852 <function> put_user()</function> 1853 </para> 1854 </listitem> 1855 </itemizedlist> 1856 </listitem> 1857 1858 <listitem> 1859 <para> 1860 <function>kmalloc(GFP_KERNEL)</function> 1861 </para> 1862 </listitem> 1863 1864 <listitem> 1865 <para> 1866 <function>down_interruptible()</function> and 1867 <function>down()</function> 1868 </para> 1869 <para> 1870 There is a <function>down_trylock()</function> which can be 1871 used inside interrupt context, as it will not sleep. 1872 <function>up()</function> will also never sleep. 1873 </para> 1874 </listitem> 1875 </itemizedlist> 1876 </sect1> 1877 1878 <sect1 id="dont-sleep"> 1879 <title>Some Functions Which Don't Sleep</title> 1880 1881 <para> 1882 Some functions are safe to call from any context, or holding 1883 almost any lock. 1884 </para> 1885 1886 <itemizedlist> 1887 <listitem> 1888 <para> 1889 <function>printk()</function> 1890 </para> 1891 </listitem> 1892 <listitem> 1893 <para> 1894 <function>kfree()</function> 1895 </para> 1896 </listitem> 1897 <listitem> 1898 <para> 1899 <function>add_timer()</function> and <function>del_timer()</function> 1900 </para> 1901 </listitem> 1902 </itemizedlist> 1903 </sect1> 1904 </chapter> 1905 1906 <chapter id="references"> 1907 <title>Further reading</title> 1908 1909 <itemizedlist> 1910 <listitem> 1911 <para> 1912 <filename>Documentation/spinlocks.txt</filename>: 1913 Linus Torvalds' spinlocking tutorial in the kernel sources. 1914 </para> 1915 </listitem> 1916 1917 <listitem> 1918 <para> 1919 Unix Systems for Modern Architectures: Symmetric 1920 Multiprocessing and Caching for Kernel Programmers: 1921 </para> 1922 1923 <para> 1924 Curt Schimmel's very good introduction to kernel level 1925 locking (not written for Linux, but nearly everything 1926 applies). The book is expensive, but really worth every 1927 penny to understand SMP locking. [ISBN: 0201633388] 1928 </para> 1929 </listitem> 1930 </itemizedlist> 1931 </chapter> 1932 1933 <chapter id="thanks"> 1934 <title>Thanks</title> 1935 1936 <para> 1937 Thanks to Telsa Gwynne for DocBooking, neatening and adding 1938 style. 1939 </para> 1940 1941 <para> 1942 Thanks to Martin Pool, Philipp Rumpf, Stephen Rothwell, Paul 1943 Mackerras, Ruedi Aschwanden, Alan Cox, Manfred Spraul, Tim 1944 Waugh, Pete Zaitcev, James Morris, Robert Love, Paul McKenney, 1945 John Ashby for proofreading, correcting, flaming, commenting. 1946 </para> 1947 1948 <para> 1949 Thanks to the cabal for having no influence on this document. 1950 </para> 1951 </chapter> 1952 1953 <glossary id="glossary"> 1954 <title>Glossary</title> 1955 1956 <glossentry id="gloss-preemption"> 1957 <glossterm>preemption</glossterm> 1958 <glossdef> 1959 <para> 1960 Prior to 2.5, or when <symbol>CONFIG_PREEMPT</symbol> is 1961 unset, processes in user context inside the kernel would not 1962 preempt each other (ie. you had that CPU until you have it up, 1963 except for interrupts). With the addition of 1964 <symbol>CONFIG_PREEMPT</symbol> in 2.5.4, this changed: when 1965 in user context, higher priority tasks can "cut in": spinlocks 1966 were changed to disable preemption, even on UP. 1967 </para> 1968 </glossdef> 1969 </glossentry> 1970 1971 <glossentry id="gloss-bh"> 1972 <glossterm>bh</glossterm> 1973 <glossdef> 1974 <para> 1975 Bottom Half: for historical reasons, functions with 1976 '_bh' in them often now refer to any software interrupt, e.g. 1977 <function>spin_lock_bh()</function> blocks any software interrupt 1978 on the current CPU. Bottom halves are deprecated, and will 1979 eventually be replaced by tasklets. Only one bottom half will be 1980 running at any time. 1981 </para> 1982 </glossdef> 1983 </glossentry> 1984 1985 <glossentry id="gloss-hwinterrupt"> 1986 <glossterm>Hardware Interrupt / Hardware IRQ</glossterm> 1987 <glossdef> 1988 <para> 1989 Hardware interrupt request. <function>in_irq()</function> returns 1990 <returnvalue>true</returnvalue> in a hardware interrupt handler. 1991 </para> 1992 </glossdef> 1993 </glossentry> 1994 1995 <glossentry id="gloss-interruptcontext"> 1996 <glossterm>Interrupt Context</glossterm> 1997 <glossdef> 1998 <para> 1999 Not user context: processing a hardware irq or software irq. 2000 Indicated by the <function>in_interrupt()</function> macro 2001 returning <returnvalue>true</returnvalue>. 2002 </para> 2003 </glossdef> 2004 </glossentry> 2005 2006 <glossentry id="gloss-smp"> 2007 <glossterm><acronym>SMP</acronym></glossterm> 2008 <glossdef> 2009 <para> 2010 Symmetric Multi-Processor: kernels compiled for multiple-CPU 2011 machines. (CONFIG_SMP=y). 2012 </para> 2013 </glossdef> 2014 </glossentry> 2015 2016 <glossentry id="gloss-softirq"> 2017 <glossterm>Software Interrupt / softirq</glossterm> 2018 <glossdef> 2019 <para> 2020 Software interrupt handler. <function>in_irq()</function> returns 2021 <returnvalue>false</returnvalue>; <function>in_softirq()</function> 2022 returns <returnvalue>true</returnvalue>. Tasklets and softirqs 2023 both fall into the category of 'software interrupts'. 2024 </para> 2025 <para> 2026 Strictly speaking a softirq is one of up to 32 enumerated software 2027 interrupts which can run on multiple CPUs at once. 2028 Sometimes used to refer to tasklets as 2029 well (ie. all software interrupts). 2030 </para> 2031 </glossdef> 2032 </glossentry> 2033 2034 <glossentry id="gloss-tasklet"> 2035 <glossterm>tasklet</glossterm> 2036 <glossdef> 2037 <para> 2038 A dynamically-registrable software interrupt, 2039 which is guaranteed to only run on one CPU at a time. 2040 </para> 2041 </glossdef> 2042 </glossentry> 2043 2044 <glossentry id="gloss-timers"> 2045 <glossterm>timer</glossterm> 2046 <glossdef> 2047 <para> 2048 A dynamically-registrable software interrupt, which is run at 2049 (or close to) a given time. When running, it is just like a 2050 tasklet (in fact, they are called from the TIMER_SOFTIRQ). 2051 </para> 2052 </glossdef> 2053 </glossentry> 2054 2055 <glossentry id="gloss-up"> 2056 <glossterm><acronym>UP</acronym></glossterm> 2057 <glossdef> 2058 <para> 2059 Uni-Processor: Non-SMP. (CONFIG_SMP=n). 2060 </para> 2061 </glossdef> 2062 </glossentry> 2063 2064 <glossentry id="gloss-usercontext"> 2065 <glossterm>User Context</glossterm> 2066 <glossdef> 2067 <para> 2068 The kernel executing on behalf of a particular process (ie. a 2069 system call or trap) or kernel thread. You can tell which 2070 process with the <symbol>current</symbol> macro.) Not to 2071 be confused with userspace. Can be interrupted by software or 2072 hardware interrupts. 2073 </para> 2074 </glossdef> 2075 </glossentry> 2076 2077 <glossentry id="gloss-userspace"> 2078 <glossterm>Userspace</glossterm> 2079 <glossdef> 2080 <para> 2081 A process executing its own code outside the kernel. 2082 </para> 2083 </glossdef> 2084 </glossentry> 2085 2086 </glossary> 2087</book> 2088