at v2.6.14-rc2 2775 lines 67 kB view raw
1/* 2 * Generic PPP layer for Linux. 3 * 4 * Copyright 1999-2002 Paul Mackerras. 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 * 11 * The generic PPP layer handles the PPP network interfaces, the 12 * /dev/ppp device, packet and VJ compression, and multilink. 13 * It talks to PPP `channels' via the interface defined in 14 * include/linux/ppp_channel.h. Channels provide the basic means for 15 * sending and receiving PPP frames on some kind of communications 16 * channel. 17 * 18 * Part of the code in this driver was inspired by the old async-only 19 * PPP driver, written by Michael Callahan and Al Longyear, and 20 * subsequently hacked by Paul Mackerras. 21 * 22 * ==FILEVERSION 20041108== 23 */ 24 25#include <linux/config.h> 26#include <linux/module.h> 27#include <linux/kernel.h> 28#include <linux/kmod.h> 29#include <linux/init.h> 30#include <linux/list.h> 31#include <linux/devfs_fs_kernel.h> 32#include <linux/netdevice.h> 33#include <linux/poll.h> 34#include <linux/ppp_defs.h> 35#include <linux/filter.h> 36#include <linux/if_ppp.h> 37#include <linux/ppp_channel.h> 38#include <linux/ppp-comp.h> 39#include <linux/skbuff.h> 40#include <linux/rtnetlink.h> 41#include <linux/if_arp.h> 42#include <linux/ip.h> 43#include <linux/tcp.h> 44#include <linux/spinlock.h> 45#include <linux/smp_lock.h> 46#include <linux/rwsem.h> 47#include <linux/stddef.h> 48#include <linux/device.h> 49#include <net/slhc_vj.h> 50#include <asm/atomic.h> 51 52#define PPP_VERSION "2.4.2" 53 54/* 55 * Network protocols we support. 56 */ 57#define NP_IP 0 /* Internet Protocol V4 */ 58#define NP_IPV6 1 /* Internet Protocol V6 */ 59#define NP_IPX 2 /* IPX protocol */ 60#define NP_AT 3 /* Appletalk protocol */ 61#define NP_MPLS_UC 4 /* MPLS unicast */ 62#define NP_MPLS_MC 5 /* MPLS multicast */ 63#define NUM_NP 6 /* Number of NPs. */ 64 65#define MPHDRLEN 6 /* multilink protocol header length */ 66#define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */ 67#define MIN_FRAG_SIZE 64 68 69/* 70 * An instance of /dev/ppp can be associated with either a ppp 71 * interface unit or a ppp channel. In both cases, file->private_data 72 * points to one of these. 73 */ 74struct ppp_file { 75 enum { 76 INTERFACE=1, CHANNEL 77 } kind; 78 struct sk_buff_head xq; /* pppd transmit queue */ 79 struct sk_buff_head rq; /* receive queue for pppd */ 80 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */ 81 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */ 82 int hdrlen; /* space to leave for headers */ 83 int index; /* interface unit / channel number */ 84 int dead; /* unit/channel has been shut down */ 85}; 86 87#define PF_TO_X(pf, X) ((X *)((char *)(pf) - offsetof(X, file))) 88 89#define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp) 90#define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel) 91 92#define ROUNDUP(n, x) (((n) + (x) - 1) / (x)) 93 94/* 95 * Data structure describing one ppp unit. 96 * A ppp unit corresponds to a ppp network interface device 97 * and represents a multilink bundle. 98 * It can have 0 or more ppp channels connected to it. 99 */ 100struct ppp { 101 struct ppp_file file; /* stuff for read/write/poll 0 */ 102 struct file *owner; /* file that owns this unit 48 */ 103 struct list_head channels; /* list of attached channels 4c */ 104 int n_channels; /* how many channels are attached 54 */ 105 spinlock_t rlock; /* lock for receive side 58 */ 106 spinlock_t wlock; /* lock for transmit side 5c */ 107 int mru; /* max receive unit 60 */ 108 unsigned int flags; /* control bits 64 */ 109 unsigned int xstate; /* transmit state bits 68 */ 110 unsigned int rstate; /* receive state bits 6c */ 111 int debug; /* debug flags 70 */ 112 struct slcompress *vj; /* state for VJ header compression */ 113 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */ 114 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */ 115 struct compressor *xcomp; /* transmit packet compressor 8c */ 116 void *xc_state; /* its internal state 90 */ 117 struct compressor *rcomp; /* receive decompressor 94 */ 118 void *rc_state; /* its internal state 98 */ 119 unsigned long last_xmit; /* jiffies when last pkt sent 9c */ 120 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */ 121 struct net_device *dev; /* network interface device a4 */ 122#ifdef CONFIG_PPP_MULTILINK 123 int nxchan; /* next channel to send something on */ 124 u32 nxseq; /* next sequence number to send */ 125 int mrru; /* MP: max reconst. receive unit */ 126 u32 nextseq; /* MP: seq no of next packet */ 127 u32 minseq; /* MP: min of most recent seqnos */ 128 struct sk_buff_head mrq; /* MP: receive reconstruction queue */ 129#endif /* CONFIG_PPP_MULTILINK */ 130 struct net_device_stats stats; /* statistics */ 131#ifdef CONFIG_PPP_FILTER 132 struct sock_filter *pass_filter; /* filter for packets to pass */ 133 struct sock_filter *active_filter;/* filter for pkts to reset idle */ 134 unsigned pass_len, active_len; 135#endif /* CONFIG_PPP_FILTER */ 136}; 137 138/* 139 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC, 140 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP. 141 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR. 142 * Bits in xstate: SC_COMP_RUN 143 */ 144#define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \ 145 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \ 146 |SC_COMP_TCP|SC_REJ_COMP_TCP) 147 148/* 149 * Private data structure for each channel. 150 * This includes the data structure used for multilink. 151 */ 152struct channel { 153 struct ppp_file file; /* stuff for read/write/poll */ 154 struct list_head list; /* link in all/new_channels list */ 155 struct ppp_channel *chan; /* public channel data structure */ 156 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */ 157 spinlock_t downl; /* protects `chan', file.xq dequeue */ 158 struct ppp *ppp; /* ppp unit we're connected to */ 159 struct list_head clist; /* link in list of channels per unit */ 160 rwlock_t upl; /* protects `ppp' */ 161#ifdef CONFIG_PPP_MULTILINK 162 u8 avail; /* flag used in multilink stuff */ 163 u8 had_frag; /* >= 1 fragments have been sent */ 164 u32 lastseq; /* MP: last sequence # received */ 165#endif /* CONFIG_PPP_MULTILINK */ 166}; 167 168/* 169 * SMP locking issues: 170 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels 171 * list and the ppp.n_channels field, you need to take both locks 172 * before you modify them. 173 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock -> 174 * channel.downl. 175 */ 176 177/* 178 * A cardmap represents a mapping from unsigned integers to pointers, 179 * and provides a fast "find lowest unused number" operation. 180 * It uses a broad (32-way) tree with a bitmap at each level. 181 * It is designed to be space-efficient for small numbers of entries 182 * and time-efficient for large numbers of entries. 183 */ 184#define CARDMAP_ORDER 5 185#define CARDMAP_WIDTH (1U << CARDMAP_ORDER) 186#define CARDMAP_MASK (CARDMAP_WIDTH - 1) 187 188struct cardmap { 189 int shift; 190 unsigned long inuse; 191 struct cardmap *parent; 192 void *ptr[CARDMAP_WIDTH]; 193}; 194static void *cardmap_get(struct cardmap *map, unsigned int nr); 195static void cardmap_set(struct cardmap **map, unsigned int nr, void *ptr); 196static unsigned int cardmap_find_first_free(struct cardmap *map); 197static void cardmap_destroy(struct cardmap **map); 198 199/* 200 * all_ppp_sem protects the all_ppp_units mapping. 201 * It also ensures that finding a ppp unit in the all_ppp_units map 202 * and updating its file.refcnt field is atomic. 203 */ 204static DECLARE_MUTEX(all_ppp_sem); 205static struct cardmap *all_ppp_units; 206static atomic_t ppp_unit_count = ATOMIC_INIT(0); 207 208/* 209 * all_channels_lock protects all_channels and last_channel_index, 210 * and the atomicity of find a channel and updating its file.refcnt 211 * field. 212 */ 213static DEFINE_SPINLOCK(all_channels_lock); 214static LIST_HEAD(all_channels); 215static LIST_HEAD(new_channels); 216static int last_channel_index; 217static atomic_t channel_count = ATOMIC_INIT(0); 218 219/* Get the PPP protocol number from a skb */ 220#define PPP_PROTO(skb) (((skb)->data[0] << 8) + (skb)->data[1]) 221 222/* We limit the length of ppp->file.rq to this (arbitrary) value */ 223#define PPP_MAX_RQLEN 32 224 225/* 226 * Maximum number of multilink fragments queued up. 227 * This has to be large enough to cope with the maximum latency of 228 * the slowest channel relative to the others. Strictly it should 229 * depend on the number of channels and their characteristics. 230 */ 231#define PPP_MP_MAX_QLEN 128 232 233/* Multilink header bits. */ 234#define B 0x80 /* this fragment begins a packet */ 235#define E 0x40 /* this fragment ends a packet */ 236 237/* Compare multilink sequence numbers (assumed to be 32 bits wide) */ 238#define seq_before(a, b) ((s32)((a) - (b)) < 0) 239#define seq_after(a, b) ((s32)((a) - (b)) > 0) 240 241/* Prototypes. */ 242static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 243 unsigned int cmd, unsigned long arg); 244static void ppp_xmit_process(struct ppp *ppp); 245static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb); 246static void ppp_push(struct ppp *ppp); 247static void ppp_channel_push(struct channel *pch); 248static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, 249 struct channel *pch); 250static void ppp_receive_error(struct ppp *ppp); 251static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb); 252static struct sk_buff *ppp_decompress_frame(struct ppp *ppp, 253 struct sk_buff *skb); 254#ifdef CONFIG_PPP_MULTILINK 255static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, 256 struct channel *pch); 257static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb); 258static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp); 259static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb); 260#endif /* CONFIG_PPP_MULTILINK */ 261static int ppp_set_compress(struct ppp *ppp, unsigned long arg); 262static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound); 263static void ppp_ccp_closed(struct ppp *ppp); 264static struct compressor *find_compressor(int type); 265static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st); 266static struct ppp *ppp_create_interface(int unit, int *retp); 267static void init_ppp_file(struct ppp_file *pf, int kind); 268static void ppp_shutdown_interface(struct ppp *ppp); 269static void ppp_destroy_interface(struct ppp *ppp); 270static struct ppp *ppp_find_unit(int unit); 271static struct channel *ppp_find_channel(int unit); 272static int ppp_connect_channel(struct channel *pch, int unit); 273static int ppp_disconnect_channel(struct channel *pch); 274static void ppp_destroy_channel(struct channel *pch); 275 276static struct class *ppp_class; 277 278/* Translates a PPP protocol number to a NP index (NP == network protocol) */ 279static inline int proto_to_npindex(int proto) 280{ 281 switch (proto) { 282 case PPP_IP: 283 return NP_IP; 284 case PPP_IPV6: 285 return NP_IPV6; 286 case PPP_IPX: 287 return NP_IPX; 288 case PPP_AT: 289 return NP_AT; 290 case PPP_MPLS_UC: 291 return NP_MPLS_UC; 292 case PPP_MPLS_MC: 293 return NP_MPLS_MC; 294 } 295 return -EINVAL; 296} 297 298/* Translates an NP index into a PPP protocol number */ 299static const int npindex_to_proto[NUM_NP] = { 300 PPP_IP, 301 PPP_IPV6, 302 PPP_IPX, 303 PPP_AT, 304 PPP_MPLS_UC, 305 PPP_MPLS_MC, 306}; 307 308/* Translates an ethertype into an NP index */ 309static inline int ethertype_to_npindex(int ethertype) 310{ 311 switch (ethertype) { 312 case ETH_P_IP: 313 return NP_IP; 314 case ETH_P_IPV6: 315 return NP_IPV6; 316 case ETH_P_IPX: 317 return NP_IPX; 318 case ETH_P_PPPTALK: 319 case ETH_P_ATALK: 320 return NP_AT; 321 case ETH_P_MPLS_UC: 322 return NP_MPLS_UC; 323 case ETH_P_MPLS_MC: 324 return NP_MPLS_MC; 325 } 326 return -1; 327} 328 329/* Translates an NP index into an ethertype */ 330static const int npindex_to_ethertype[NUM_NP] = { 331 ETH_P_IP, 332 ETH_P_IPV6, 333 ETH_P_IPX, 334 ETH_P_PPPTALK, 335 ETH_P_MPLS_UC, 336 ETH_P_MPLS_MC, 337}; 338 339/* 340 * Locking shorthand. 341 */ 342#define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock) 343#define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock) 344#define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock) 345#define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock) 346#define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \ 347 ppp_recv_lock(ppp); } while (0) 348#define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \ 349 ppp_xmit_unlock(ppp); } while (0) 350 351/* 352 * /dev/ppp device routines. 353 * The /dev/ppp device is used by pppd to control the ppp unit. 354 * It supports the read, write, ioctl and poll functions. 355 * Open instances of /dev/ppp can be in one of three states: 356 * unattached, attached to a ppp unit, or attached to a ppp channel. 357 */ 358static int ppp_open(struct inode *inode, struct file *file) 359{ 360 /* 361 * This could (should?) be enforced by the permissions on /dev/ppp. 362 */ 363 if (!capable(CAP_NET_ADMIN)) 364 return -EPERM; 365 return 0; 366} 367 368static int ppp_release(struct inode *inode, struct file *file) 369{ 370 struct ppp_file *pf = file->private_data; 371 struct ppp *ppp; 372 373 if (pf != 0) { 374 file->private_data = NULL; 375 if (pf->kind == INTERFACE) { 376 ppp = PF_TO_PPP(pf); 377 if (file == ppp->owner) 378 ppp_shutdown_interface(ppp); 379 } 380 if (atomic_dec_and_test(&pf->refcnt)) { 381 switch (pf->kind) { 382 case INTERFACE: 383 ppp_destroy_interface(PF_TO_PPP(pf)); 384 break; 385 case CHANNEL: 386 ppp_destroy_channel(PF_TO_CHANNEL(pf)); 387 break; 388 } 389 } 390 } 391 return 0; 392} 393 394static ssize_t ppp_read(struct file *file, char __user *buf, 395 size_t count, loff_t *ppos) 396{ 397 struct ppp_file *pf = file->private_data; 398 DECLARE_WAITQUEUE(wait, current); 399 ssize_t ret; 400 struct sk_buff *skb = NULL; 401 402 ret = count; 403 404 if (pf == 0) 405 return -ENXIO; 406 add_wait_queue(&pf->rwait, &wait); 407 for (;;) { 408 set_current_state(TASK_INTERRUPTIBLE); 409 skb = skb_dequeue(&pf->rq); 410 if (skb) 411 break; 412 ret = 0; 413 if (pf->dead) 414 break; 415 if (pf->kind == INTERFACE) { 416 /* 417 * Return 0 (EOF) on an interface that has no 418 * channels connected, unless it is looping 419 * network traffic (demand mode). 420 */ 421 struct ppp *ppp = PF_TO_PPP(pf); 422 if (ppp->n_channels == 0 423 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 424 break; 425 } 426 ret = -EAGAIN; 427 if (file->f_flags & O_NONBLOCK) 428 break; 429 ret = -ERESTARTSYS; 430 if (signal_pending(current)) 431 break; 432 schedule(); 433 } 434 set_current_state(TASK_RUNNING); 435 remove_wait_queue(&pf->rwait, &wait); 436 437 if (skb == 0) 438 goto out; 439 440 ret = -EOVERFLOW; 441 if (skb->len > count) 442 goto outf; 443 ret = -EFAULT; 444 if (copy_to_user(buf, skb->data, skb->len)) 445 goto outf; 446 ret = skb->len; 447 448 outf: 449 kfree_skb(skb); 450 out: 451 return ret; 452} 453 454static ssize_t ppp_write(struct file *file, const char __user *buf, 455 size_t count, loff_t *ppos) 456{ 457 struct ppp_file *pf = file->private_data; 458 struct sk_buff *skb; 459 ssize_t ret; 460 461 if (pf == 0) 462 return -ENXIO; 463 ret = -ENOMEM; 464 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL); 465 if (skb == 0) 466 goto out; 467 skb_reserve(skb, pf->hdrlen); 468 ret = -EFAULT; 469 if (copy_from_user(skb_put(skb, count), buf, count)) { 470 kfree_skb(skb); 471 goto out; 472 } 473 474 skb_queue_tail(&pf->xq, skb); 475 476 switch (pf->kind) { 477 case INTERFACE: 478 ppp_xmit_process(PF_TO_PPP(pf)); 479 break; 480 case CHANNEL: 481 ppp_channel_push(PF_TO_CHANNEL(pf)); 482 break; 483 } 484 485 ret = count; 486 487 out: 488 return ret; 489} 490 491/* No kernel lock - fine */ 492static unsigned int ppp_poll(struct file *file, poll_table *wait) 493{ 494 struct ppp_file *pf = file->private_data; 495 unsigned int mask; 496 497 if (pf == 0) 498 return 0; 499 poll_wait(file, &pf->rwait, wait); 500 mask = POLLOUT | POLLWRNORM; 501 if (skb_peek(&pf->rq) != 0) 502 mask |= POLLIN | POLLRDNORM; 503 if (pf->dead) 504 mask |= POLLHUP; 505 else if (pf->kind == INTERFACE) { 506 /* see comment in ppp_read */ 507 struct ppp *ppp = PF_TO_PPP(pf); 508 if (ppp->n_channels == 0 509 && (ppp->flags & SC_LOOP_TRAFFIC) == 0) 510 mask |= POLLIN | POLLRDNORM; 511 } 512 513 return mask; 514} 515 516#ifdef CONFIG_PPP_FILTER 517static int get_filter(void __user *arg, struct sock_filter **p) 518{ 519 struct sock_fprog uprog; 520 struct sock_filter *code = NULL; 521 int len, err; 522 523 if (copy_from_user(&uprog, arg, sizeof(uprog))) 524 return -EFAULT; 525 526 if (uprog.len > BPF_MAXINSNS) 527 return -EINVAL; 528 529 if (!uprog.len) { 530 *p = NULL; 531 return 0; 532 } 533 534 len = uprog.len * sizeof(struct sock_filter); 535 code = kmalloc(len, GFP_KERNEL); 536 if (code == NULL) 537 return -ENOMEM; 538 539 if (copy_from_user(code, uprog.filter, len)) { 540 kfree(code); 541 return -EFAULT; 542 } 543 544 err = sk_chk_filter(code, uprog.len); 545 if (err) { 546 kfree(code); 547 return err; 548 } 549 550 *p = code; 551 return uprog.len; 552} 553#endif /* CONFIG_PPP_FILTER */ 554 555static int ppp_ioctl(struct inode *inode, struct file *file, 556 unsigned int cmd, unsigned long arg) 557{ 558 struct ppp_file *pf = file->private_data; 559 struct ppp *ppp; 560 int err = -EFAULT, val, val2, i; 561 struct ppp_idle idle; 562 struct npioctl npi; 563 int unit, cflags; 564 struct slcompress *vj; 565 void __user *argp = (void __user *)arg; 566 int __user *p = argp; 567 568 if (pf == 0) 569 return ppp_unattached_ioctl(pf, file, cmd, arg); 570 571 if (cmd == PPPIOCDETACH) { 572 /* 573 * We have to be careful here... if the file descriptor 574 * has been dup'd, we could have another process in the 575 * middle of a poll using the same file *, so we had 576 * better not free the interface data structures - 577 * instead we fail the ioctl. Even in this case, we 578 * shut down the interface if we are the owner of it. 579 * Actually, we should get rid of PPPIOCDETACH, userland 580 * (i.e. pppd) could achieve the same effect by closing 581 * this fd and reopening /dev/ppp. 582 */ 583 err = -EINVAL; 584 if (pf->kind == INTERFACE) { 585 ppp = PF_TO_PPP(pf); 586 if (file == ppp->owner) 587 ppp_shutdown_interface(ppp); 588 } 589 if (atomic_read(&file->f_count) <= 2) { 590 ppp_release(inode, file); 591 err = 0; 592 } else 593 printk(KERN_DEBUG "PPPIOCDETACH file->f_count=%d\n", 594 atomic_read(&file->f_count)); 595 return err; 596 } 597 598 if (pf->kind == CHANNEL) { 599 struct channel *pch = PF_TO_CHANNEL(pf); 600 struct ppp_channel *chan; 601 602 switch (cmd) { 603 case PPPIOCCONNECT: 604 if (get_user(unit, p)) 605 break; 606 err = ppp_connect_channel(pch, unit); 607 break; 608 609 case PPPIOCDISCONN: 610 err = ppp_disconnect_channel(pch); 611 break; 612 613 default: 614 down_read(&pch->chan_sem); 615 chan = pch->chan; 616 err = -ENOTTY; 617 if (chan && chan->ops->ioctl) 618 err = chan->ops->ioctl(chan, cmd, arg); 619 up_read(&pch->chan_sem); 620 } 621 return err; 622 } 623 624 if (pf->kind != INTERFACE) { 625 /* can't happen */ 626 printk(KERN_ERR "PPP: not interface or channel??\n"); 627 return -EINVAL; 628 } 629 630 ppp = PF_TO_PPP(pf); 631 switch (cmd) { 632 case PPPIOCSMRU: 633 if (get_user(val, p)) 634 break; 635 ppp->mru = val; 636 err = 0; 637 break; 638 639 case PPPIOCSFLAGS: 640 if (get_user(val, p)) 641 break; 642 ppp_lock(ppp); 643 cflags = ppp->flags & ~val; 644 ppp->flags = val & SC_FLAG_BITS; 645 ppp_unlock(ppp); 646 if (cflags & SC_CCP_OPEN) 647 ppp_ccp_closed(ppp); 648 err = 0; 649 break; 650 651 case PPPIOCGFLAGS: 652 val = ppp->flags | ppp->xstate | ppp->rstate; 653 if (put_user(val, p)) 654 break; 655 err = 0; 656 break; 657 658 case PPPIOCSCOMPRESS: 659 err = ppp_set_compress(ppp, arg); 660 break; 661 662 case PPPIOCGUNIT: 663 if (put_user(ppp->file.index, p)) 664 break; 665 err = 0; 666 break; 667 668 case PPPIOCSDEBUG: 669 if (get_user(val, p)) 670 break; 671 ppp->debug = val; 672 err = 0; 673 break; 674 675 case PPPIOCGDEBUG: 676 if (put_user(ppp->debug, p)) 677 break; 678 err = 0; 679 break; 680 681 case PPPIOCGIDLE: 682 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ; 683 idle.recv_idle = (jiffies - ppp->last_recv) / HZ; 684 if (copy_to_user(argp, &idle, sizeof(idle))) 685 break; 686 err = 0; 687 break; 688 689 case PPPIOCSMAXCID: 690 if (get_user(val, p)) 691 break; 692 val2 = 15; 693 if ((val >> 16) != 0) { 694 val2 = val >> 16; 695 val &= 0xffff; 696 } 697 vj = slhc_init(val2+1, val+1); 698 if (vj == 0) { 699 printk(KERN_ERR "PPP: no memory (VJ compressor)\n"); 700 err = -ENOMEM; 701 break; 702 } 703 ppp_lock(ppp); 704 if (ppp->vj != 0) 705 slhc_free(ppp->vj); 706 ppp->vj = vj; 707 ppp_unlock(ppp); 708 err = 0; 709 break; 710 711 case PPPIOCGNPMODE: 712 case PPPIOCSNPMODE: 713 if (copy_from_user(&npi, argp, sizeof(npi))) 714 break; 715 err = proto_to_npindex(npi.protocol); 716 if (err < 0) 717 break; 718 i = err; 719 if (cmd == PPPIOCGNPMODE) { 720 err = -EFAULT; 721 npi.mode = ppp->npmode[i]; 722 if (copy_to_user(argp, &npi, sizeof(npi))) 723 break; 724 } else { 725 ppp->npmode[i] = npi.mode; 726 /* we may be able to transmit more packets now (??) */ 727 netif_wake_queue(ppp->dev); 728 } 729 err = 0; 730 break; 731 732#ifdef CONFIG_PPP_FILTER 733 case PPPIOCSPASS: 734 { 735 struct sock_filter *code; 736 err = get_filter(argp, &code); 737 if (err >= 0) { 738 ppp_lock(ppp); 739 kfree(ppp->pass_filter); 740 ppp->pass_filter = code; 741 ppp->pass_len = err; 742 ppp_unlock(ppp); 743 err = 0; 744 } 745 break; 746 } 747 case PPPIOCSACTIVE: 748 { 749 struct sock_filter *code; 750 err = get_filter(argp, &code); 751 if (err >= 0) { 752 ppp_lock(ppp); 753 kfree(ppp->active_filter); 754 ppp->active_filter = code; 755 ppp->active_len = err; 756 ppp_unlock(ppp); 757 err = 0; 758 } 759 break; 760 } 761#endif /* CONFIG_PPP_FILTER */ 762 763#ifdef CONFIG_PPP_MULTILINK 764 case PPPIOCSMRRU: 765 if (get_user(val, p)) 766 break; 767 ppp_recv_lock(ppp); 768 ppp->mrru = val; 769 ppp_recv_unlock(ppp); 770 err = 0; 771 break; 772#endif /* CONFIG_PPP_MULTILINK */ 773 774 default: 775 err = -ENOTTY; 776 } 777 778 return err; 779} 780 781static int ppp_unattached_ioctl(struct ppp_file *pf, struct file *file, 782 unsigned int cmd, unsigned long arg) 783{ 784 int unit, err = -EFAULT; 785 struct ppp *ppp; 786 struct channel *chan; 787 int __user *p = (int __user *)arg; 788 789 switch (cmd) { 790 case PPPIOCNEWUNIT: 791 /* Create a new ppp unit */ 792 if (get_user(unit, p)) 793 break; 794 ppp = ppp_create_interface(unit, &err); 795 if (ppp == 0) 796 break; 797 file->private_data = &ppp->file; 798 ppp->owner = file; 799 err = -EFAULT; 800 if (put_user(ppp->file.index, p)) 801 break; 802 err = 0; 803 break; 804 805 case PPPIOCATTACH: 806 /* Attach to an existing ppp unit */ 807 if (get_user(unit, p)) 808 break; 809 down(&all_ppp_sem); 810 err = -ENXIO; 811 ppp = ppp_find_unit(unit); 812 if (ppp != 0) { 813 atomic_inc(&ppp->file.refcnt); 814 file->private_data = &ppp->file; 815 err = 0; 816 } 817 up(&all_ppp_sem); 818 break; 819 820 case PPPIOCATTCHAN: 821 if (get_user(unit, p)) 822 break; 823 spin_lock_bh(&all_channels_lock); 824 err = -ENXIO; 825 chan = ppp_find_channel(unit); 826 if (chan != 0) { 827 atomic_inc(&chan->file.refcnt); 828 file->private_data = &chan->file; 829 err = 0; 830 } 831 spin_unlock_bh(&all_channels_lock); 832 break; 833 834 default: 835 err = -ENOTTY; 836 } 837 return err; 838} 839 840static struct file_operations ppp_device_fops = { 841 .owner = THIS_MODULE, 842 .read = ppp_read, 843 .write = ppp_write, 844 .poll = ppp_poll, 845 .ioctl = ppp_ioctl, 846 .open = ppp_open, 847 .release = ppp_release 848}; 849 850#define PPP_MAJOR 108 851 852/* Called at boot time if ppp is compiled into the kernel, 853 or at module load time (from init_module) if compiled as a module. */ 854static int __init ppp_init(void) 855{ 856 int err; 857 858 printk(KERN_INFO "PPP generic driver version " PPP_VERSION "\n"); 859 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops); 860 if (!err) { 861 ppp_class = class_create(THIS_MODULE, "ppp"); 862 if (IS_ERR(ppp_class)) { 863 err = PTR_ERR(ppp_class); 864 goto out_chrdev; 865 } 866 class_device_create(ppp_class, MKDEV(PPP_MAJOR, 0), NULL, "ppp"); 867 err = devfs_mk_cdev(MKDEV(PPP_MAJOR, 0), 868 S_IFCHR|S_IRUSR|S_IWUSR, "ppp"); 869 if (err) 870 goto out_class; 871 } 872 873out: 874 if (err) 875 printk(KERN_ERR "failed to register PPP device (%d)\n", err); 876 return err; 877 878out_class: 879 class_device_destroy(ppp_class, MKDEV(PPP_MAJOR,0)); 880 class_destroy(ppp_class); 881out_chrdev: 882 unregister_chrdev(PPP_MAJOR, "ppp"); 883 goto out; 884} 885 886/* 887 * Network interface unit routines. 888 */ 889static int 890ppp_start_xmit(struct sk_buff *skb, struct net_device *dev) 891{ 892 struct ppp *ppp = (struct ppp *) dev->priv; 893 int npi, proto; 894 unsigned char *pp; 895 896 npi = ethertype_to_npindex(ntohs(skb->protocol)); 897 if (npi < 0) 898 goto outf; 899 900 /* Drop, accept or reject the packet */ 901 switch (ppp->npmode[npi]) { 902 case NPMODE_PASS: 903 break; 904 case NPMODE_QUEUE: 905 /* it would be nice to have a way to tell the network 906 system to queue this one up for later. */ 907 goto outf; 908 case NPMODE_DROP: 909 case NPMODE_ERROR: 910 goto outf; 911 } 912 913 /* Put the 2-byte PPP protocol number on the front, 914 making sure there is room for the address and control fields. */ 915 if (skb_headroom(skb) < PPP_HDRLEN) { 916 struct sk_buff *ns; 917 918 ns = alloc_skb(skb->len + dev->hard_header_len, GFP_ATOMIC); 919 if (ns == 0) 920 goto outf; 921 skb_reserve(ns, dev->hard_header_len); 922 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 923 kfree_skb(skb); 924 skb = ns; 925 } 926 pp = skb_push(skb, 2); 927 proto = npindex_to_proto[npi]; 928 pp[0] = proto >> 8; 929 pp[1] = proto; 930 931 netif_stop_queue(dev); 932 skb_queue_tail(&ppp->file.xq, skb); 933 ppp_xmit_process(ppp); 934 return 0; 935 936 outf: 937 kfree_skb(skb); 938 ++ppp->stats.tx_dropped; 939 return 0; 940} 941 942static struct net_device_stats * 943ppp_net_stats(struct net_device *dev) 944{ 945 struct ppp *ppp = (struct ppp *) dev->priv; 946 947 return &ppp->stats; 948} 949 950static int 951ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 952{ 953 struct ppp *ppp = dev->priv; 954 int err = -EFAULT; 955 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data; 956 struct ppp_stats stats; 957 struct ppp_comp_stats cstats; 958 char *vers; 959 960 switch (cmd) { 961 case SIOCGPPPSTATS: 962 ppp_get_stats(ppp, &stats); 963 if (copy_to_user(addr, &stats, sizeof(stats))) 964 break; 965 err = 0; 966 break; 967 968 case SIOCGPPPCSTATS: 969 memset(&cstats, 0, sizeof(cstats)); 970 if (ppp->xc_state != 0) 971 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c); 972 if (ppp->rc_state != 0) 973 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d); 974 if (copy_to_user(addr, &cstats, sizeof(cstats))) 975 break; 976 err = 0; 977 break; 978 979 case SIOCGPPPVER: 980 vers = PPP_VERSION; 981 if (copy_to_user(addr, vers, strlen(vers) + 1)) 982 break; 983 err = 0; 984 break; 985 986 default: 987 err = -EINVAL; 988 } 989 990 return err; 991} 992 993static void ppp_setup(struct net_device *dev) 994{ 995 dev->hard_header_len = PPP_HDRLEN; 996 dev->mtu = PPP_MTU; 997 dev->addr_len = 0; 998 dev->tx_queue_len = 3; 999 dev->type = ARPHRD_PPP; 1000 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST; 1001} 1002 1003/* 1004 * Transmit-side routines. 1005 */ 1006 1007/* 1008 * Called to do any work queued up on the transmit side 1009 * that can now be done. 1010 */ 1011static void 1012ppp_xmit_process(struct ppp *ppp) 1013{ 1014 struct sk_buff *skb; 1015 1016 ppp_xmit_lock(ppp); 1017 if (ppp->dev != 0) { 1018 ppp_push(ppp); 1019 while (ppp->xmit_pending == 0 1020 && (skb = skb_dequeue(&ppp->file.xq)) != 0) 1021 ppp_send_frame(ppp, skb); 1022 /* If there's no work left to do, tell the core net 1023 code that we can accept some more. */ 1024 if (ppp->xmit_pending == 0 && skb_peek(&ppp->file.xq) == 0) 1025 netif_wake_queue(ppp->dev); 1026 } 1027 ppp_xmit_unlock(ppp); 1028} 1029 1030/* 1031 * Compress and send a frame. 1032 * The caller should have locked the xmit path, 1033 * and xmit_pending should be 0. 1034 */ 1035static void 1036ppp_send_frame(struct ppp *ppp, struct sk_buff *skb) 1037{ 1038 int proto = PPP_PROTO(skb); 1039 struct sk_buff *new_skb; 1040 int len; 1041 unsigned char *cp; 1042 1043 if (proto < 0x8000) { 1044#ifdef CONFIG_PPP_FILTER 1045 /* check if we should pass this packet */ 1046 /* the filter instructions are constructed assuming 1047 a four-byte PPP header on each packet */ 1048 *skb_push(skb, 2) = 1; 1049 if (ppp->pass_filter 1050 && sk_run_filter(skb, ppp->pass_filter, 1051 ppp->pass_len) == 0) { 1052 if (ppp->debug & 1) 1053 printk(KERN_DEBUG "PPP: outbound frame not passed\n"); 1054 kfree_skb(skb); 1055 return; 1056 } 1057 /* if this packet passes the active filter, record the time */ 1058 if (!(ppp->active_filter 1059 && sk_run_filter(skb, ppp->active_filter, 1060 ppp->active_len) == 0)) 1061 ppp->last_xmit = jiffies; 1062 skb_pull(skb, 2); 1063#else 1064 /* for data packets, record the time */ 1065 ppp->last_xmit = jiffies; 1066#endif /* CONFIG_PPP_FILTER */ 1067 } 1068 1069 ++ppp->stats.tx_packets; 1070 ppp->stats.tx_bytes += skb->len - 2; 1071 1072 switch (proto) { 1073 case PPP_IP: 1074 if (ppp->vj == 0 || (ppp->flags & SC_COMP_TCP) == 0) 1075 break; 1076 /* try to do VJ TCP header compression */ 1077 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2, 1078 GFP_ATOMIC); 1079 if (new_skb == 0) { 1080 printk(KERN_ERR "PPP: no memory (VJ comp pkt)\n"); 1081 goto drop; 1082 } 1083 skb_reserve(new_skb, ppp->dev->hard_header_len - 2); 1084 cp = skb->data + 2; 1085 len = slhc_compress(ppp->vj, cp, skb->len - 2, 1086 new_skb->data + 2, &cp, 1087 !(ppp->flags & SC_NO_TCP_CCID)); 1088 if (cp == skb->data + 2) { 1089 /* didn't compress */ 1090 kfree_skb(new_skb); 1091 } else { 1092 if (cp[0] & SL_TYPE_COMPRESSED_TCP) { 1093 proto = PPP_VJC_COMP; 1094 cp[0] &= ~SL_TYPE_COMPRESSED_TCP; 1095 } else { 1096 proto = PPP_VJC_UNCOMP; 1097 cp[0] = skb->data[2]; 1098 } 1099 kfree_skb(skb); 1100 skb = new_skb; 1101 cp = skb_put(skb, len + 2); 1102 cp[0] = 0; 1103 cp[1] = proto; 1104 } 1105 break; 1106 1107 case PPP_CCP: 1108 /* peek at outbound CCP frames */ 1109 ppp_ccp_peek(ppp, skb, 0); 1110 break; 1111 } 1112 1113 /* try to do packet compression */ 1114 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state != 0 1115 && proto != PPP_LCP && proto != PPP_CCP) { 1116 new_skb = alloc_skb(ppp->dev->mtu + ppp->dev->hard_header_len, 1117 GFP_ATOMIC); 1118 if (new_skb == 0) { 1119 printk(KERN_ERR "PPP: no memory (comp pkt)\n"); 1120 goto drop; 1121 } 1122 if (ppp->dev->hard_header_len > PPP_HDRLEN) 1123 skb_reserve(new_skb, 1124 ppp->dev->hard_header_len - PPP_HDRLEN); 1125 1126 /* compressor still expects A/C bytes in hdr */ 1127 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2, 1128 new_skb->data, skb->len + 2, 1129 ppp->dev->mtu + PPP_HDRLEN); 1130 if (len > 0 && (ppp->flags & SC_CCP_UP)) { 1131 kfree_skb(skb); 1132 skb = new_skb; 1133 skb_put(skb, len); 1134 skb_pull(skb, 2); /* pull off A/C bytes */ 1135 } else { 1136 /* didn't compress, or CCP not up yet */ 1137 kfree_skb(new_skb); 1138 } 1139 } 1140 1141 /* 1142 * If we are waiting for traffic (demand dialling), 1143 * queue it up for pppd to receive. 1144 */ 1145 if (ppp->flags & SC_LOOP_TRAFFIC) { 1146 if (ppp->file.rq.qlen > PPP_MAX_RQLEN) 1147 goto drop; 1148 skb_queue_tail(&ppp->file.rq, skb); 1149 wake_up_interruptible(&ppp->file.rwait); 1150 return; 1151 } 1152 1153 ppp->xmit_pending = skb; 1154 ppp_push(ppp); 1155 return; 1156 1157 drop: 1158 kfree_skb(skb); 1159 ++ppp->stats.tx_errors; 1160} 1161 1162/* 1163 * Try to send the frame in xmit_pending. 1164 * The caller should have the xmit path locked. 1165 */ 1166static void 1167ppp_push(struct ppp *ppp) 1168{ 1169 struct list_head *list; 1170 struct channel *pch; 1171 struct sk_buff *skb = ppp->xmit_pending; 1172 1173 if (skb == 0) 1174 return; 1175 1176 list = &ppp->channels; 1177 if (list_empty(list)) { 1178 /* nowhere to send the packet, just drop it */ 1179 ppp->xmit_pending = NULL; 1180 kfree_skb(skb); 1181 return; 1182 } 1183 1184 if ((ppp->flags & SC_MULTILINK) == 0) { 1185 /* not doing multilink: send it down the first channel */ 1186 list = list->next; 1187 pch = list_entry(list, struct channel, clist); 1188 1189 spin_lock_bh(&pch->downl); 1190 if (pch->chan) { 1191 if (pch->chan->ops->start_xmit(pch->chan, skb)) 1192 ppp->xmit_pending = NULL; 1193 } else { 1194 /* channel got unregistered */ 1195 kfree_skb(skb); 1196 ppp->xmit_pending = NULL; 1197 } 1198 spin_unlock_bh(&pch->downl); 1199 return; 1200 } 1201 1202#ifdef CONFIG_PPP_MULTILINK 1203 /* Multilink: fragment the packet over as many links 1204 as can take the packet at the moment. */ 1205 if (!ppp_mp_explode(ppp, skb)) 1206 return; 1207#endif /* CONFIG_PPP_MULTILINK */ 1208 1209 ppp->xmit_pending = NULL; 1210 kfree_skb(skb); 1211} 1212 1213#ifdef CONFIG_PPP_MULTILINK 1214/* 1215 * Divide a packet to be transmitted into fragments and 1216 * send them out the individual links. 1217 */ 1218static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb) 1219{ 1220 int len, fragsize; 1221 int i, bits, hdrlen, mtu; 1222 int flen; 1223 int navail, nfree; 1224 int nbigger; 1225 unsigned char *p, *q; 1226 struct list_head *list; 1227 struct channel *pch; 1228 struct sk_buff *frag; 1229 struct ppp_channel *chan; 1230 1231 nfree = 0; /* # channels which have no packet already queued */ 1232 navail = 0; /* total # of usable channels (not deregistered) */ 1233 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1234 i = 0; 1235 list_for_each_entry(pch, &ppp->channels, clist) { 1236 navail += pch->avail = (pch->chan != NULL); 1237 if (pch->avail) { 1238 if (skb_queue_empty(&pch->file.xq) || 1239 !pch->had_frag) { 1240 pch->avail = 2; 1241 ++nfree; 1242 } 1243 if (!pch->had_frag && i < ppp->nxchan) 1244 ppp->nxchan = i; 1245 } 1246 ++i; 1247 } 1248 1249 /* 1250 * Don't start sending this packet unless at least half of 1251 * the channels are free. This gives much better TCP 1252 * performance if we have a lot of channels. 1253 */ 1254 if (nfree == 0 || nfree < navail / 2) 1255 return 0; /* can't take now, leave it in xmit_pending */ 1256 1257 /* Do protocol field compression (XXX this should be optional) */ 1258 p = skb->data; 1259 len = skb->len; 1260 if (*p == 0) { 1261 ++p; 1262 --len; 1263 } 1264 1265 /* 1266 * Decide on fragment size. 1267 * We create a fragment for each free channel regardless of 1268 * how small they are (i.e. even 0 length) in order to minimize 1269 * the time that it will take to detect when a channel drops 1270 * a fragment. 1271 */ 1272 fragsize = len; 1273 if (nfree > 1) 1274 fragsize = ROUNDUP(fragsize, nfree); 1275 /* nbigger channels get fragsize bytes, the rest get fragsize-1, 1276 except if nbigger==0, then they all get fragsize. */ 1277 nbigger = len % nfree; 1278 1279 /* skip to the channel after the one we last used 1280 and start at that one */ 1281 list = &ppp->channels; 1282 for (i = 0; i < ppp->nxchan; ++i) { 1283 list = list->next; 1284 if (list == &ppp->channels) { 1285 i = 0; 1286 break; 1287 } 1288 } 1289 1290 /* create a fragment for each channel */ 1291 bits = B; 1292 while (nfree > 0 || len > 0) { 1293 list = list->next; 1294 if (list == &ppp->channels) { 1295 i = 0; 1296 continue; 1297 } 1298 pch = list_entry(list, struct channel, clist); 1299 ++i; 1300 if (!pch->avail) 1301 continue; 1302 1303 /* 1304 * Skip this channel if it has a fragment pending already and 1305 * we haven't given a fragment to all of the free channels. 1306 */ 1307 if (pch->avail == 1) { 1308 if (nfree > 0) 1309 continue; 1310 } else { 1311 --nfree; 1312 pch->avail = 1; 1313 } 1314 1315 /* check the channel's mtu and whether it is still attached. */ 1316 spin_lock_bh(&pch->downl); 1317 if (pch->chan == NULL) { 1318 /* can't use this channel, it's being deregistered */ 1319 spin_unlock_bh(&pch->downl); 1320 pch->avail = 0; 1321 if (--navail == 0) 1322 break; 1323 continue; 1324 } 1325 1326 /* 1327 * Create a fragment for this channel of 1328 * min(max(mtu+2-hdrlen, 4), fragsize, len) bytes. 1329 * If mtu+2-hdrlen < 4, that is a ridiculously small 1330 * MTU, so we use mtu = 2 + hdrlen. 1331 */ 1332 if (fragsize > len) 1333 fragsize = len; 1334 flen = fragsize; 1335 mtu = pch->chan->mtu + 2 - hdrlen; 1336 if (mtu < 4) 1337 mtu = 4; 1338 if (flen > mtu) 1339 flen = mtu; 1340 if (flen == len && nfree == 0) 1341 bits |= E; 1342 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC); 1343 if (frag == 0) 1344 goto noskb; 1345 q = skb_put(frag, flen + hdrlen); 1346 1347 /* make the MP header */ 1348 q[0] = PPP_MP >> 8; 1349 q[1] = PPP_MP; 1350 if (ppp->flags & SC_MP_XSHORTSEQ) { 1351 q[2] = bits + ((ppp->nxseq >> 8) & 0xf); 1352 q[3] = ppp->nxseq; 1353 } else { 1354 q[2] = bits; 1355 q[3] = ppp->nxseq >> 16; 1356 q[4] = ppp->nxseq >> 8; 1357 q[5] = ppp->nxseq; 1358 } 1359 1360 /* 1361 * Copy the data in. 1362 * Unfortunately there is a bug in older versions of 1363 * the Linux PPP multilink reconstruction code where it 1364 * drops 0-length fragments. Therefore we make sure the 1365 * fragment has at least one byte of data. Any bytes 1366 * we add in this situation will end up as padding on the 1367 * end of the reconstructed packet. 1368 */ 1369 if (flen == 0) 1370 *skb_put(frag, 1) = 0; 1371 else 1372 memcpy(q + hdrlen, p, flen); 1373 1374 /* try to send it down the channel */ 1375 chan = pch->chan; 1376 if (!skb_queue_empty(&pch->file.xq) || 1377 !chan->ops->start_xmit(chan, frag)) 1378 skb_queue_tail(&pch->file.xq, frag); 1379 pch->had_frag = 1; 1380 p += flen; 1381 len -= flen; 1382 ++ppp->nxseq; 1383 bits = 0; 1384 spin_unlock_bh(&pch->downl); 1385 1386 if (--nbigger == 0 && fragsize > 0) 1387 --fragsize; 1388 } 1389 ppp->nxchan = i; 1390 1391 return 1; 1392 1393 noskb: 1394 spin_unlock_bh(&pch->downl); 1395 if (ppp->debug & 1) 1396 printk(KERN_ERR "PPP: no memory (fragment)\n"); 1397 ++ppp->stats.tx_errors; 1398 ++ppp->nxseq; 1399 return 1; /* abandon the frame */ 1400} 1401#endif /* CONFIG_PPP_MULTILINK */ 1402 1403/* 1404 * Try to send data out on a channel. 1405 */ 1406static void 1407ppp_channel_push(struct channel *pch) 1408{ 1409 struct sk_buff *skb; 1410 struct ppp *ppp; 1411 1412 spin_lock_bh(&pch->downl); 1413 if (pch->chan != 0) { 1414 while (!skb_queue_empty(&pch->file.xq)) { 1415 skb = skb_dequeue(&pch->file.xq); 1416 if (!pch->chan->ops->start_xmit(pch->chan, skb)) { 1417 /* put the packet back and try again later */ 1418 skb_queue_head(&pch->file.xq, skb); 1419 break; 1420 } 1421 } 1422 } else { 1423 /* channel got deregistered */ 1424 skb_queue_purge(&pch->file.xq); 1425 } 1426 spin_unlock_bh(&pch->downl); 1427 /* see if there is anything from the attached unit to be sent */ 1428 if (skb_queue_empty(&pch->file.xq)) { 1429 read_lock_bh(&pch->upl); 1430 ppp = pch->ppp; 1431 if (ppp != 0) 1432 ppp_xmit_process(ppp); 1433 read_unlock_bh(&pch->upl); 1434 } 1435} 1436 1437/* 1438 * Receive-side routines. 1439 */ 1440 1441/* misuse a few fields of the skb for MP reconstruction */ 1442#define sequence priority 1443#define BEbits cb[0] 1444 1445static inline void 1446ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1447{ 1448 ppp_recv_lock(ppp); 1449 /* ppp->dev == 0 means interface is closing down */ 1450 if (ppp->dev != 0) 1451 ppp_receive_frame(ppp, skb, pch); 1452 else 1453 kfree_skb(skb); 1454 ppp_recv_unlock(ppp); 1455} 1456 1457void 1458ppp_input(struct ppp_channel *chan, struct sk_buff *skb) 1459{ 1460 struct channel *pch = chan->ppp; 1461 int proto; 1462 1463 if (pch == 0 || skb->len == 0) { 1464 kfree_skb(skb); 1465 return; 1466 } 1467 1468 proto = PPP_PROTO(skb); 1469 read_lock_bh(&pch->upl); 1470 if (pch->ppp == 0 || proto >= 0xc000 || proto == PPP_CCPFRAG) { 1471 /* put it on the channel queue */ 1472 skb_queue_tail(&pch->file.rq, skb); 1473 /* drop old frames if queue too long */ 1474 while (pch->file.rq.qlen > PPP_MAX_RQLEN 1475 && (skb = skb_dequeue(&pch->file.rq)) != 0) 1476 kfree_skb(skb); 1477 wake_up_interruptible(&pch->file.rwait); 1478 } else { 1479 ppp_do_recv(pch->ppp, skb, pch); 1480 } 1481 read_unlock_bh(&pch->upl); 1482} 1483 1484/* Put a 0-length skb in the receive queue as an error indication */ 1485void 1486ppp_input_error(struct ppp_channel *chan, int code) 1487{ 1488 struct channel *pch = chan->ppp; 1489 struct sk_buff *skb; 1490 1491 if (pch == 0) 1492 return; 1493 1494 read_lock_bh(&pch->upl); 1495 if (pch->ppp != 0) { 1496 skb = alloc_skb(0, GFP_ATOMIC); 1497 if (skb != 0) { 1498 skb->len = 0; /* probably unnecessary */ 1499 skb->cb[0] = code; 1500 ppp_do_recv(pch->ppp, skb, pch); 1501 } 1502 } 1503 read_unlock_bh(&pch->upl); 1504} 1505 1506/* 1507 * We come in here to process a received frame. 1508 * The receive side of the ppp unit is locked. 1509 */ 1510static void 1511ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1512{ 1513 if (skb->len >= 2) { 1514#ifdef CONFIG_PPP_MULTILINK 1515 /* XXX do channel-level decompression here */ 1516 if (PPP_PROTO(skb) == PPP_MP) 1517 ppp_receive_mp_frame(ppp, skb, pch); 1518 else 1519#endif /* CONFIG_PPP_MULTILINK */ 1520 ppp_receive_nonmp_frame(ppp, skb); 1521 return; 1522 } 1523 1524 if (skb->len > 0) 1525 /* note: a 0-length skb is used as an error indication */ 1526 ++ppp->stats.rx_length_errors; 1527 1528 kfree_skb(skb); 1529 ppp_receive_error(ppp); 1530} 1531 1532static void 1533ppp_receive_error(struct ppp *ppp) 1534{ 1535 ++ppp->stats.rx_errors; 1536 if (ppp->vj != 0) 1537 slhc_toss(ppp->vj); 1538} 1539 1540static void 1541ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb) 1542{ 1543 struct sk_buff *ns; 1544 int proto, len, npi; 1545 1546 /* 1547 * Decompress the frame, if compressed. 1548 * Note that some decompressors need to see uncompressed frames 1549 * that come in as well as compressed frames. 1550 */ 1551 if (ppp->rc_state != 0 && (ppp->rstate & SC_DECOMP_RUN) 1552 && (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0) 1553 skb = ppp_decompress_frame(ppp, skb); 1554 1555 proto = PPP_PROTO(skb); 1556 switch (proto) { 1557 case PPP_VJC_COMP: 1558 /* decompress VJ compressed packets */ 1559 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1560 goto err; 1561 1562 if (skb_tailroom(skb) < 124) { 1563 /* copy to a new sk_buff with more tailroom */ 1564 ns = dev_alloc_skb(skb->len + 128); 1565 if (ns == 0) { 1566 printk(KERN_ERR"PPP: no memory (VJ decomp)\n"); 1567 goto err; 1568 } 1569 skb_reserve(ns, 2); 1570 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len); 1571 kfree_skb(skb); 1572 skb = ns; 1573 } 1574 else if (!pskb_may_pull(skb, skb->len)) 1575 goto err; 1576 1577 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2); 1578 if (len <= 0) { 1579 printk(KERN_DEBUG "PPP: VJ decompression error\n"); 1580 goto err; 1581 } 1582 len += 2; 1583 if (len > skb->len) 1584 skb_put(skb, len - skb->len); 1585 else if (len < skb->len) 1586 skb_trim(skb, len); 1587 proto = PPP_IP; 1588 break; 1589 1590 case PPP_VJC_UNCOMP: 1591 if (ppp->vj == 0 || (ppp->flags & SC_REJ_COMP_TCP)) 1592 goto err; 1593 1594 /* Until we fix the decompressor need to make sure 1595 * data portion is linear. 1596 */ 1597 if (!pskb_may_pull(skb, skb->len)) 1598 goto err; 1599 1600 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) { 1601 printk(KERN_ERR "PPP: VJ uncompressed error\n"); 1602 goto err; 1603 } 1604 proto = PPP_IP; 1605 break; 1606 1607 case PPP_CCP: 1608 ppp_ccp_peek(ppp, skb, 1); 1609 break; 1610 } 1611 1612 ++ppp->stats.rx_packets; 1613 ppp->stats.rx_bytes += skb->len - 2; 1614 1615 npi = proto_to_npindex(proto); 1616 if (npi < 0) { 1617 /* control or unknown frame - pass it to pppd */ 1618 skb_queue_tail(&ppp->file.rq, skb); 1619 /* limit queue length by dropping old frames */ 1620 while (ppp->file.rq.qlen > PPP_MAX_RQLEN 1621 && (skb = skb_dequeue(&ppp->file.rq)) != 0) 1622 kfree_skb(skb); 1623 /* wake up any process polling or blocking on read */ 1624 wake_up_interruptible(&ppp->file.rwait); 1625 1626 } else { 1627 /* network protocol frame - give it to the kernel */ 1628 1629#ifdef CONFIG_PPP_FILTER 1630 /* check if the packet passes the pass and active filters */ 1631 /* the filter instructions are constructed assuming 1632 a four-byte PPP header on each packet */ 1633 *skb_push(skb, 2) = 0; 1634 if (ppp->pass_filter 1635 && sk_run_filter(skb, ppp->pass_filter, 1636 ppp->pass_len) == 0) { 1637 if (ppp->debug & 1) 1638 printk(KERN_DEBUG "PPP: inbound frame not passed\n"); 1639 kfree_skb(skb); 1640 return; 1641 } 1642 if (!(ppp->active_filter 1643 && sk_run_filter(skb, ppp->active_filter, 1644 ppp->active_len) == 0)) 1645 ppp->last_recv = jiffies; 1646 skb_pull(skb, 2); 1647#else 1648 ppp->last_recv = jiffies; 1649#endif /* CONFIG_PPP_FILTER */ 1650 1651 if ((ppp->dev->flags & IFF_UP) == 0 1652 || ppp->npmode[npi] != NPMODE_PASS) { 1653 kfree_skb(skb); 1654 } else { 1655 skb_pull(skb, 2); /* chop off protocol */ 1656 skb->dev = ppp->dev; 1657 skb->protocol = htons(npindex_to_ethertype[npi]); 1658 skb->mac.raw = skb->data; 1659 netif_rx(skb); 1660 ppp->dev->last_rx = jiffies; 1661 } 1662 } 1663 return; 1664 1665 err: 1666 kfree_skb(skb); 1667 ppp_receive_error(ppp); 1668} 1669 1670static struct sk_buff * 1671ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb) 1672{ 1673 int proto = PPP_PROTO(skb); 1674 struct sk_buff *ns; 1675 int len; 1676 1677 /* Until we fix all the decompressor's need to make sure 1678 * data portion is linear. 1679 */ 1680 if (!pskb_may_pull(skb, skb->len)) 1681 goto err; 1682 1683 if (proto == PPP_COMP) { 1684 ns = dev_alloc_skb(ppp->mru + PPP_HDRLEN); 1685 if (ns == 0) { 1686 printk(KERN_ERR "ppp_decompress_frame: no memory\n"); 1687 goto err; 1688 } 1689 /* the decompressor still expects the A/C bytes in the hdr */ 1690 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2, 1691 skb->len + 2, ns->data, ppp->mru + PPP_HDRLEN); 1692 if (len < 0) { 1693 /* Pass the compressed frame to pppd as an 1694 error indication. */ 1695 if (len == DECOMP_FATALERROR) 1696 ppp->rstate |= SC_DC_FERROR; 1697 kfree_skb(ns); 1698 goto err; 1699 } 1700 1701 kfree_skb(skb); 1702 skb = ns; 1703 skb_put(skb, len); 1704 skb_pull(skb, 2); /* pull off the A/C bytes */ 1705 1706 } else { 1707 /* Uncompressed frame - pass to decompressor so it 1708 can update its dictionary if necessary. */ 1709 if (ppp->rcomp->incomp) 1710 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2, 1711 skb->len + 2); 1712 } 1713 1714 return skb; 1715 1716 err: 1717 ppp->rstate |= SC_DC_ERROR; 1718 ppp_receive_error(ppp); 1719 return skb; 1720} 1721 1722#ifdef CONFIG_PPP_MULTILINK 1723/* 1724 * Receive a multilink frame. 1725 * We put it on the reconstruction queue and then pull off 1726 * as many completed frames as we can. 1727 */ 1728static void 1729ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch) 1730{ 1731 u32 mask, seq; 1732 struct channel *ch; 1733 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN; 1734 1735 if (!pskb_may_pull(skb, mphdrlen) || ppp->mrru == 0) 1736 goto err; /* no good, throw it away */ 1737 1738 /* Decode sequence number and begin/end bits */ 1739 if (ppp->flags & SC_MP_SHORTSEQ) { 1740 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3]; 1741 mask = 0xfff; 1742 } else { 1743 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5]; 1744 mask = 0xffffff; 1745 } 1746 skb->BEbits = skb->data[2]; 1747 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */ 1748 1749 /* 1750 * Do protocol ID decompression on the first fragment of each packet. 1751 */ 1752 if ((skb->BEbits & B) && (skb->data[0] & 1)) 1753 *skb_push(skb, 1) = 0; 1754 1755 /* 1756 * Expand sequence number to 32 bits, making it as close 1757 * as possible to ppp->minseq. 1758 */ 1759 seq |= ppp->minseq & ~mask; 1760 if ((int)(ppp->minseq - seq) > (int)(mask >> 1)) 1761 seq += mask + 1; 1762 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1)) 1763 seq -= mask + 1; /* should never happen */ 1764 skb->sequence = seq; 1765 pch->lastseq = seq; 1766 1767 /* 1768 * If this packet comes before the next one we were expecting, 1769 * drop it. 1770 */ 1771 if (seq_before(seq, ppp->nextseq)) { 1772 kfree_skb(skb); 1773 ++ppp->stats.rx_dropped; 1774 ppp_receive_error(ppp); 1775 return; 1776 } 1777 1778 /* 1779 * Reevaluate minseq, the minimum over all channels of the 1780 * last sequence number received on each channel. Because of 1781 * the increasing sequence number rule, we know that any fragment 1782 * before `minseq' which hasn't arrived is never going to arrive. 1783 * The list of channels can't change because we have the receive 1784 * side of the ppp unit locked. 1785 */ 1786 list_for_each_entry(ch, &ppp->channels, clist) { 1787 if (seq_before(ch->lastseq, seq)) 1788 seq = ch->lastseq; 1789 } 1790 if (seq_before(ppp->minseq, seq)) 1791 ppp->minseq = seq; 1792 1793 /* Put the fragment on the reconstruction queue */ 1794 ppp_mp_insert(ppp, skb); 1795 1796 /* If the queue is getting long, don't wait any longer for packets 1797 before the start of the queue. */ 1798 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN 1799 && seq_before(ppp->minseq, ppp->mrq.next->sequence)) 1800 ppp->minseq = ppp->mrq.next->sequence; 1801 1802 /* Pull completed packets off the queue and receive them. */ 1803 while ((skb = ppp_mp_reconstruct(ppp)) != 0) 1804 ppp_receive_nonmp_frame(ppp, skb); 1805 1806 return; 1807 1808 err: 1809 kfree_skb(skb); 1810 ppp_receive_error(ppp); 1811} 1812 1813/* 1814 * Insert a fragment on the MP reconstruction queue. 1815 * The queue is ordered by increasing sequence number. 1816 */ 1817static void 1818ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb) 1819{ 1820 struct sk_buff *p; 1821 struct sk_buff_head *list = &ppp->mrq; 1822 u32 seq = skb->sequence; 1823 1824 /* N.B. we don't need to lock the list lock because we have the 1825 ppp unit receive-side lock. */ 1826 for (p = list->next; p != (struct sk_buff *)list; p = p->next) 1827 if (seq_before(seq, p->sequence)) 1828 break; 1829 __skb_insert(skb, p->prev, p, list); 1830} 1831 1832/* 1833 * Reconstruct a packet from the MP fragment queue. 1834 * We go through increasing sequence numbers until we find a 1835 * complete packet, or we get to the sequence number for a fragment 1836 * which hasn't arrived but might still do so. 1837 */ 1838struct sk_buff * 1839ppp_mp_reconstruct(struct ppp *ppp) 1840{ 1841 u32 seq = ppp->nextseq; 1842 u32 minseq = ppp->minseq; 1843 struct sk_buff_head *list = &ppp->mrq; 1844 struct sk_buff *p, *next; 1845 struct sk_buff *head, *tail; 1846 struct sk_buff *skb = NULL; 1847 int lost = 0, len = 0; 1848 1849 if (ppp->mrru == 0) /* do nothing until mrru is set */ 1850 return NULL; 1851 head = list->next; 1852 tail = NULL; 1853 for (p = head; p != (struct sk_buff *) list; p = next) { 1854 next = p->next; 1855 if (seq_before(p->sequence, seq)) { 1856 /* this can't happen, anyway ignore the skb */ 1857 printk(KERN_ERR "ppp_mp_reconstruct bad seq %u < %u\n", 1858 p->sequence, seq); 1859 head = next; 1860 continue; 1861 } 1862 if (p->sequence != seq) { 1863 /* Fragment `seq' is missing. If it is after 1864 minseq, it might arrive later, so stop here. */ 1865 if (seq_after(seq, minseq)) 1866 break; 1867 /* Fragment `seq' is lost, keep going. */ 1868 lost = 1; 1869 seq = seq_before(minseq, p->sequence)? 1870 minseq + 1: p->sequence; 1871 next = p; 1872 continue; 1873 } 1874 1875 /* 1876 * At this point we know that all the fragments from 1877 * ppp->nextseq to seq are either present or lost. 1878 * Also, there are no complete packets in the queue 1879 * that have no missing fragments and end before this 1880 * fragment. 1881 */ 1882 1883 /* B bit set indicates this fragment starts a packet */ 1884 if (p->BEbits & B) { 1885 head = p; 1886 lost = 0; 1887 len = 0; 1888 } 1889 1890 len += p->len; 1891 1892 /* Got a complete packet yet? */ 1893 if (lost == 0 && (p->BEbits & E) && (head->BEbits & B)) { 1894 if (len > ppp->mrru + 2) { 1895 ++ppp->stats.rx_length_errors; 1896 printk(KERN_DEBUG "PPP: reconstructed packet" 1897 " is too long (%d)\n", len); 1898 } else if (p == head) { 1899 /* fragment is complete packet - reuse skb */ 1900 tail = p; 1901 skb = skb_get(p); 1902 break; 1903 } else if ((skb = dev_alloc_skb(len)) == NULL) { 1904 ++ppp->stats.rx_missed_errors; 1905 printk(KERN_DEBUG "PPP: no memory for " 1906 "reconstructed packet"); 1907 } else { 1908 tail = p; 1909 break; 1910 } 1911 ppp->nextseq = seq + 1; 1912 } 1913 1914 /* 1915 * If this is the ending fragment of a packet, 1916 * and we haven't found a complete valid packet yet, 1917 * we can discard up to and including this fragment. 1918 */ 1919 if (p->BEbits & E) 1920 head = next; 1921 1922 ++seq; 1923 } 1924 1925 /* If we have a complete packet, copy it all into one skb. */ 1926 if (tail != NULL) { 1927 /* If we have discarded any fragments, 1928 signal a receive error. */ 1929 if (head->sequence != ppp->nextseq) { 1930 if (ppp->debug & 1) 1931 printk(KERN_DEBUG " missed pkts %u..%u\n", 1932 ppp->nextseq, head->sequence-1); 1933 ++ppp->stats.rx_dropped; 1934 ppp_receive_error(ppp); 1935 } 1936 1937 if (head != tail) 1938 /* copy to a single skb */ 1939 for (p = head; p != tail->next; p = p->next) 1940 skb_copy_bits(p, 0, skb_put(skb, p->len), p->len); 1941 ppp->nextseq = tail->sequence + 1; 1942 head = tail->next; 1943 } 1944 1945 /* Discard all the skbuffs that we have copied the data out of 1946 or that we can't use. */ 1947 while ((p = list->next) != head) { 1948 __skb_unlink(p, list); 1949 kfree_skb(p); 1950 } 1951 1952 return skb; 1953} 1954#endif /* CONFIG_PPP_MULTILINK */ 1955 1956/* 1957 * Channel interface. 1958 */ 1959 1960/* 1961 * Create a new, unattached ppp channel. 1962 */ 1963int 1964ppp_register_channel(struct ppp_channel *chan) 1965{ 1966 struct channel *pch; 1967 1968 pch = kmalloc(sizeof(struct channel), GFP_KERNEL); 1969 if (pch == 0) 1970 return -ENOMEM; 1971 memset(pch, 0, sizeof(struct channel)); 1972 pch->ppp = NULL; 1973 pch->chan = chan; 1974 chan->ppp = pch; 1975 init_ppp_file(&pch->file, CHANNEL); 1976 pch->file.hdrlen = chan->hdrlen; 1977#ifdef CONFIG_PPP_MULTILINK 1978 pch->lastseq = -1; 1979#endif /* CONFIG_PPP_MULTILINK */ 1980 init_rwsem(&pch->chan_sem); 1981 spin_lock_init(&pch->downl); 1982 rwlock_init(&pch->upl); 1983 spin_lock_bh(&all_channels_lock); 1984 pch->file.index = ++last_channel_index; 1985 list_add(&pch->list, &new_channels); 1986 atomic_inc(&channel_count); 1987 spin_unlock_bh(&all_channels_lock); 1988 return 0; 1989} 1990 1991/* 1992 * Return the index of a channel. 1993 */ 1994int ppp_channel_index(struct ppp_channel *chan) 1995{ 1996 struct channel *pch = chan->ppp; 1997 1998 if (pch != 0) 1999 return pch->file.index; 2000 return -1; 2001} 2002 2003/* 2004 * Return the PPP unit number to which a channel is connected. 2005 */ 2006int ppp_unit_number(struct ppp_channel *chan) 2007{ 2008 struct channel *pch = chan->ppp; 2009 int unit = -1; 2010 2011 if (pch != 0) { 2012 read_lock_bh(&pch->upl); 2013 if (pch->ppp != 0) 2014 unit = pch->ppp->file.index; 2015 read_unlock_bh(&pch->upl); 2016 } 2017 return unit; 2018} 2019 2020/* 2021 * Disconnect a channel from the generic layer. 2022 * This must be called in process context. 2023 */ 2024void 2025ppp_unregister_channel(struct ppp_channel *chan) 2026{ 2027 struct channel *pch = chan->ppp; 2028 2029 if (pch == 0) 2030 return; /* should never happen */ 2031 chan->ppp = NULL; 2032 2033 /* 2034 * This ensures that we have returned from any calls into the 2035 * the channel's start_xmit or ioctl routine before we proceed. 2036 */ 2037 down_write(&pch->chan_sem); 2038 spin_lock_bh(&pch->downl); 2039 pch->chan = NULL; 2040 spin_unlock_bh(&pch->downl); 2041 up_write(&pch->chan_sem); 2042 ppp_disconnect_channel(pch); 2043 spin_lock_bh(&all_channels_lock); 2044 list_del(&pch->list); 2045 spin_unlock_bh(&all_channels_lock); 2046 pch->file.dead = 1; 2047 wake_up_interruptible(&pch->file.rwait); 2048 if (atomic_dec_and_test(&pch->file.refcnt)) 2049 ppp_destroy_channel(pch); 2050} 2051 2052/* 2053 * Callback from a channel when it can accept more to transmit. 2054 * This should be called at BH/softirq level, not interrupt level. 2055 */ 2056void 2057ppp_output_wakeup(struct ppp_channel *chan) 2058{ 2059 struct channel *pch = chan->ppp; 2060 2061 if (pch == 0) 2062 return; 2063 ppp_channel_push(pch); 2064} 2065 2066/* 2067 * Compression control. 2068 */ 2069 2070/* Process the PPPIOCSCOMPRESS ioctl. */ 2071static int 2072ppp_set_compress(struct ppp *ppp, unsigned long arg) 2073{ 2074 int err; 2075 struct compressor *cp, *ocomp; 2076 struct ppp_option_data data; 2077 void *state, *ostate; 2078 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH]; 2079 2080 err = -EFAULT; 2081 if (copy_from_user(&data, (void __user *) arg, sizeof(data)) 2082 || (data.length <= CCP_MAX_OPTION_LENGTH 2083 && copy_from_user(ccp_option, (void __user *) data.ptr, data.length))) 2084 goto out; 2085 err = -EINVAL; 2086 if (data.length > CCP_MAX_OPTION_LENGTH 2087 || ccp_option[1] < 2 || ccp_option[1] > data.length) 2088 goto out; 2089 2090 cp = find_compressor(ccp_option[0]); 2091#ifdef CONFIG_KMOD 2092 if (cp == 0) { 2093 request_module("ppp-compress-%d", ccp_option[0]); 2094 cp = find_compressor(ccp_option[0]); 2095 } 2096#endif /* CONFIG_KMOD */ 2097 if (cp == 0) 2098 goto out; 2099 2100 err = -ENOBUFS; 2101 if (data.transmit) { 2102 state = cp->comp_alloc(ccp_option, data.length); 2103 if (state != 0) { 2104 ppp_xmit_lock(ppp); 2105 ppp->xstate &= ~SC_COMP_RUN; 2106 ocomp = ppp->xcomp; 2107 ostate = ppp->xc_state; 2108 ppp->xcomp = cp; 2109 ppp->xc_state = state; 2110 ppp_xmit_unlock(ppp); 2111 if (ostate != 0) { 2112 ocomp->comp_free(ostate); 2113 module_put(ocomp->owner); 2114 } 2115 err = 0; 2116 } else 2117 module_put(cp->owner); 2118 2119 } else { 2120 state = cp->decomp_alloc(ccp_option, data.length); 2121 if (state != 0) { 2122 ppp_recv_lock(ppp); 2123 ppp->rstate &= ~SC_DECOMP_RUN; 2124 ocomp = ppp->rcomp; 2125 ostate = ppp->rc_state; 2126 ppp->rcomp = cp; 2127 ppp->rc_state = state; 2128 ppp_recv_unlock(ppp); 2129 if (ostate != 0) { 2130 ocomp->decomp_free(ostate); 2131 module_put(ocomp->owner); 2132 } 2133 err = 0; 2134 } else 2135 module_put(cp->owner); 2136 } 2137 2138 out: 2139 return err; 2140} 2141 2142/* 2143 * Look at a CCP packet and update our state accordingly. 2144 * We assume the caller has the xmit or recv path locked. 2145 */ 2146static void 2147ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound) 2148{ 2149 unsigned char *dp; 2150 int len; 2151 2152 if (!pskb_may_pull(skb, CCP_HDRLEN + 2)) 2153 return; /* no header */ 2154 dp = skb->data + 2; 2155 2156 switch (CCP_CODE(dp)) { 2157 case CCP_CONFREQ: 2158 2159 /* A ConfReq starts negotiation of compression 2160 * in one direction of transmission, 2161 * and hence brings it down...but which way? 2162 * 2163 * Remember: 2164 * A ConfReq indicates what the sender would like to receive 2165 */ 2166 if(inbound) 2167 /* He is proposing what I should send */ 2168 ppp->xstate &= ~SC_COMP_RUN; 2169 else 2170 /* I am proposing to what he should send */ 2171 ppp->rstate &= ~SC_DECOMP_RUN; 2172 2173 break; 2174 2175 case CCP_TERMREQ: 2176 case CCP_TERMACK: 2177 /* 2178 * CCP is going down, both directions of transmission 2179 */ 2180 ppp->rstate &= ~SC_DECOMP_RUN; 2181 ppp->xstate &= ~SC_COMP_RUN; 2182 break; 2183 2184 case CCP_CONFACK: 2185 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN) 2186 break; 2187 len = CCP_LENGTH(dp); 2188 if (!pskb_may_pull(skb, len + 2)) 2189 return; /* too short */ 2190 dp += CCP_HDRLEN; 2191 len -= CCP_HDRLEN; 2192 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp)) 2193 break; 2194 if (inbound) { 2195 /* we will start receiving compressed packets */ 2196 if (ppp->rc_state == 0) 2197 break; 2198 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len, 2199 ppp->file.index, 0, ppp->mru, ppp->debug)) { 2200 ppp->rstate |= SC_DECOMP_RUN; 2201 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR); 2202 } 2203 } else { 2204 /* we will soon start sending compressed packets */ 2205 if (ppp->xc_state == 0) 2206 break; 2207 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len, 2208 ppp->file.index, 0, ppp->debug)) 2209 ppp->xstate |= SC_COMP_RUN; 2210 } 2211 break; 2212 2213 case CCP_RESETACK: 2214 /* reset the [de]compressor */ 2215 if ((ppp->flags & SC_CCP_UP) == 0) 2216 break; 2217 if (inbound) { 2218 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) { 2219 ppp->rcomp->decomp_reset(ppp->rc_state); 2220 ppp->rstate &= ~SC_DC_ERROR; 2221 } 2222 } else { 2223 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN)) 2224 ppp->xcomp->comp_reset(ppp->xc_state); 2225 } 2226 break; 2227 } 2228} 2229 2230/* Free up compression resources. */ 2231static void 2232ppp_ccp_closed(struct ppp *ppp) 2233{ 2234 void *xstate, *rstate; 2235 struct compressor *xcomp, *rcomp; 2236 2237 ppp_lock(ppp); 2238 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP); 2239 ppp->xstate = 0; 2240 xcomp = ppp->xcomp; 2241 xstate = ppp->xc_state; 2242 ppp->xc_state = NULL; 2243 ppp->rstate = 0; 2244 rcomp = ppp->rcomp; 2245 rstate = ppp->rc_state; 2246 ppp->rc_state = NULL; 2247 ppp_unlock(ppp); 2248 2249 if (xstate) { 2250 xcomp->comp_free(xstate); 2251 module_put(xcomp->owner); 2252 } 2253 if (rstate) { 2254 rcomp->decomp_free(rstate); 2255 module_put(rcomp->owner); 2256 } 2257} 2258 2259/* List of compressors. */ 2260static LIST_HEAD(compressor_list); 2261static DEFINE_SPINLOCK(compressor_list_lock); 2262 2263struct compressor_entry { 2264 struct list_head list; 2265 struct compressor *comp; 2266}; 2267 2268static struct compressor_entry * 2269find_comp_entry(int proto) 2270{ 2271 struct compressor_entry *ce; 2272 2273 list_for_each_entry(ce, &compressor_list, list) { 2274 if (ce->comp->compress_proto == proto) 2275 return ce; 2276 } 2277 return NULL; 2278} 2279 2280/* Register a compressor */ 2281int 2282ppp_register_compressor(struct compressor *cp) 2283{ 2284 struct compressor_entry *ce; 2285 int ret; 2286 spin_lock(&compressor_list_lock); 2287 ret = -EEXIST; 2288 if (find_comp_entry(cp->compress_proto) != 0) 2289 goto out; 2290 ret = -ENOMEM; 2291 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC); 2292 if (ce == 0) 2293 goto out; 2294 ret = 0; 2295 ce->comp = cp; 2296 list_add(&ce->list, &compressor_list); 2297 out: 2298 spin_unlock(&compressor_list_lock); 2299 return ret; 2300} 2301 2302/* Unregister a compressor */ 2303void 2304ppp_unregister_compressor(struct compressor *cp) 2305{ 2306 struct compressor_entry *ce; 2307 2308 spin_lock(&compressor_list_lock); 2309 ce = find_comp_entry(cp->compress_proto); 2310 if (ce != 0 && ce->comp == cp) { 2311 list_del(&ce->list); 2312 kfree(ce); 2313 } 2314 spin_unlock(&compressor_list_lock); 2315} 2316 2317/* Find a compressor. */ 2318static struct compressor * 2319find_compressor(int type) 2320{ 2321 struct compressor_entry *ce; 2322 struct compressor *cp = NULL; 2323 2324 spin_lock(&compressor_list_lock); 2325 ce = find_comp_entry(type); 2326 if (ce != 0) { 2327 cp = ce->comp; 2328 if (!try_module_get(cp->owner)) 2329 cp = NULL; 2330 } 2331 spin_unlock(&compressor_list_lock); 2332 return cp; 2333} 2334 2335/* 2336 * Miscelleneous stuff. 2337 */ 2338 2339static void 2340ppp_get_stats(struct ppp *ppp, struct ppp_stats *st) 2341{ 2342 struct slcompress *vj = ppp->vj; 2343 2344 memset(st, 0, sizeof(*st)); 2345 st->p.ppp_ipackets = ppp->stats.rx_packets; 2346 st->p.ppp_ierrors = ppp->stats.rx_errors; 2347 st->p.ppp_ibytes = ppp->stats.rx_bytes; 2348 st->p.ppp_opackets = ppp->stats.tx_packets; 2349 st->p.ppp_oerrors = ppp->stats.tx_errors; 2350 st->p.ppp_obytes = ppp->stats.tx_bytes; 2351 if (vj == 0) 2352 return; 2353 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed; 2354 st->vj.vjs_compressed = vj->sls_o_compressed; 2355 st->vj.vjs_searches = vj->sls_o_searches; 2356 st->vj.vjs_misses = vj->sls_o_misses; 2357 st->vj.vjs_errorin = vj->sls_i_error; 2358 st->vj.vjs_tossed = vj->sls_i_tossed; 2359 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed; 2360 st->vj.vjs_compressedin = vj->sls_i_compressed; 2361} 2362 2363/* 2364 * Stuff for handling the lists of ppp units and channels 2365 * and for initialization. 2366 */ 2367 2368/* 2369 * Create a new ppp interface unit. Fails if it can't allocate memory 2370 * or if there is already a unit with the requested number. 2371 * unit == -1 means allocate a new number. 2372 */ 2373static struct ppp * 2374ppp_create_interface(int unit, int *retp) 2375{ 2376 struct ppp *ppp; 2377 struct net_device *dev = NULL; 2378 int ret = -ENOMEM; 2379 int i; 2380 2381 ppp = kmalloc(sizeof(struct ppp), GFP_KERNEL); 2382 if (!ppp) 2383 goto out; 2384 dev = alloc_netdev(0, "", ppp_setup); 2385 if (!dev) 2386 goto out1; 2387 memset(ppp, 0, sizeof(struct ppp)); 2388 2389 ppp->mru = PPP_MRU; 2390 init_ppp_file(&ppp->file, INTERFACE); 2391 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */ 2392 for (i = 0; i < NUM_NP; ++i) 2393 ppp->npmode[i] = NPMODE_PASS; 2394 INIT_LIST_HEAD(&ppp->channels); 2395 spin_lock_init(&ppp->rlock); 2396 spin_lock_init(&ppp->wlock); 2397#ifdef CONFIG_PPP_MULTILINK 2398 ppp->minseq = -1; 2399 skb_queue_head_init(&ppp->mrq); 2400#endif /* CONFIG_PPP_MULTILINK */ 2401 ppp->dev = dev; 2402 dev->priv = ppp; 2403 2404 dev->hard_start_xmit = ppp_start_xmit; 2405 dev->get_stats = ppp_net_stats; 2406 dev->do_ioctl = ppp_net_ioctl; 2407 2408 ret = -EEXIST; 2409 down(&all_ppp_sem); 2410 if (unit < 0) 2411 unit = cardmap_find_first_free(all_ppp_units); 2412 else if (cardmap_get(all_ppp_units, unit) != NULL) 2413 goto out2; /* unit already exists */ 2414 2415 /* Initialize the new ppp unit */ 2416 ppp->file.index = unit; 2417 sprintf(dev->name, "ppp%d", unit); 2418 2419 ret = register_netdev(dev); 2420 if (ret != 0) { 2421 printk(KERN_ERR "PPP: couldn't register device %s (%d)\n", 2422 dev->name, ret); 2423 goto out2; 2424 } 2425 2426 atomic_inc(&ppp_unit_count); 2427 cardmap_set(&all_ppp_units, unit, ppp); 2428 up(&all_ppp_sem); 2429 *retp = 0; 2430 return ppp; 2431 2432out2: 2433 up(&all_ppp_sem); 2434 free_netdev(dev); 2435out1: 2436 kfree(ppp); 2437out: 2438 *retp = ret; 2439 return NULL; 2440} 2441 2442/* 2443 * Initialize a ppp_file structure. 2444 */ 2445static void 2446init_ppp_file(struct ppp_file *pf, int kind) 2447{ 2448 pf->kind = kind; 2449 skb_queue_head_init(&pf->xq); 2450 skb_queue_head_init(&pf->rq); 2451 atomic_set(&pf->refcnt, 1); 2452 init_waitqueue_head(&pf->rwait); 2453} 2454 2455/* 2456 * Take down a ppp interface unit - called when the owning file 2457 * (the one that created the unit) is closed or detached. 2458 */ 2459static void ppp_shutdown_interface(struct ppp *ppp) 2460{ 2461 struct net_device *dev; 2462 2463 down(&all_ppp_sem); 2464 ppp_lock(ppp); 2465 dev = ppp->dev; 2466 ppp->dev = NULL; 2467 ppp_unlock(ppp); 2468 /* This will call dev_close() for us. */ 2469 if (dev) { 2470 unregister_netdev(dev); 2471 free_netdev(dev); 2472 } 2473 cardmap_set(&all_ppp_units, ppp->file.index, NULL); 2474 ppp->file.dead = 1; 2475 ppp->owner = NULL; 2476 wake_up_interruptible(&ppp->file.rwait); 2477 up(&all_ppp_sem); 2478} 2479 2480/* 2481 * Free the memory used by a ppp unit. This is only called once 2482 * there are no channels connected to the unit and no file structs 2483 * that reference the unit. 2484 */ 2485static void ppp_destroy_interface(struct ppp *ppp) 2486{ 2487 atomic_dec(&ppp_unit_count); 2488 2489 if (!ppp->file.dead || ppp->n_channels) { 2490 /* "can't happen" */ 2491 printk(KERN_ERR "ppp: destroying ppp struct %p but dead=%d " 2492 "n_channels=%d !\n", ppp, ppp->file.dead, 2493 ppp->n_channels); 2494 return; 2495 } 2496 2497 ppp_ccp_closed(ppp); 2498 if (ppp->vj) { 2499 slhc_free(ppp->vj); 2500 ppp->vj = NULL; 2501 } 2502 skb_queue_purge(&ppp->file.xq); 2503 skb_queue_purge(&ppp->file.rq); 2504#ifdef CONFIG_PPP_MULTILINK 2505 skb_queue_purge(&ppp->mrq); 2506#endif /* CONFIG_PPP_MULTILINK */ 2507#ifdef CONFIG_PPP_FILTER 2508 kfree(ppp->pass_filter); 2509 ppp->pass_filter = NULL; 2510 kfree(ppp->active_filter); 2511 ppp->active_filter = NULL; 2512#endif /* CONFIG_PPP_FILTER */ 2513 2514 kfree(ppp); 2515} 2516 2517/* 2518 * Locate an existing ppp unit. 2519 * The caller should have locked the all_ppp_sem. 2520 */ 2521static struct ppp * 2522ppp_find_unit(int unit) 2523{ 2524 return cardmap_get(all_ppp_units, unit); 2525} 2526 2527/* 2528 * Locate an existing ppp channel. 2529 * The caller should have locked the all_channels_lock. 2530 * First we look in the new_channels list, then in the 2531 * all_channels list. If found in the new_channels list, 2532 * we move it to the all_channels list. This is for speed 2533 * when we have a lot of channels in use. 2534 */ 2535static struct channel * 2536ppp_find_channel(int unit) 2537{ 2538 struct channel *pch; 2539 2540 list_for_each_entry(pch, &new_channels, list) { 2541 if (pch->file.index == unit) { 2542 list_del(&pch->list); 2543 list_add(&pch->list, &all_channels); 2544 return pch; 2545 } 2546 } 2547 list_for_each_entry(pch, &all_channels, list) { 2548 if (pch->file.index == unit) 2549 return pch; 2550 } 2551 return NULL; 2552} 2553 2554/* 2555 * Connect a PPP channel to a PPP interface unit. 2556 */ 2557static int 2558ppp_connect_channel(struct channel *pch, int unit) 2559{ 2560 struct ppp *ppp; 2561 int ret = -ENXIO; 2562 int hdrlen; 2563 2564 down(&all_ppp_sem); 2565 ppp = ppp_find_unit(unit); 2566 if (ppp == 0) 2567 goto out; 2568 write_lock_bh(&pch->upl); 2569 ret = -EINVAL; 2570 if (pch->ppp != 0) 2571 goto outl; 2572 2573 ppp_lock(ppp); 2574 if (pch->file.hdrlen > ppp->file.hdrlen) 2575 ppp->file.hdrlen = pch->file.hdrlen; 2576 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */ 2577 if (ppp->dev && hdrlen > ppp->dev->hard_header_len) 2578 ppp->dev->hard_header_len = hdrlen; 2579 list_add_tail(&pch->clist, &ppp->channels); 2580 ++ppp->n_channels; 2581 pch->ppp = ppp; 2582 atomic_inc(&ppp->file.refcnt); 2583 ppp_unlock(ppp); 2584 ret = 0; 2585 2586 outl: 2587 write_unlock_bh(&pch->upl); 2588 out: 2589 up(&all_ppp_sem); 2590 return ret; 2591} 2592 2593/* 2594 * Disconnect a channel from its ppp unit. 2595 */ 2596static int 2597ppp_disconnect_channel(struct channel *pch) 2598{ 2599 struct ppp *ppp; 2600 int err = -EINVAL; 2601 2602 write_lock_bh(&pch->upl); 2603 ppp = pch->ppp; 2604 pch->ppp = NULL; 2605 write_unlock_bh(&pch->upl); 2606 if (ppp != 0) { 2607 /* remove it from the ppp unit's list */ 2608 ppp_lock(ppp); 2609 list_del(&pch->clist); 2610 if (--ppp->n_channels == 0) 2611 wake_up_interruptible(&ppp->file.rwait); 2612 ppp_unlock(ppp); 2613 if (atomic_dec_and_test(&ppp->file.refcnt)) 2614 ppp_destroy_interface(ppp); 2615 err = 0; 2616 } 2617 return err; 2618} 2619 2620/* 2621 * Free up the resources used by a ppp channel. 2622 */ 2623static void ppp_destroy_channel(struct channel *pch) 2624{ 2625 atomic_dec(&channel_count); 2626 2627 if (!pch->file.dead) { 2628 /* "can't happen" */ 2629 printk(KERN_ERR "ppp: destroying undead channel %p !\n", 2630 pch); 2631 return; 2632 } 2633 skb_queue_purge(&pch->file.xq); 2634 skb_queue_purge(&pch->file.rq); 2635 kfree(pch); 2636} 2637 2638static void __exit ppp_cleanup(void) 2639{ 2640 /* should never happen */ 2641 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count)) 2642 printk(KERN_ERR "PPP: removing module but units remain!\n"); 2643 cardmap_destroy(&all_ppp_units); 2644 if (unregister_chrdev(PPP_MAJOR, "ppp") != 0) 2645 printk(KERN_ERR "PPP: failed to unregister PPP device\n"); 2646 devfs_remove("ppp"); 2647 class_device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0)); 2648 class_destroy(ppp_class); 2649} 2650 2651/* 2652 * Cardmap implementation. 2653 */ 2654static void *cardmap_get(struct cardmap *map, unsigned int nr) 2655{ 2656 struct cardmap *p; 2657 int i; 2658 2659 for (p = map; p != NULL; ) { 2660 if ((i = nr >> p->shift) >= CARDMAP_WIDTH) 2661 return NULL; 2662 if (p->shift == 0) 2663 return p->ptr[i]; 2664 nr &= ~(CARDMAP_MASK << p->shift); 2665 p = p->ptr[i]; 2666 } 2667 return NULL; 2668} 2669 2670static void cardmap_set(struct cardmap **pmap, unsigned int nr, void *ptr) 2671{ 2672 struct cardmap *p; 2673 int i; 2674 2675 p = *pmap; 2676 if (p == NULL || (nr >> p->shift) >= CARDMAP_WIDTH) { 2677 do { 2678 /* need a new top level */ 2679 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL); 2680 memset(np, 0, sizeof(*np)); 2681 np->ptr[0] = p; 2682 if (p != NULL) { 2683 np->shift = p->shift + CARDMAP_ORDER; 2684 p->parent = np; 2685 } else 2686 np->shift = 0; 2687 p = np; 2688 } while ((nr >> p->shift) >= CARDMAP_WIDTH); 2689 *pmap = p; 2690 } 2691 while (p->shift > 0) { 2692 i = (nr >> p->shift) & CARDMAP_MASK; 2693 if (p->ptr[i] == NULL) { 2694 struct cardmap *np = kmalloc(sizeof(*np), GFP_KERNEL); 2695 memset(np, 0, sizeof(*np)); 2696 np->shift = p->shift - CARDMAP_ORDER; 2697 np->parent = p; 2698 p->ptr[i] = np; 2699 } 2700 if (ptr == NULL) 2701 clear_bit(i, &p->inuse); 2702 p = p->ptr[i]; 2703 } 2704 i = nr & CARDMAP_MASK; 2705 p->ptr[i] = ptr; 2706 if (ptr != NULL) 2707 set_bit(i, &p->inuse); 2708 else 2709 clear_bit(i, &p->inuse); 2710} 2711 2712static unsigned int cardmap_find_first_free(struct cardmap *map) 2713{ 2714 struct cardmap *p; 2715 unsigned int nr = 0; 2716 int i; 2717 2718 if ((p = map) == NULL) 2719 return 0; 2720 for (;;) { 2721 i = find_first_zero_bit(&p->inuse, CARDMAP_WIDTH); 2722 if (i >= CARDMAP_WIDTH) { 2723 if (p->parent == NULL) 2724 return CARDMAP_WIDTH << p->shift; 2725 p = p->parent; 2726 i = (nr >> p->shift) & CARDMAP_MASK; 2727 set_bit(i, &p->inuse); 2728 continue; 2729 } 2730 nr = (nr & (~CARDMAP_MASK << p->shift)) | (i << p->shift); 2731 if (p->shift == 0 || p->ptr[i] == NULL) 2732 return nr; 2733 p = p->ptr[i]; 2734 } 2735} 2736 2737static void cardmap_destroy(struct cardmap **pmap) 2738{ 2739 struct cardmap *p, *np; 2740 int i; 2741 2742 for (p = *pmap; p != NULL; p = np) { 2743 if (p->shift != 0) { 2744 for (i = 0; i < CARDMAP_WIDTH; ++i) 2745 if (p->ptr[i] != NULL) 2746 break; 2747 if (i < CARDMAP_WIDTH) { 2748 np = p->ptr[i]; 2749 p->ptr[i] = NULL; 2750 continue; 2751 } 2752 } 2753 np = p->parent; 2754 kfree(p); 2755 } 2756 *pmap = NULL; 2757} 2758 2759/* Module/initialization stuff */ 2760 2761module_init(ppp_init); 2762module_exit(ppp_cleanup); 2763 2764EXPORT_SYMBOL(ppp_register_channel); 2765EXPORT_SYMBOL(ppp_unregister_channel); 2766EXPORT_SYMBOL(ppp_channel_index); 2767EXPORT_SYMBOL(ppp_unit_number); 2768EXPORT_SYMBOL(ppp_input); 2769EXPORT_SYMBOL(ppp_input_error); 2770EXPORT_SYMBOL(ppp_output_wakeup); 2771EXPORT_SYMBOL(ppp_register_compressor); 2772EXPORT_SYMBOL(ppp_unregister_compressor); 2773MODULE_LICENSE("GPL"); 2774MODULE_ALIAS_CHARDEV_MAJOR(PPP_MAJOR); 2775MODULE_ALIAS("/dev/ppp");