at v2.6.14-rc2 179 lines 3.4 kB view raw
1#ifndef __ASM_SPINLOCK_H 2#define __ASM_SPINLOCK_H 3 4#if __LINUX_ARM_ARCH__ < 6 5#error SMP not supported on pre-ARMv6 CPUs 6#endif 7 8/* 9 * ARMv6 Spin-locking. 10 * 11 * We exclusively read the old value. If it is zero, we may have 12 * won the lock, so we try exclusively storing it. A memory barrier 13 * is required after we get a lock, and before we release it, because 14 * V6 CPUs are assumed to have weakly ordered memory. 15 * 16 * Unlocked value: 0 17 * Locked value: 1 18 */ 19 20#define __raw_spin_is_locked(x) ((x)->lock != 0) 21#define __raw_spin_unlock_wait(lock) \ 22 do { while (__raw_spin_is_locked(lock)) cpu_relax(); } while (0) 23 24#define __raw_spin_lock_flags(lock, flags) __raw_spin_lock(lock) 25 26static inline void __raw_spin_lock(raw_spinlock_t *lock) 27{ 28 unsigned long tmp; 29 30 __asm__ __volatile__( 31"1: ldrex %0, [%1]\n" 32" teq %0, #0\n" 33" strexeq %0, %2, [%1]\n" 34" teqeq %0, #0\n" 35" bne 1b" 36 : "=&r" (tmp) 37 : "r" (&lock->lock), "r" (1) 38 : "cc"); 39 40 smp_mb(); 41} 42 43static inline int __raw_spin_trylock(raw_spinlock_t *lock) 44{ 45 unsigned long tmp; 46 47 __asm__ __volatile__( 48" ldrex %0, [%1]\n" 49" teq %0, #0\n" 50" strexeq %0, %2, [%1]" 51 : "=&r" (tmp) 52 : "r" (&lock->lock), "r" (1) 53 : "cc"); 54 55 if (tmp == 0) { 56 smp_mb(); 57 return 1; 58 } else { 59 return 0; 60 } 61} 62 63static inline void __raw_spin_unlock(raw_spinlock_t *lock) 64{ 65 smp_mb(); 66 67 __asm__ __volatile__( 68" str %1, [%0]" 69 : 70 : "r" (&lock->lock), "r" (0) 71 : "cc"); 72} 73 74/* 75 * RWLOCKS 76 * 77 * 78 * Write locks are easy - we just set bit 31. When unlocking, we can 79 * just write zero since the lock is exclusively held. 80 */ 81#define rwlock_is_locked(x) (*((volatile unsigned int *)(x)) != 0) 82 83static inline void __raw_write_lock(rwlock_t *rw) 84{ 85 unsigned long tmp; 86 87 __asm__ __volatile__( 88"1: ldrex %0, [%1]\n" 89" teq %0, #0\n" 90" strexeq %0, %2, [%1]\n" 91" teq %0, #0\n" 92" bne 1b" 93 : "=&r" (tmp) 94 : "r" (&rw->lock), "r" (0x80000000) 95 : "cc"); 96 97 smp_mb(); 98} 99 100static inline int __raw_write_trylock(rwlock_t *rw) 101{ 102 unsigned long tmp; 103 104 __asm__ __volatile__( 105"1: ldrex %0, [%1]\n" 106" teq %0, #0\n" 107" strexeq %0, %2, [%1]" 108 : "=&r" (tmp) 109 : "r" (&rw->lock), "r" (0x80000000) 110 : "cc"); 111 112 if (tmp == 0) { 113 smp_mb(); 114 return 1; 115 } else { 116 return 0; 117 } 118} 119 120static inline void __raw_write_unlock(raw_rwlock_t *rw) 121{ 122 smp_mb(); 123 124 __asm__ __volatile__( 125 "str %1, [%0]" 126 : 127 : "r" (&rw->lock), "r" (0) 128 : "cc"); 129} 130 131/* 132 * Read locks are a bit more hairy: 133 * - Exclusively load the lock value. 134 * - Increment it. 135 * - Store new lock value if positive, and we still own this location. 136 * If the value is negative, we've already failed. 137 * - If we failed to store the value, we want a negative result. 138 * - If we failed, try again. 139 * Unlocking is similarly hairy. We may have multiple read locks 140 * currently active. However, we know we won't have any write 141 * locks. 142 */ 143static inline void __raw_read_lock(raw_rwlock_t *rw) 144{ 145 unsigned long tmp, tmp2; 146 147 __asm__ __volatile__( 148"1: ldrex %0, [%2]\n" 149" adds %0, %0, #1\n" 150" strexpl %1, %0, [%2]\n" 151" rsbpls %0, %1, #0\n" 152" bmi 1b" 153 : "=&r" (tmp), "=&r" (tmp2) 154 : "r" (&rw->lock) 155 : "cc"); 156 157 smp_mb(); 158} 159 160static inline void __raw_read_unlock(rwlock_t *rw) 161{ 162 unsigned long tmp, tmp2; 163 164 smp_mb(); 165 166 __asm__ __volatile__( 167"1: ldrex %0, [%2]\n" 168" sub %0, %0, #1\n" 169" strex %1, %0, [%2]\n" 170" teq %1, #0\n" 171" bne 1b" 172 : "=&r" (tmp), "=&r" (tmp2) 173 : "r" (&rw->lock) 174 : "cc"); 175} 176 177#define __raw_read_trylock(lock) generic__raw_read_trylock(lock) 178 179#endif /* __ASM_SPINLOCK_H */