at v2.6.14-rc2 2606 lines 78 kB view raw
1/* 2 * forcedeth: Ethernet driver for NVIDIA nForce media access controllers. 3 * 4 * Note: This driver is a cleanroom reimplementation based on reverse 5 * engineered documentation written by Carl-Daniel Hailfinger 6 * and Andrew de Quincey. It's neither supported nor endorsed 7 * by NVIDIA Corp. Use at your own risk. 8 * 9 * NVIDIA, nForce and other NVIDIA marks are trademarks or registered 10 * trademarks of NVIDIA Corporation in the United States and other 11 * countries. 12 * 13 * Copyright (C) 2003,4 Manfred Spraul 14 * Copyright (C) 2004 Andrew de Quincey (wol support) 15 * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane 16 * IRQ rate fixes, bigendian fixes, cleanups, verification) 17 * Copyright (c) 2004 NVIDIA Corporation 18 * 19 * This program is free software; you can redistribute it and/or modify 20 * it under the terms of the GNU General Public License as published by 21 * the Free Software Foundation; either version 2 of the License, or 22 * (at your option) any later version. 23 * 24 * This program is distributed in the hope that it will be useful, 25 * but WITHOUT ANY WARRANTY; without even the implied warranty of 26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 27 * GNU General Public License for more details. 28 * 29 * You should have received a copy of the GNU General Public License 30 * along with this program; if not, write to the Free Software 31 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 32 * 33 * Changelog: 34 * 0.01: 05 Oct 2003: First release that compiles without warnings. 35 * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs. 36 * Check all PCI BARs for the register window. 37 * udelay added to mii_rw. 38 * 0.03: 06 Oct 2003: Initialize dev->irq. 39 * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks. 40 * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout. 41 * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated, 42 * irq mask updated 43 * 0.07: 14 Oct 2003: Further irq mask updates. 44 * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill 45 * added into irq handler, NULL check for drain_ring. 46 * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the 47 * requested interrupt sources. 48 * 0.10: 20 Oct 2003: First cleanup for release. 49 * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased. 50 * MAC Address init fix, set_multicast cleanup. 51 * 0.12: 23 Oct 2003: Cleanups for release. 52 * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10. 53 * Set link speed correctly. start rx before starting 54 * tx (nv_start_rx sets the link speed). 55 * 0.14: 25 Oct 2003: Nic dependant irq mask. 56 * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during 57 * open. 58 * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size 59 * increased to 1628 bytes. 60 * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from 61 * the tx length. 62 * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats 63 * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac 64 * addresses, really stop rx if already running 65 * in nv_start_rx, clean up a bit. 66 * 0.20: 07 Dec 2003: alloc fixes 67 * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix. 68 * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup 69 * on close. 70 * 0.23: 26 Jan 2004: various small cleanups 71 * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces 72 * 0.25: 09 Mar 2004: wol support 73 * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes 74 * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings, 75 * added CK804/MCP04 device IDs, code fixes 76 * for registers, link status and other minor fixes. 77 * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe 78 * 0.29: 31 Aug 2004: Add backup timer for link change notification. 79 * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset 80 * into nv_close, otherwise reenabling for wol can 81 * cause DMA to kfree'd memory. 82 * 0.31: 14 Nov 2004: ethtool support for getting/setting link 83 * capabilities. 84 * 0.32: 16 Apr 2005: RX_ERROR4 handling added. 85 * 0.33: 16 May 2005: Support for MCP51 added. 86 * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics. 87 * 0.35: 26 Jun 2005: Support for MCP55 added. 88 * 0.36: 28 Jun 2005: Add jumbo frame support. 89 * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list 90 * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of 91 * per-packet flags. 92 * 0.39: 18 Jul 2005: Add 64bit descriptor support. 93 * 0.40: 19 Jul 2005: Add support for mac address change. 94 * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead 95 * of nv_remove 96 * 0.42: 06 Aug 2005: Fix lack of link speed initialization 97 * in the second (and later) nv_open call 98 * 99 * Known bugs: 100 * We suspect that on some hardware no TX done interrupts are generated. 101 * This means recovery from netif_stop_queue only happens if the hw timer 102 * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT) 103 * and the timer is active in the IRQMask, or if a rx packet arrives by chance. 104 * If your hardware reliably generates tx done interrupts, then you can remove 105 * DEV_NEED_TIMERIRQ from the driver_data flags. 106 * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few 107 * superfluous timer interrupts from the nic. 108 */ 109#define FORCEDETH_VERSION "0.41" 110#define DRV_NAME "forcedeth" 111 112#include <linux/module.h> 113#include <linux/types.h> 114#include <linux/pci.h> 115#include <linux/interrupt.h> 116#include <linux/netdevice.h> 117#include <linux/etherdevice.h> 118#include <linux/delay.h> 119#include <linux/spinlock.h> 120#include <linux/ethtool.h> 121#include <linux/timer.h> 122#include <linux/skbuff.h> 123#include <linux/mii.h> 124#include <linux/random.h> 125#include <linux/init.h> 126#include <linux/if_vlan.h> 127 128#include <asm/irq.h> 129#include <asm/io.h> 130#include <asm/uaccess.h> 131#include <asm/system.h> 132 133#if 0 134#define dprintk printk 135#else 136#define dprintk(x...) do { } while (0) 137#endif 138 139 140/* 141 * Hardware access: 142 */ 143 144#define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */ 145#define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */ 146#define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */ 147#define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */ 148 149enum { 150 NvRegIrqStatus = 0x000, 151#define NVREG_IRQSTAT_MIIEVENT 0x040 152#define NVREG_IRQSTAT_MASK 0x1ff 153 NvRegIrqMask = 0x004, 154#define NVREG_IRQ_RX_ERROR 0x0001 155#define NVREG_IRQ_RX 0x0002 156#define NVREG_IRQ_RX_NOBUF 0x0004 157#define NVREG_IRQ_TX_ERR 0x0008 158#define NVREG_IRQ_TX_OK 0x0010 159#define NVREG_IRQ_TIMER 0x0020 160#define NVREG_IRQ_LINK 0x0040 161#define NVREG_IRQ_TX_ERROR 0x0080 162#define NVREG_IRQ_TX1 0x0100 163#define NVREG_IRQMASK_WANTED 0x00df 164 165#define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \ 166 NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_TX_ERROR| \ 167 NVREG_IRQ_TX1)) 168 169 NvRegUnknownSetupReg6 = 0x008, 170#define NVREG_UNKSETUP6_VAL 3 171 172/* 173 * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic 174 * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms 175 */ 176 NvRegPollingInterval = 0x00c, 177#define NVREG_POLL_DEFAULT 970 178 NvRegMisc1 = 0x080, 179#define NVREG_MISC1_HD 0x02 180#define NVREG_MISC1_FORCE 0x3b0f3c 181 182 NvRegTransmitterControl = 0x084, 183#define NVREG_XMITCTL_START 0x01 184 NvRegTransmitterStatus = 0x088, 185#define NVREG_XMITSTAT_BUSY 0x01 186 187 NvRegPacketFilterFlags = 0x8c, 188#define NVREG_PFF_ALWAYS 0x7F0008 189#define NVREG_PFF_PROMISC 0x80 190#define NVREG_PFF_MYADDR 0x20 191 192 NvRegOffloadConfig = 0x90, 193#define NVREG_OFFLOAD_HOMEPHY 0x601 194#define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE 195 NvRegReceiverControl = 0x094, 196#define NVREG_RCVCTL_START 0x01 197 NvRegReceiverStatus = 0x98, 198#define NVREG_RCVSTAT_BUSY 0x01 199 200 NvRegRandomSeed = 0x9c, 201#define NVREG_RNDSEED_MASK 0x00ff 202#define NVREG_RNDSEED_FORCE 0x7f00 203#define NVREG_RNDSEED_FORCE2 0x2d00 204#define NVREG_RNDSEED_FORCE3 0x7400 205 206 NvRegUnknownSetupReg1 = 0xA0, 207#define NVREG_UNKSETUP1_VAL 0x16070f 208 NvRegUnknownSetupReg2 = 0xA4, 209#define NVREG_UNKSETUP2_VAL 0x16 210 NvRegMacAddrA = 0xA8, 211 NvRegMacAddrB = 0xAC, 212 NvRegMulticastAddrA = 0xB0, 213#define NVREG_MCASTADDRA_FORCE 0x01 214 NvRegMulticastAddrB = 0xB4, 215 NvRegMulticastMaskA = 0xB8, 216 NvRegMulticastMaskB = 0xBC, 217 218 NvRegPhyInterface = 0xC0, 219#define PHY_RGMII 0x10000000 220 221 NvRegTxRingPhysAddr = 0x100, 222 NvRegRxRingPhysAddr = 0x104, 223 NvRegRingSizes = 0x108, 224#define NVREG_RINGSZ_TXSHIFT 0 225#define NVREG_RINGSZ_RXSHIFT 16 226 NvRegUnknownTransmitterReg = 0x10c, 227 NvRegLinkSpeed = 0x110, 228#define NVREG_LINKSPEED_FORCE 0x10000 229#define NVREG_LINKSPEED_10 1000 230#define NVREG_LINKSPEED_100 100 231#define NVREG_LINKSPEED_1000 50 232#define NVREG_LINKSPEED_MASK (0xFFF) 233 NvRegUnknownSetupReg5 = 0x130, 234#define NVREG_UNKSETUP5_BIT31 (1<<31) 235 NvRegUnknownSetupReg3 = 0x13c, 236#define NVREG_UNKSETUP3_VAL1 0x200010 237 NvRegTxRxControl = 0x144, 238#define NVREG_TXRXCTL_KICK 0x0001 239#define NVREG_TXRXCTL_BIT1 0x0002 240#define NVREG_TXRXCTL_BIT2 0x0004 241#define NVREG_TXRXCTL_IDLE 0x0008 242#define NVREG_TXRXCTL_RESET 0x0010 243#define NVREG_TXRXCTL_RXCHECK 0x0400 244 NvRegMIIStatus = 0x180, 245#define NVREG_MIISTAT_ERROR 0x0001 246#define NVREG_MIISTAT_LINKCHANGE 0x0008 247#define NVREG_MIISTAT_MASK 0x000f 248#define NVREG_MIISTAT_MASK2 0x000f 249 NvRegUnknownSetupReg4 = 0x184, 250#define NVREG_UNKSETUP4_VAL 8 251 252 NvRegAdapterControl = 0x188, 253#define NVREG_ADAPTCTL_START 0x02 254#define NVREG_ADAPTCTL_LINKUP 0x04 255#define NVREG_ADAPTCTL_PHYVALID 0x40000 256#define NVREG_ADAPTCTL_RUNNING 0x100000 257#define NVREG_ADAPTCTL_PHYSHIFT 24 258 NvRegMIISpeed = 0x18c, 259#define NVREG_MIISPEED_BIT8 (1<<8) 260#define NVREG_MIIDELAY 5 261 NvRegMIIControl = 0x190, 262#define NVREG_MIICTL_INUSE 0x08000 263#define NVREG_MIICTL_WRITE 0x00400 264#define NVREG_MIICTL_ADDRSHIFT 5 265 NvRegMIIData = 0x194, 266 NvRegWakeUpFlags = 0x200, 267#define NVREG_WAKEUPFLAGS_VAL 0x7770 268#define NVREG_WAKEUPFLAGS_BUSYSHIFT 24 269#define NVREG_WAKEUPFLAGS_ENABLESHIFT 16 270#define NVREG_WAKEUPFLAGS_D3SHIFT 12 271#define NVREG_WAKEUPFLAGS_D2SHIFT 8 272#define NVREG_WAKEUPFLAGS_D1SHIFT 4 273#define NVREG_WAKEUPFLAGS_D0SHIFT 0 274#define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01 275#define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02 276#define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04 277#define NVREG_WAKEUPFLAGS_ENABLE 0x1111 278 279 NvRegPatternCRC = 0x204, 280 NvRegPatternMask = 0x208, 281 NvRegPowerCap = 0x268, 282#define NVREG_POWERCAP_D3SUPP (1<<30) 283#define NVREG_POWERCAP_D2SUPP (1<<26) 284#define NVREG_POWERCAP_D1SUPP (1<<25) 285 NvRegPowerState = 0x26c, 286#define NVREG_POWERSTATE_POWEREDUP 0x8000 287#define NVREG_POWERSTATE_VALID 0x0100 288#define NVREG_POWERSTATE_MASK 0x0003 289#define NVREG_POWERSTATE_D0 0x0000 290#define NVREG_POWERSTATE_D1 0x0001 291#define NVREG_POWERSTATE_D2 0x0002 292#define NVREG_POWERSTATE_D3 0x0003 293}; 294 295/* Big endian: should work, but is untested */ 296struct ring_desc { 297 u32 PacketBuffer; 298 u32 FlagLen; 299}; 300 301struct ring_desc_ex { 302 u32 PacketBufferHigh; 303 u32 PacketBufferLow; 304 u32 Reserved; 305 u32 FlagLen; 306}; 307 308typedef union _ring_type { 309 struct ring_desc* orig; 310 struct ring_desc_ex* ex; 311} ring_type; 312 313#define FLAG_MASK_V1 0xffff0000 314#define FLAG_MASK_V2 0xffffc000 315#define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1) 316#define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2) 317 318#define NV_TX_LASTPACKET (1<<16) 319#define NV_TX_RETRYERROR (1<<19) 320#define NV_TX_FORCED_INTERRUPT (1<<24) 321#define NV_TX_DEFERRED (1<<26) 322#define NV_TX_CARRIERLOST (1<<27) 323#define NV_TX_LATECOLLISION (1<<28) 324#define NV_TX_UNDERFLOW (1<<29) 325#define NV_TX_ERROR (1<<30) 326#define NV_TX_VALID (1<<31) 327 328#define NV_TX2_LASTPACKET (1<<29) 329#define NV_TX2_RETRYERROR (1<<18) 330#define NV_TX2_FORCED_INTERRUPT (1<<30) 331#define NV_TX2_DEFERRED (1<<25) 332#define NV_TX2_CARRIERLOST (1<<26) 333#define NV_TX2_LATECOLLISION (1<<27) 334#define NV_TX2_UNDERFLOW (1<<28) 335/* error and valid are the same for both */ 336#define NV_TX2_ERROR (1<<30) 337#define NV_TX2_VALID (1<<31) 338 339#define NV_RX_DESCRIPTORVALID (1<<16) 340#define NV_RX_MISSEDFRAME (1<<17) 341#define NV_RX_SUBSTRACT1 (1<<18) 342#define NV_RX_ERROR1 (1<<23) 343#define NV_RX_ERROR2 (1<<24) 344#define NV_RX_ERROR3 (1<<25) 345#define NV_RX_ERROR4 (1<<26) 346#define NV_RX_CRCERR (1<<27) 347#define NV_RX_OVERFLOW (1<<28) 348#define NV_RX_FRAMINGERR (1<<29) 349#define NV_RX_ERROR (1<<30) 350#define NV_RX_AVAIL (1<<31) 351 352#define NV_RX2_CHECKSUMMASK (0x1C000000) 353#define NV_RX2_CHECKSUMOK1 (0x10000000) 354#define NV_RX2_CHECKSUMOK2 (0x14000000) 355#define NV_RX2_CHECKSUMOK3 (0x18000000) 356#define NV_RX2_DESCRIPTORVALID (1<<29) 357#define NV_RX2_SUBSTRACT1 (1<<25) 358#define NV_RX2_ERROR1 (1<<18) 359#define NV_RX2_ERROR2 (1<<19) 360#define NV_RX2_ERROR3 (1<<20) 361#define NV_RX2_ERROR4 (1<<21) 362#define NV_RX2_CRCERR (1<<22) 363#define NV_RX2_OVERFLOW (1<<23) 364#define NV_RX2_FRAMINGERR (1<<24) 365/* error and avail are the same for both */ 366#define NV_RX2_ERROR (1<<30) 367#define NV_RX2_AVAIL (1<<31) 368 369/* Miscelaneous hardware related defines: */ 370#define NV_PCI_REGSZ 0x270 371 372/* various timeout delays: all in usec */ 373#define NV_TXRX_RESET_DELAY 4 374#define NV_TXSTOP_DELAY1 10 375#define NV_TXSTOP_DELAY1MAX 500000 376#define NV_TXSTOP_DELAY2 100 377#define NV_RXSTOP_DELAY1 10 378#define NV_RXSTOP_DELAY1MAX 500000 379#define NV_RXSTOP_DELAY2 100 380#define NV_SETUP5_DELAY 5 381#define NV_SETUP5_DELAYMAX 50000 382#define NV_POWERUP_DELAY 5 383#define NV_POWERUP_DELAYMAX 5000 384#define NV_MIIBUSY_DELAY 50 385#define NV_MIIPHY_DELAY 10 386#define NV_MIIPHY_DELAYMAX 10000 387 388#define NV_WAKEUPPATTERNS 5 389#define NV_WAKEUPMASKENTRIES 4 390 391/* General driver defaults */ 392#define NV_WATCHDOG_TIMEO (5*HZ) 393 394#define RX_RING 128 395#define TX_RING 64 396/* 397 * If your nic mysteriously hangs then try to reduce the limits 398 * to 1/0: It might be required to set NV_TX_LASTPACKET in the 399 * last valid ring entry. But this would be impossible to 400 * implement - probably a disassembly error. 401 */ 402#define TX_LIMIT_STOP 63 403#define TX_LIMIT_START 62 404 405/* rx/tx mac addr + type + vlan + align + slack*/ 406#define NV_RX_HEADERS (64) 407/* even more slack. */ 408#define NV_RX_ALLOC_PAD (64) 409 410/* maximum mtu size */ 411#define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */ 412#define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */ 413 414#define OOM_REFILL (1+HZ/20) 415#define POLL_WAIT (1+HZ/100) 416#define LINK_TIMEOUT (3*HZ) 417 418/* 419 * desc_ver values: 420 * This field has two purposes: 421 * - Newer nics uses a different ring layout. The layout is selected by 422 * comparing np->desc_ver with DESC_VER_xy. 423 * - It contains bits that are forced on when writing to NvRegTxRxControl. 424 */ 425#define DESC_VER_1 0x0 426#define DESC_VER_2 (0x02100|NVREG_TXRXCTL_RXCHECK) 427#define DESC_VER_3 (0x02200|NVREG_TXRXCTL_RXCHECK) 428 429/* PHY defines */ 430#define PHY_OUI_MARVELL 0x5043 431#define PHY_OUI_CICADA 0x03f1 432#define PHYID1_OUI_MASK 0x03ff 433#define PHYID1_OUI_SHFT 6 434#define PHYID2_OUI_MASK 0xfc00 435#define PHYID2_OUI_SHFT 10 436#define PHY_INIT1 0x0f000 437#define PHY_INIT2 0x0e00 438#define PHY_INIT3 0x01000 439#define PHY_INIT4 0x0200 440#define PHY_INIT5 0x0004 441#define PHY_INIT6 0x02000 442#define PHY_GIGABIT 0x0100 443 444#define PHY_TIMEOUT 0x1 445#define PHY_ERROR 0x2 446 447#define PHY_100 0x1 448#define PHY_1000 0x2 449#define PHY_HALF 0x100 450 451/* FIXME: MII defines that should be added to <linux/mii.h> */ 452#define MII_1000BT_CR 0x09 453#define MII_1000BT_SR 0x0a 454#define ADVERTISE_1000FULL 0x0200 455#define ADVERTISE_1000HALF 0x0100 456#define LPA_1000FULL 0x0800 457#define LPA_1000HALF 0x0400 458 459 460/* 461 * SMP locking: 462 * All hardware access under dev->priv->lock, except the performance 463 * critical parts: 464 * - rx is (pseudo-) lockless: it relies on the single-threading provided 465 * by the arch code for interrupts. 466 * - tx setup is lockless: it relies on dev->xmit_lock. Actual submission 467 * needs dev->priv->lock :-( 468 * - set_multicast_list: preparation lockless, relies on dev->xmit_lock. 469 */ 470 471/* in dev: base, irq */ 472struct fe_priv { 473 spinlock_t lock; 474 475 /* General data: 476 * Locking: spin_lock(&np->lock); */ 477 struct net_device_stats stats; 478 int in_shutdown; 479 u32 linkspeed; 480 int duplex; 481 int autoneg; 482 int fixed_mode; 483 int phyaddr; 484 int wolenabled; 485 unsigned int phy_oui; 486 u16 gigabit; 487 488 /* General data: RO fields */ 489 dma_addr_t ring_addr; 490 struct pci_dev *pci_dev; 491 u32 orig_mac[2]; 492 u32 irqmask; 493 u32 desc_ver; 494 495 void __iomem *base; 496 497 /* rx specific fields. 498 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 499 */ 500 ring_type rx_ring; 501 unsigned int cur_rx, refill_rx; 502 struct sk_buff *rx_skbuff[RX_RING]; 503 dma_addr_t rx_dma[RX_RING]; 504 unsigned int rx_buf_sz; 505 unsigned int pkt_limit; 506 struct timer_list oom_kick; 507 struct timer_list nic_poll; 508 509 /* media detection workaround. 510 * Locking: Within irq hander or disable_irq+spin_lock(&np->lock); 511 */ 512 int need_linktimer; 513 unsigned long link_timeout; 514 /* 515 * tx specific fields. 516 */ 517 ring_type tx_ring; 518 unsigned int next_tx, nic_tx; 519 struct sk_buff *tx_skbuff[TX_RING]; 520 dma_addr_t tx_dma[TX_RING]; 521 u32 tx_flags; 522}; 523 524/* 525 * Maximum number of loops until we assume that a bit in the irq mask 526 * is stuck. Overridable with module param. 527 */ 528static int max_interrupt_work = 5; 529 530static inline struct fe_priv *get_nvpriv(struct net_device *dev) 531{ 532 return netdev_priv(dev); 533} 534 535static inline u8 __iomem *get_hwbase(struct net_device *dev) 536{ 537 return get_nvpriv(dev)->base; 538} 539 540static inline void pci_push(u8 __iomem *base) 541{ 542 /* force out pending posted writes */ 543 readl(base); 544} 545 546static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v) 547{ 548 return le32_to_cpu(prd->FlagLen) 549 & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2); 550} 551 552static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v) 553{ 554 return le32_to_cpu(prd->FlagLen) & LEN_MASK_V2; 555} 556 557static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target, 558 int delay, int delaymax, const char *msg) 559{ 560 u8 __iomem *base = get_hwbase(dev); 561 562 pci_push(base); 563 do { 564 udelay(delay); 565 delaymax -= delay; 566 if (delaymax < 0) { 567 if (msg) 568 printk(msg); 569 return 1; 570 } 571 } while ((readl(base + offset) & mask) != target); 572 return 0; 573} 574 575#define MII_READ (-1) 576/* mii_rw: read/write a register on the PHY. 577 * 578 * Caller must guarantee serialization 579 */ 580static int mii_rw(struct net_device *dev, int addr, int miireg, int value) 581{ 582 u8 __iomem *base = get_hwbase(dev); 583 u32 reg; 584 int retval; 585 586 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus); 587 588 reg = readl(base + NvRegMIIControl); 589 if (reg & NVREG_MIICTL_INUSE) { 590 writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl); 591 udelay(NV_MIIBUSY_DELAY); 592 } 593 594 reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg; 595 if (value != MII_READ) { 596 writel(value, base + NvRegMIIData); 597 reg |= NVREG_MIICTL_WRITE; 598 } 599 writel(reg, base + NvRegMIIControl); 600 601 if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0, 602 NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) { 603 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n", 604 dev->name, miireg, addr); 605 retval = -1; 606 } else if (value != MII_READ) { 607 /* it was a write operation - fewer failures are detectable */ 608 dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n", 609 dev->name, value, miireg, addr); 610 retval = 0; 611 } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) { 612 dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n", 613 dev->name, miireg, addr); 614 retval = -1; 615 } else { 616 retval = readl(base + NvRegMIIData); 617 dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n", 618 dev->name, miireg, addr, retval); 619 } 620 621 return retval; 622} 623 624static int phy_reset(struct net_device *dev) 625{ 626 struct fe_priv *np = get_nvpriv(dev); 627 u32 miicontrol; 628 unsigned int tries = 0; 629 630 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 631 miicontrol |= BMCR_RESET; 632 if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) { 633 return -1; 634 } 635 636 /* wait for 500ms */ 637 msleep(500); 638 639 /* must wait till reset is deasserted */ 640 while (miicontrol & BMCR_RESET) { 641 msleep(10); 642 miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 643 /* FIXME: 100 tries seem excessive */ 644 if (tries++ > 100) 645 return -1; 646 } 647 return 0; 648} 649 650static int phy_init(struct net_device *dev) 651{ 652 struct fe_priv *np = get_nvpriv(dev); 653 u8 __iomem *base = get_hwbase(dev); 654 u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg; 655 656 /* set advertise register */ 657 reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 658 reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|0x800|0x400); 659 if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) { 660 printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev)); 661 return PHY_ERROR; 662 } 663 664 /* get phy interface type */ 665 phyinterface = readl(base + NvRegPhyInterface); 666 667 /* see if gigabit phy */ 668 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 669 if (mii_status & PHY_GIGABIT) { 670 np->gigabit = PHY_GIGABIT; 671 mii_control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 672 mii_control_1000 &= ~ADVERTISE_1000HALF; 673 if (phyinterface & PHY_RGMII) 674 mii_control_1000 |= ADVERTISE_1000FULL; 675 else 676 mii_control_1000 &= ~ADVERTISE_1000FULL; 677 678 if (mii_rw(dev, np->phyaddr, MII_1000BT_CR, mii_control_1000)) { 679 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); 680 return PHY_ERROR; 681 } 682 } 683 else 684 np->gigabit = 0; 685 686 /* reset the phy */ 687 if (phy_reset(dev)) { 688 printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev)); 689 return PHY_ERROR; 690 } 691 692 /* phy vendor specific configuration */ 693 if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) { 694 phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ); 695 phy_reserved &= ~(PHY_INIT1 | PHY_INIT2); 696 phy_reserved |= (PHY_INIT3 | PHY_INIT4); 697 if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) { 698 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); 699 return PHY_ERROR; 700 } 701 phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ); 702 phy_reserved |= PHY_INIT5; 703 if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) { 704 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); 705 return PHY_ERROR; 706 } 707 } 708 if (np->phy_oui == PHY_OUI_CICADA) { 709 phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ); 710 phy_reserved |= PHY_INIT6; 711 if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) { 712 printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev)); 713 return PHY_ERROR; 714 } 715 } 716 717 /* restart auto negotiation */ 718 mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 719 mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE); 720 if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) { 721 return PHY_ERROR; 722 } 723 724 return 0; 725} 726 727static void nv_start_rx(struct net_device *dev) 728{ 729 struct fe_priv *np = get_nvpriv(dev); 730 u8 __iomem *base = get_hwbase(dev); 731 732 dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name); 733 /* Already running? Stop it. */ 734 if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) { 735 writel(0, base + NvRegReceiverControl); 736 pci_push(base); 737 } 738 writel(np->linkspeed, base + NvRegLinkSpeed); 739 pci_push(base); 740 writel(NVREG_RCVCTL_START, base + NvRegReceiverControl); 741 dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n", 742 dev->name, np->duplex, np->linkspeed); 743 pci_push(base); 744} 745 746static void nv_stop_rx(struct net_device *dev) 747{ 748 u8 __iomem *base = get_hwbase(dev); 749 750 dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name); 751 writel(0, base + NvRegReceiverControl); 752 reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0, 753 NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX, 754 KERN_INFO "nv_stop_rx: ReceiverStatus remained busy"); 755 756 udelay(NV_RXSTOP_DELAY2); 757 writel(0, base + NvRegLinkSpeed); 758} 759 760static void nv_start_tx(struct net_device *dev) 761{ 762 u8 __iomem *base = get_hwbase(dev); 763 764 dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name); 765 writel(NVREG_XMITCTL_START, base + NvRegTransmitterControl); 766 pci_push(base); 767} 768 769static void nv_stop_tx(struct net_device *dev) 770{ 771 u8 __iomem *base = get_hwbase(dev); 772 773 dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name); 774 writel(0, base + NvRegTransmitterControl); 775 reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0, 776 NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX, 777 KERN_INFO "nv_stop_tx: TransmitterStatus remained busy"); 778 779 udelay(NV_TXSTOP_DELAY2); 780 writel(0, base + NvRegUnknownTransmitterReg); 781} 782 783static void nv_txrx_reset(struct net_device *dev) 784{ 785 struct fe_priv *np = get_nvpriv(dev); 786 u8 __iomem *base = get_hwbase(dev); 787 788 dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name); 789 writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->desc_ver, base + NvRegTxRxControl); 790 pci_push(base); 791 udelay(NV_TXRX_RESET_DELAY); 792 writel(NVREG_TXRXCTL_BIT2 | np->desc_ver, base + NvRegTxRxControl); 793 pci_push(base); 794} 795 796/* 797 * nv_get_stats: dev->get_stats function 798 * Get latest stats value from the nic. 799 * Called with read_lock(&dev_base_lock) held for read - 800 * only synchronized against unregister_netdevice. 801 */ 802static struct net_device_stats *nv_get_stats(struct net_device *dev) 803{ 804 struct fe_priv *np = get_nvpriv(dev); 805 806 /* It seems that the nic always generates interrupts and doesn't 807 * accumulate errors internally. Thus the current values in np->stats 808 * are already up to date. 809 */ 810 return &np->stats; 811} 812 813/* 814 * nv_alloc_rx: fill rx ring entries. 815 * Return 1 if the allocations for the skbs failed and the 816 * rx engine is without Available descriptors 817 */ 818static int nv_alloc_rx(struct net_device *dev) 819{ 820 struct fe_priv *np = get_nvpriv(dev); 821 unsigned int refill_rx = np->refill_rx; 822 int nr; 823 824 while (np->cur_rx != refill_rx) { 825 struct sk_buff *skb; 826 827 nr = refill_rx % RX_RING; 828 if (np->rx_skbuff[nr] == NULL) { 829 830 skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD); 831 if (!skb) 832 break; 833 834 skb->dev = dev; 835 np->rx_skbuff[nr] = skb; 836 } else { 837 skb = np->rx_skbuff[nr]; 838 } 839 np->rx_dma[nr] = pci_map_single(np->pci_dev, skb->data, skb->len, 840 PCI_DMA_FROMDEVICE); 841 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 842 np->rx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->rx_dma[nr]); 843 wmb(); 844 np->rx_ring.orig[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL); 845 } else { 846 np->rx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->rx_dma[nr]) >> 32; 847 np->rx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->rx_dma[nr]) & 0x0FFFFFFFF; 848 wmb(); 849 np->rx_ring.ex[nr].FlagLen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL); 850 } 851 dprintk(KERN_DEBUG "%s: nv_alloc_rx: Packet %d marked as Available\n", 852 dev->name, refill_rx); 853 refill_rx++; 854 } 855 np->refill_rx = refill_rx; 856 if (np->cur_rx - refill_rx == RX_RING) 857 return 1; 858 return 0; 859} 860 861static void nv_do_rx_refill(unsigned long data) 862{ 863 struct net_device *dev = (struct net_device *) data; 864 struct fe_priv *np = get_nvpriv(dev); 865 866 disable_irq(dev->irq); 867 if (nv_alloc_rx(dev)) { 868 spin_lock(&np->lock); 869 if (!np->in_shutdown) 870 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 871 spin_unlock(&np->lock); 872 } 873 enable_irq(dev->irq); 874} 875 876static void nv_init_rx(struct net_device *dev) 877{ 878 struct fe_priv *np = get_nvpriv(dev); 879 int i; 880 881 np->cur_rx = RX_RING; 882 np->refill_rx = 0; 883 for (i = 0; i < RX_RING; i++) 884 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 885 np->rx_ring.orig[i].FlagLen = 0; 886 else 887 np->rx_ring.ex[i].FlagLen = 0; 888} 889 890static void nv_init_tx(struct net_device *dev) 891{ 892 struct fe_priv *np = get_nvpriv(dev); 893 int i; 894 895 np->next_tx = np->nic_tx = 0; 896 for (i = 0; i < TX_RING; i++) 897 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 898 np->tx_ring.orig[i].FlagLen = 0; 899 else 900 np->tx_ring.ex[i].FlagLen = 0; 901} 902 903static int nv_init_ring(struct net_device *dev) 904{ 905 nv_init_tx(dev); 906 nv_init_rx(dev); 907 return nv_alloc_rx(dev); 908} 909 910static void nv_drain_tx(struct net_device *dev) 911{ 912 struct fe_priv *np = get_nvpriv(dev); 913 int i; 914 for (i = 0; i < TX_RING; i++) { 915 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 916 np->tx_ring.orig[i].FlagLen = 0; 917 else 918 np->tx_ring.ex[i].FlagLen = 0; 919 if (np->tx_skbuff[i]) { 920 pci_unmap_single(np->pci_dev, np->tx_dma[i], 921 np->tx_skbuff[i]->len, 922 PCI_DMA_TODEVICE); 923 dev_kfree_skb(np->tx_skbuff[i]); 924 np->tx_skbuff[i] = NULL; 925 np->stats.tx_dropped++; 926 } 927 } 928} 929 930static void nv_drain_rx(struct net_device *dev) 931{ 932 struct fe_priv *np = get_nvpriv(dev); 933 int i; 934 for (i = 0; i < RX_RING; i++) { 935 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 936 np->rx_ring.orig[i].FlagLen = 0; 937 else 938 np->rx_ring.ex[i].FlagLen = 0; 939 wmb(); 940 if (np->rx_skbuff[i]) { 941 pci_unmap_single(np->pci_dev, np->rx_dma[i], 942 np->rx_skbuff[i]->len, 943 PCI_DMA_FROMDEVICE); 944 dev_kfree_skb(np->rx_skbuff[i]); 945 np->rx_skbuff[i] = NULL; 946 } 947 } 948} 949 950static void drain_ring(struct net_device *dev) 951{ 952 nv_drain_tx(dev); 953 nv_drain_rx(dev); 954} 955 956/* 957 * nv_start_xmit: dev->hard_start_xmit function 958 * Called with dev->xmit_lock held. 959 */ 960static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev) 961{ 962 struct fe_priv *np = get_nvpriv(dev); 963 int nr = np->next_tx % TX_RING; 964 965 np->tx_skbuff[nr] = skb; 966 np->tx_dma[nr] = pci_map_single(np->pci_dev, skb->data,skb->len, 967 PCI_DMA_TODEVICE); 968 969 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 970 np->tx_ring.orig[nr].PacketBuffer = cpu_to_le32(np->tx_dma[nr]); 971 else { 972 np->tx_ring.ex[nr].PacketBufferHigh = cpu_to_le64(np->tx_dma[nr]) >> 32; 973 np->tx_ring.ex[nr].PacketBufferLow = cpu_to_le64(np->tx_dma[nr]) & 0x0FFFFFFFF; 974 } 975 976 spin_lock_irq(&np->lock); 977 wmb(); 978 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 979 np->tx_ring.orig[nr].FlagLen = cpu_to_le32( (skb->len-1) | np->tx_flags ); 980 else 981 np->tx_ring.ex[nr].FlagLen = cpu_to_le32( (skb->len-1) | np->tx_flags ); 982 dprintk(KERN_DEBUG "%s: nv_start_xmit: packet packet %d queued for transmission.\n", 983 dev->name, np->next_tx); 984 { 985 int j; 986 for (j=0; j<64; j++) { 987 if ((j%16) == 0) 988 dprintk("\n%03x:", j); 989 dprintk(" %02x", ((unsigned char*)skb->data)[j]); 990 } 991 dprintk("\n"); 992 } 993 994 np->next_tx++; 995 996 dev->trans_start = jiffies; 997 if (np->next_tx - np->nic_tx >= TX_LIMIT_STOP) 998 netif_stop_queue(dev); 999 spin_unlock_irq(&np->lock); 1000 writel(NVREG_TXRXCTL_KICK|np->desc_ver, get_hwbase(dev) + NvRegTxRxControl); 1001 pci_push(get_hwbase(dev)); 1002 return 0; 1003} 1004 1005/* 1006 * nv_tx_done: check for completed packets, release the skbs. 1007 * 1008 * Caller must own np->lock. 1009 */ 1010static void nv_tx_done(struct net_device *dev) 1011{ 1012 struct fe_priv *np = get_nvpriv(dev); 1013 u32 Flags; 1014 int i; 1015 1016 while (np->nic_tx != np->next_tx) { 1017 i = np->nic_tx % TX_RING; 1018 1019 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 1020 Flags = le32_to_cpu(np->tx_ring.orig[i].FlagLen); 1021 else 1022 Flags = le32_to_cpu(np->tx_ring.ex[i].FlagLen); 1023 1024 dprintk(KERN_DEBUG "%s: nv_tx_done: looking at packet %d, Flags 0x%x.\n", 1025 dev->name, np->nic_tx, Flags); 1026 if (Flags & NV_TX_VALID) 1027 break; 1028 if (np->desc_ver == DESC_VER_1) { 1029 if (Flags & (NV_TX_RETRYERROR|NV_TX_CARRIERLOST|NV_TX_LATECOLLISION| 1030 NV_TX_UNDERFLOW|NV_TX_ERROR)) { 1031 if (Flags & NV_TX_UNDERFLOW) 1032 np->stats.tx_fifo_errors++; 1033 if (Flags & NV_TX_CARRIERLOST) 1034 np->stats.tx_carrier_errors++; 1035 np->stats.tx_errors++; 1036 } else { 1037 np->stats.tx_packets++; 1038 np->stats.tx_bytes += np->tx_skbuff[i]->len; 1039 } 1040 } else { 1041 if (Flags & (NV_TX2_RETRYERROR|NV_TX2_CARRIERLOST|NV_TX2_LATECOLLISION| 1042 NV_TX2_UNDERFLOW|NV_TX2_ERROR)) { 1043 if (Flags & NV_TX2_UNDERFLOW) 1044 np->stats.tx_fifo_errors++; 1045 if (Flags & NV_TX2_CARRIERLOST) 1046 np->stats.tx_carrier_errors++; 1047 np->stats.tx_errors++; 1048 } else { 1049 np->stats.tx_packets++; 1050 np->stats.tx_bytes += np->tx_skbuff[i]->len; 1051 } 1052 } 1053 pci_unmap_single(np->pci_dev, np->tx_dma[i], 1054 np->tx_skbuff[i]->len, 1055 PCI_DMA_TODEVICE); 1056 dev_kfree_skb_irq(np->tx_skbuff[i]); 1057 np->tx_skbuff[i] = NULL; 1058 np->nic_tx++; 1059 } 1060 if (np->next_tx - np->nic_tx < TX_LIMIT_START) 1061 netif_wake_queue(dev); 1062} 1063 1064/* 1065 * nv_tx_timeout: dev->tx_timeout function 1066 * Called with dev->xmit_lock held. 1067 */ 1068static void nv_tx_timeout(struct net_device *dev) 1069{ 1070 struct fe_priv *np = get_nvpriv(dev); 1071 u8 __iomem *base = get_hwbase(dev); 1072 1073 printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, 1074 readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK); 1075 1076 { 1077 int i; 1078 1079 printk(KERN_INFO "%s: Ring at %lx: next %d nic %d\n", 1080 dev->name, (unsigned long)np->ring_addr, 1081 np->next_tx, np->nic_tx); 1082 printk(KERN_INFO "%s: Dumping tx registers\n", dev->name); 1083 for (i=0;i<0x400;i+= 32) { 1084 printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n", 1085 i, 1086 readl(base + i + 0), readl(base + i + 4), 1087 readl(base + i + 8), readl(base + i + 12), 1088 readl(base + i + 16), readl(base + i + 20), 1089 readl(base + i + 24), readl(base + i + 28)); 1090 } 1091 printk(KERN_INFO "%s: Dumping tx ring\n", dev->name); 1092 for (i=0;i<TX_RING;i+= 4) { 1093 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 1094 printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n", 1095 i, 1096 le32_to_cpu(np->tx_ring.orig[i].PacketBuffer), 1097 le32_to_cpu(np->tx_ring.orig[i].FlagLen), 1098 le32_to_cpu(np->tx_ring.orig[i+1].PacketBuffer), 1099 le32_to_cpu(np->tx_ring.orig[i+1].FlagLen), 1100 le32_to_cpu(np->tx_ring.orig[i+2].PacketBuffer), 1101 le32_to_cpu(np->tx_ring.orig[i+2].FlagLen), 1102 le32_to_cpu(np->tx_ring.orig[i+3].PacketBuffer), 1103 le32_to_cpu(np->tx_ring.orig[i+3].FlagLen)); 1104 } else { 1105 printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n", 1106 i, 1107 le32_to_cpu(np->tx_ring.ex[i].PacketBufferHigh), 1108 le32_to_cpu(np->tx_ring.ex[i].PacketBufferLow), 1109 le32_to_cpu(np->tx_ring.ex[i].FlagLen), 1110 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferHigh), 1111 le32_to_cpu(np->tx_ring.ex[i+1].PacketBufferLow), 1112 le32_to_cpu(np->tx_ring.ex[i+1].FlagLen), 1113 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferHigh), 1114 le32_to_cpu(np->tx_ring.ex[i+2].PacketBufferLow), 1115 le32_to_cpu(np->tx_ring.ex[i+2].FlagLen), 1116 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferHigh), 1117 le32_to_cpu(np->tx_ring.ex[i+3].PacketBufferLow), 1118 le32_to_cpu(np->tx_ring.ex[i+3].FlagLen)); 1119 } 1120 } 1121 } 1122 1123 spin_lock_irq(&np->lock); 1124 1125 /* 1) stop tx engine */ 1126 nv_stop_tx(dev); 1127 1128 /* 2) check that the packets were not sent already: */ 1129 nv_tx_done(dev); 1130 1131 /* 3) if there are dead entries: clear everything */ 1132 if (np->next_tx != np->nic_tx) { 1133 printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name); 1134 nv_drain_tx(dev); 1135 np->next_tx = np->nic_tx = 0; 1136 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 1137 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1138 else 1139 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1140 netif_wake_queue(dev); 1141 } 1142 1143 /* 4) restart tx engine */ 1144 nv_start_tx(dev); 1145 spin_unlock_irq(&np->lock); 1146} 1147 1148/* 1149 * Called when the nic notices a mismatch between the actual data len on the 1150 * wire and the len indicated in the 802 header 1151 */ 1152static int nv_getlen(struct net_device *dev, void *packet, int datalen) 1153{ 1154 int hdrlen; /* length of the 802 header */ 1155 int protolen; /* length as stored in the proto field */ 1156 1157 /* 1) calculate len according to header */ 1158 if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == __constant_htons(ETH_P_8021Q)) { 1159 protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto ); 1160 hdrlen = VLAN_HLEN; 1161 } else { 1162 protolen = ntohs( ((struct ethhdr *)packet)->h_proto); 1163 hdrlen = ETH_HLEN; 1164 } 1165 dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n", 1166 dev->name, datalen, protolen, hdrlen); 1167 if (protolen > ETH_DATA_LEN) 1168 return datalen; /* Value in proto field not a len, no checks possible */ 1169 1170 protolen += hdrlen; 1171 /* consistency checks: */ 1172 if (datalen > ETH_ZLEN) { 1173 if (datalen >= protolen) { 1174 /* more data on wire than in 802 header, trim of 1175 * additional data. 1176 */ 1177 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n", 1178 dev->name, protolen); 1179 return protolen; 1180 } else { 1181 /* less data on wire than mentioned in header. 1182 * Discard the packet. 1183 */ 1184 dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n", 1185 dev->name); 1186 return -1; 1187 } 1188 } else { 1189 /* short packet. Accept only if 802 values are also short */ 1190 if (protolen > ETH_ZLEN) { 1191 dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n", 1192 dev->name); 1193 return -1; 1194 } 1195 dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n", 1196 dev->name, datalen); 1197 return datalen; 1198 } 1199} 1200 1201static void nv_rx_process(struct net_device *dev) 1202{ 1203 struct fe_priv *np = get_nvpriv(dev); 1204 u32 Flags; 1205 1206 for (;;) { 1207 struct sk_buff *skb; 1208 int len; 1209 int i; 1210 if (np->cur_rx - np->refill_rx >= RX_RING) 1211 break; /* we scanned the whole ring - do not continue */ 1212 1213 i = np->cur_rx % RX_RING; 1214 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 1215 Flags = le32_to_cpu(np->rx_ring.orig[i].FlagLen); 1216 len = nv_descr_getlength(&np->rx_ring.orig[i], np->desc_ver); 1217 } else { 1218 Flags = le32_to_cpu(np->rx_ring.ex[i].FlagLen); 1219 len = nv_descr_getlength_ex(&np->rx_ring.ex[i], np->desc_ver); 1220 } 1221 1222 dprintk(KERN_DEBUG "%s: nv_rx_process: looking at packet %d, Flags 0x%x.\n", 1223 dev->name, np->cur_rx, Flags); 1224 1225 if (Flags & NV_RX_AVAIL) 1226 break; /* still owned by hardware, */ 1227 1228 /* 1229 * the packet is for us - immediately tear down the pci mapping. 1230 * TODO: check if a prefetch of the first cacheline improves 1231 * the performance. 1232 */ 1233 pci_unmap_single(np->pci_dev, np->rx_dma[i], 1234 np->rx_skbuff[i]->len, 1235 PCI_DMA_FROMDEVICE); 1236 1237 { 1238 int j; 1239 dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",Flags); 1240 for (j=0; j<64; j++) { 1241 if ((j%16) == 0) 1242 dprintk("\n%03x:", j); 1243 dprintk(" %02x", ((unsigned char*)np->rx_skbuff[i]->data)[j]); 1244 } 1245 dprintk("\n"); 1246 } 1247 /* look at what we actually got: */ 1248 if (np->desc_ver == DESC_VER_1) { 1249 if (!(Flags & NV_RX_DESCRIPTORVALID)) 1250 goto next_pkt; 1251 1252 if (Flags & NV_RX_MISSEDFRAME) { 1253 np->stats.rx_missed_errors++; 1254 np->stats.rx_errors++; 1255 goto next_pkt; 1256 } 1257 if (Flags & (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3)) { 1258 np->stats.rx_errors++; 1259 goto next_pkt; 1260 } 1261 if (Flags & NV_RX_CRCERR) { 1262 np->stats.rx_crc_errors++; 1263 np->stats.rx_errors++; 1264 goto next_pkt; 1265 } 1266 if (Flags & NV_RX_OVERFLOW) { 1267 np->stats.rx_over_errors++; 1268 np->stats.rx_errors++; 1269 goto next_pkt; 1270 } 1271 if (Flags & NV_RX_ERROR4) { 1272 len = nv_getlen(dev, np->rx_skbuff[i]->data, len); 1273 if (len < 0) { 1274 np->stats.rx_errors++; 1275 goto next_pkt; 1276 } 1277 } 1278 /* framing errors are soft errors. */ 1279 if (Flags & NV_RX_FRAMINGERR) { 1280 if (Flags & NV_RX_SUBSTRACT1) { 1281 len--; 1282 } 1283 } 1284 } else { 1285 if (!(Flags & NV_RX2_DESCRIPTORVALID)) 1286 goto next_pkt; 1287 1288 if (Flags & (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3)) { 1289 np->stats.rx_errors++; 1290 goto next_pkt; 1291 } 1292 if (Flags & NV_RX2_CRCERR) { 1293 np->stats.rx_crc_errors++; 1294 np->stats.rx_errors++; 1295 goto next_pkt; 1296 } 1297 if (Flags & NV_RX2_OVERFLOW) { 1298 np->stats.rx_over_errors++; 1299 np->stats.rx_errors++; 1300 goto next_pkt; 1301 } 1302 if (Flags & NV_RX2_ERROR4) { 1303 len = nv_getlen(dev, np->rx_skbuff[i]->data, len); 1304 if (len < 0) { 1305 np->stats.rx_errors++; 1306 goto next_pkt; 1307 } 1308 } 1309 /* framing errors are soft errors */ 1310 if (Flags & NV_RX2_FRAMINGERR) { 1311 if (Flags & NV_RX2_SUBSTRACT1) { 1312 len--; 1313 } 1314 } 1315 Flags &= NV_RX2_CHECKSUMMASK; 1316 if (Flags == NV_RX2_CHECKSUMOK1 || 1317 Flags == NV_RX2_CHECKSUMOK2 || 1318 Flags == NV_RX2_CHECKSUMOK3) { 1319 dprintk(KERN_DEBUG "%s: hw checksum hit!.\n", dev->name); 1320 np->rx_skbuff[i]->ip_summed = CHECKSUM_UNNECESSARY; 1321 } else { 1322 dprintk(KERN_DEBUG "%s: hwchecksum miss!.\n", dev->name); 1323 } 1324 } 1325 /* got a valid packet - forward it to the network core */ 1326 skb = np->rx_skbuff[i]; 1327 np->rx_skbuff[i] = NULL; 1328 1329 skb_put(skb, len); 1330 skb->protocol = eth_type_trans(skb, dev); 1331 dprintk(KERN_DEBUG "%s: nv_rx_process: packet %d with %d bytes, proto %d accepted.\n", 1332 dev->name, np->cur_rx, len, skb->protocol); 1333 netif_rx(skb); 1334 dev->last_rx = jiffies; 1335 np->stats.rx_packets++; 1336 np->stats.rx_bytes += len; 1337next_pkt: 1338 np->cur_rx++; 1339 } 1340} 1341 1342static void set_bufsize(struct net_device *dev) 1343{ 1344 struct fe_priv *np = netdev_priv(dev); 1345 1346 if (dev->mtu <= ETH_DATA_LEN) 1347 np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS; 1348 else 1349 np->rx_buf_sz = dev->mtu + NV_RX_HEADERS; 1350} 1351 1352/* 1353 * nv_change_mtu: dev->change_mtu function 1354 * Called with dev_base_lock held for read. 1355 */ 1356static int nv_change_mtu(struct net_device *dev, int new_mtu) 1357{ 1358 struct fe_priv *np = get_nvpriv(dev); 1359 int old_mtu; 1360 1361 if (new_mtu < 64 || new_mtu > np->pkt_limit) 1362 return -EINVAL; 1363 1364 old_mtu = dev->mtu; 1365 dev->mtu = new_mtu; 1366 1367 /* return early if the buffer sizes will not change */ 1368 if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN) 1369 return 0; 1370 if (old_mtu == new_mtu) 1371 return 0; 1372 1373 /* synchronized against open : rtnl_lock() held by caller */ 1374 if (netif_running(dev)) { 1375 u8 __iomem *base = get_hwbase(dev); 1376 /* 1377 * It seems that the nic preloads valid ring entries into an 1378 * internal buffer. The procedure for flushing everything is 1379 * guessed, there is probably a simpler approach. 1380 * Changing the MTU is a rare event, it shouldn't matter. 1381 */ 1382 disable_irq(dev->irq); 1383 spin_lock_bh(&dev->xmit_lock); 1384 spin_lock(&np->lock); 1385 /* stop engines */ 1386 nv_stop_rx(dev); 1387 nv_stop_tx(dev); 1388 nv_txrx_reset(dev); 1389 /* drain rx queue */ 1390 nv_drain_rx(dev); 1391 nv_drain_tx(dev); 1392 /* reinit driver view of the rx queue */ 1393 nv_init_rx(dev); 1394 nv_init_tx(dev); 1395 /* alloc new rx buffers */ 1396 set_bufsize(dev); 1397 if (nv_alloc_rx(dev)) { 1398 if (!np->in_shutdown) 1399 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 1400 } 1401 /* reinit nic view of the rx queue */ 1402 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 1403 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr); 1404 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 1405 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 1406 else 1407 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 1408 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT), 1409 base + NvRegRingSizes); 1410 pci_push(base); 1411 writel(NVREG_TXRXCTL_KICK|np->desc_ver, get_hwbase(dev) + NvRegTxRxControl); 1412 pci_push(base); 1413 1414 /* restart rx engine */ 1415 nv_start_rx(dev); 1416 nv_start_tx(dev); 1417 spin_unlock(&np->lock); 1418 spin_unlock_bh(&dev->xmit_lock); 1419 enable_irq(dev->irq); 1420 } 1421 return 0; 1422} 1423 1424static void nv_copy_mac_to_hw(struct net_device *dev) 1425{ 1426 u8 __iomem *base = get_hwbase(dev); 1427 u32 mac[2]; 1428 1429 mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) + 1430 (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24); 1431 mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8); 1432 1433 writel(mac[0], base + NvRegMacAddrA); 1434 writel(mac[1], base + NvRegMacAddrB); 1435} 1436 1437/* 1438 * nv_set_mac_address: dev->set_mac_address function 1439 * Called with rtnl_lock() held. 1440 */ 1441static int nv_set_mac_address(struct net_device *dev, void *addr) 1442{ 1443 struct fe_priv *np = get_nvpriv(dev); 1444 struct sockaddr *macaddr = (struct sockaddr*)addr; 1445 1446 if(!is_valid_ether_addr(macaddr->sa_data)) 1447 return -EADDRNOTAVAIL; 1448 1449 /* synchronized against open : rtnl_lock() held by caller */ 1450 memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN); 1451 1452 if (netif_running(dev)) { 1453 spin_lock_bh(&dev->xmit_lock); 1454 spin_lock_irq(&np->lock); 1455 1456 /* stop rx engine */ 1457 nv_stop_rx(dev); 1458 1459 /* set mac address */ 1460 nv_copy_mac_to_hw(dev); 1461 1462 /* restart rx engine */ 1463 nv_start_rx(dev); 1464 spin_unlock_irq(&np->lock); 1465 spin_unlock_bh(&dev->xmit_lock); 1466 } else { 1467 nv_copy_mac_to_hw(dev); 1468 } 1469 return 0; 1470} 1471 1472/* 1473 * nv_set_multicast: dev->set_multicast function 1474 * Called with dev->xmit_lock held. 1475 */ 1476static void nv_set_multicast(struct net_device *dev) 1477{ 1478 struct fe_priv *np = get_nvpriv(dev); 1479 u8 __iomem *base = get_hwbase(dev); 1480 u32 addr[2]; 1481 u32 mask[2]; 1482 u32 pff; 1483 1484 memset(addr, 0, sizeof(addr)); 1485 memset(mask, 0, sizeof(mask)); 1486 1487 if (dev->flags & IFF_PROMISC) { 1488 printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", dev->name); 1489 pff = NVREG_PFF_PROMISC; 1490 } else { 1491 pff = NVREG_PFF_MYADDR; 1492 1493 if (dev->flags & IFF_ALLMULTI || dev->mc_list) { 1494 u32 alwaysOff[2]; 1495 u32 alwaysOn[2]; 1496 1497 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff; 1498 if (dev->flags & IFF_ALLMULTI) { 1499 alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0; 1500 } else { 1501 struct dev_mc_list *walk; 1502 1503 walk = dev->mc_list; 1504 while (walk != NULL) { 1505 u32 a, b; 1506 a = le32_to_cpu(*(u32 *) walk->dmi_addr); 1507 b = le16_to_cpu(*(u16 *) (&walk->dmi_addr[4])); 1508 alwaysOn[0] &= a; 1509 alwaysOff[0] &= ~a; 1510 alwaysOn[1] &= b; 1511 alwaysOff[1] &= ~b; 1512 walk = walk->next; 1513 } 1514 } 1515 addr[0] = alwaysOn[0]; 1516 addr[1] = alwaysOn[1]; 1517 mask[0] = alwaysOn[0] | alwaysOff[0]; 1518 mask[1] = alwaysOn[1] | alwaysOff[1]; 1519 } 1520 } 1521 addr[0] |= NVREG_MCASTADDRA_FORCE; 1522 pff |= NVREG_PFF_ALWAYS; 1523 spin_lock_irq(&np->lock); 1524 nv_stop_rx(dev); 1525 writel(addr[0], base + NvRegMulticastAddrA); 1526 writel(addr[1], base + NvRegMulticastAddrB); 1527 writel(mask[0], base + NvRegMulticastMaskA); 1528 writel(mask[1], base + NvRegMulticastMaskB); 1529 writel(pff, base + NvRegPacketFilterFlags); 1530 dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n", 1531 dev->name); 1532 nv_start_rx(dev); 1533 spin_unlock_irq(&np->lock); 1534} 1535 1536static int nv_update_linkspeed(struct net_device *dev) 1537{ 1538 struct fe_priv *np = get_nvpriv(dev); 1539 u8 __iomem *base = get_hwbase(dev); 1540 int adv, lpa; 1541 int newls = np->linkspeed; 1542 int newdup = np->duplex; 1543 int mii_status; 1544 int retval = 0; 1545 u32 control_1000, status_1000, phyreg; 1546 1547 /* BMSR_LSTATUS is latched, read it twice: 1548 * we want the current value. 1549 */ 1550 mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1551 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ); 1552 1553 if (!(mii_status & BMSR_LSTATUS)) { 1554 dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n", 1555 dev->name); 1556 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1557 newdup = 0; 1558 retval = 0; 1559 goto set_speed; 1560 } 1561 1562 if (np->autoneg == 0) { 1563 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n", 1564 dev->name, np->fixed_mode); 1565 if (np->fixed_mode & LPA_100FULL) { 1566 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1567 newdup = 1; 1568 } else if (np->fixed_mode & LPA_100HALF) { 1569 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1570 newdup = 0; 1571 } else if (np->fixed_mode & LPA_10FULL) { 1572 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1573 newdup = 1; 1574 } else { 1575 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1576 newdup = 0; 1577 } 1578 retval = 1; 1579 goto set_speed; 1580 } 1581 /* check auto negotiation is complete */ 1582 if (!(mii_status & BMSR_ANEGCOMPLETE)) { 1583 /* still in autonegotiation - configure nic for 10 MBit HD and wait. */ 1584 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1585 newdup = 0; 1586 retval = 0; 1587 dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name); 1588 goto set_speed; 1589 } 1590 1591 retval = 1; 1592 if (np->gigabit == PHY_GIGABIT) { 1593 control_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 1594 status_1000 = mii_rw(dev, np->phyaddr, MII_1000BT_SR, MII_READ); 1595 1596 if ((control_1000 & ADVERTISE_1000FULL) && 1597 (status_1000 & LPA_1000FULL)) { 1598 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n", 1599 dev->name); 1600 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000; 1601 newdup = 1; 1602 goto set_speed; 1603 } 1604 } 1605 1606 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1607 lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ); 1608 dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n", 1609 dev->name, adv, lpa); 1610 1611 /* FIXME: handle parallel detection properly */ 1612 lpa = lpa & adv; 1613 if (lpa & LPA_100FULL) { 1614 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1615 newdup = 1; 1616 } else if (lpa & LPA_100HALF) { 1617 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100; 1618 newdup = 0; 1619 } else if (lpa & LPA_10FULL) { 1620 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1621 newdup = 1; 1622 } else if (lpa & LPA_10HALF) { 1623 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1624 newdup = 0; 1625 } else { 1626 dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, lpa); 1627 newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 1628 newdup = 0; 1629 } 1630 1631set_speed: 1632 if (np->duplex == newdup && np->linkspeed == newls) 1633 return retval; 1634 1635 dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n", 1636 dev->name, np->linkspeed, np->duplex, newls, newdup); 1637 1638 np->duplex = newdup; 1639 np->linkspeed = newls; 1640 1641 if (np->gigabit == PHY_GIGABIT) { 1642 phyreg = readl(base + NvRegRandomSeed); 1643 phyreg &= ~(0x3FF00); 1644 if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) 1645 phyreg |= NVREG_RNDSEED_FORCE3; 1646 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100) 1647 phyreg |= NVREG_RNDSEED_FORCE2; 1648 else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000) 1649 phyreg |= NVREG_RNDSEED_FORCE; 1650 writel(phyreg, base + NvRegRandomSeed); 1651 } 1652 1653 phyreg = readl(base + NvRegPhyInterface); 1654 phyreg &= ~(PHY_HALF|PHY_100|PHY_1000); 1655 if (np->duplex == 0) 1656 phyreg |= PHY_HALF; 1657 if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100) 1658 phyreg |= PHY_100; 1659 else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) 1660 phyreg |= PHY_1000; 1661 writel(phyreg, base + NvRegPhyInterface); 1662 1663 writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD), 1664 base + NvRegMisc1); 1665 pci_push(base); 1666 writel(np->linkspeed, base + NvRegLinkSpeed); 1667 pci_push(base); 1668 1669 return retval; 1670} 1671 1672static void nv_linkchange(struct net_device *dev) 1673{ 1674 if (nv_update_linkspeed(dev)) { 1675 if (netif_carrier_ok(dev)) { 1676 nv_stop_rx(dev); 1677 } else { 1678 netif_carrier_on(dev); 1679 printk(KERN_INFO "%s: link up.\n", dev->name); 1680 } 1681 nv_start_rx(dev); 1682 } else { 1683 if (netif_carrier_ok(dev)) { 1684 netif_carrier_off(dev); 1685 printk(KERN_INFO "%s: link down.\n", dev->name); 1686 nv_stop_rx(dev); 1687 } 1688 } 1689} 1690 1691static void nv_link_irq(struct net_device *dev) 1692{ 1693 u8 __iomem *base = get_hwbase(dev); 1694 u32 miistat; 1695 1696 miistat = readl(base + NvRegMIIStatus); 1697 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus); 1698 dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat); 1699 1700 if (miistat & (NVREG_MIISTAT_LINKCHANGE)) 1701 nv_linkchange(dev); 1702 dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name); 1703} 1704 1705static irqreturn_t nv_nic_irq(int foo, void *data, struct pt_regs *regs) 1706{ 1707 struct net_device *dev = (struct net_device *) data; 1708 struct fe_priv *np = get_nvpriv(dev); 1709 u8 __iomem *base = get_hwbase(dev); 1710 u32 events; 1711 int i; 1712 1713 dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name); 1714 1715 for (i=0; ; i++) { 1716 events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK; 1717 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 1718 pci_push(base); 1719 dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events); 1720 if (!(events & np->irqmask)) 1721 break; 1722 1723 if (events & (NVREG_IRQ_TX1|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_ERROR|NVREG_IRQ_TX_ERR)) { 1724 spin_lock(&np->lock); 1725 nv_tx_done(dev); 1726 spin_unlock(&np->lock); 1727 } 1728 1729 if (events & (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF)) { 1730 nv_rx_process(dev); 1731 if (nv_alloc_rx(dev)) { 1732 spin_lock(&np->lock); 1733 if (!np->in_shutdown) 1734 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 1735 spin_unlock(&np->lock); 1736 } 1737 } 1738 1739 if (events & NVREG_IRQ_LINK) { 1740 spin_lock(&np->lock); 1741 nv_link_irq(dev); 1742 spin_unlock(&np->lock); 1743 } 1744 if (np->need_linktimer && time_after(jiffies, np->link_timeout)) { 1745 spin_lock(&np->lock); 1746 nv_linkchange(dev); 1747 spin_unlock(&np->lock); 1748 np->link_timeout = jiffies + LINK_TIMEOUT; 1749 } 1750 if (events & (NVREG_IRQ_TX_ERR)) { 1751 dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n", 1752 dev->name, events); 1753 } 1754 if (events & (NVREG_IRQ_UNKNOWN)) { 1755 printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n", 1756 dev->name, events); 1757 } 1758 if (i > max_interrupt_work) { 1759 spin_lock(&np->lock); 1760 /* disable interrupts on the nic */ 1761 writel(0, base + NvRegIrqMask); 1762 pci_push(base); 1763 1764 if (!np->in_shutdown) 1765 mod_timer(&np->nic_poll, jiffies + POLL_WAIT); 1766 printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i); 1767 spin_unlock(&np->lock); 1768 break; 1769 } 1770 1771 } 1772 dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name); 1773 1774 return IRQ_RETVAL(i); 1775} 1776 1777static void nv_do_nic_poll(unsigned long data) 1778{ 1779 struct net_device *dev = (struct net_device *) data; 1780 struct fe_priv *np = get_nvpriv(dev); 1781 u8 __iomem *base = get_hwbase(dev); 1782 1783 disable_irq(dev->irq); 1784 /* FIXME: Do we need synchronize_irq(dev->irq) here? */ 1785 /* 1786 * reenable interrupts on the nic, we have to do this before calling 1787 * nv_nic_irq because that may decide to do otherwise 1788 */ 1789 writel(np->irqmask, base + NvRegIrqMask); 1790 pci_push(base); 1791 nv_nic_irq((int) 0, (void *) data, (struct pt_regs *) NULL); 1792 enable_irq(dev->irq); 1793} 1794 1795#ifdef CONFIG_NET_POLL_CONTROLLER 1796static void nv_poll_controller(struct net_device *dev) 1797{ 1798 nv_do_nic_poll((unsigned long) dev); 1799} 1800#endif 1801 1802static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1803{ 1804 struct fe_priv *np = get_nvpriv(dev); 1805 strcpy(info->driver, "forcedeth"); 1806 strcpy(info->version, FORCEDETH_VERSION); 1807 strcpy(info->bus_info, pci_name(np->pci_dev)); 1808} 1809 1810static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 1811{ 1812 struct fe_priv *np = get_nvpriv(dev); 1813 wolinfo->supported = WAKE_MAGIC; 1814 1815 spin_lock_irq(&np->lock); 1816 if (np->wolenabled) 1817 wolinfo->wolopts = WAKE_MAGIC; 1818 spin_unlock_irq(&np->lock); 1819} 1820 1821static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo) 1822{ 1823 struct fe_priv *np = get_nvpriv(dev); 1824 u8 __iomem *base = get_hwbase(dev); 1825 1826 spin_lock_irq(&np->lock); 1827 if (wolinfo->wolopts == 0) { 1828 writel(0, base + NvRegWakeUpFlags); 1829 np->wolenabled = 0; 1830 } 1831 if (wolinfo->wolopts & WAKE_MAGIC) { 1832 writel(NVREG_WAKEUPFLAGS_ENABLE, base + NvRegWakeUpFlags); 1833 np->wolenabled = 1; 1834 } 1835 spin_unlock_irq(&np->lock); 1836 return 0; 1837} 1838 1839static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1840{ 1841 struct fe_priv *np = netdev_priv(dev); 1842 int adv; 1843 1844 spin_lock_irq(&np->lock); 1845 ecmd->port = PORT_MII; 1846 if (!netif_running(dev)) { 1847 /* We do not track link speed / duplex setting if the 1848 * interface is disabled. Force a link check */ 1849 nv_update_linkspeed(dev); 1850 } 1851 switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) { 1852 case NVREG_LINKSPEED_10: 1853 ecmd->speed = SPEED_10; 1854 break; 1855 case NVREG_LINKSPEED_100: 1856 ecmd->speed = SPEED_100; 1857 break; 1858 case NVREG_LINKSPEED_1000: 1859 ecmd->speed = SPEED_1000; 1860 break; 1861 } 1862 ecmd->duplex = DUPLEX_HALF; 1863 if (np->duplex) 1864 ecmd->duplex = DUPLEX_FULL; 1865 1866 ecmd->autoneg = np->autoneg; 1867 1868 ecmd->advertising = ADVERTISED_MII; 1869 if (np->autoneg) { 1870 ecmd->advertising |= ADVERTISED_Autoneg; 1871 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1872 } else { 1873 adv = np->fixed_mode; 1874 } 1875 if (adv & ADVERTISE_10HALF) 1876 ecmd->advertising |= ADVERTISED_10baseT_Half; 1877 if (adv & ADVERTISE_10FULL) 1878 ecmd->advertising |= ADVERTISED_10baseT_Full; 1879 if (adv & ADVERTISE_100HALF) 1880 ecmd->advertising |= ADVERTISED_100baseT_Half; 1881 if (adv & ADVERTISE_100FULL) 1882 ecmd->advertising |= ADVERTISED_100baseT_Full; 1883 if (np->autoneg && np->gigabit == PHY_GIGABIT) { 1884 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 1885 if (adv & ADVERTISE_1000FULL) 1886 ecmd->advertising |= ADVERTISED_1000baseT_Full; 1887 } 1888 1889 ecmd->supported = (SUPPORTED_Autoneg | 1890 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 1891 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 1892 SUPPORTED_MII); 1893 if (np->gigabit == PHY_GIGABIT) 1894 ecmd->supported |= SUPPORTED_1000baseT_Full; 1895 1896 ecmd->phy_address = np->phyaddr; 1897 ecmd->transceiver = XCVR_EXTERNAL; 1898 1899 /* ignore maxtxpkt, maxrxpkt for now */ 1900 spin_unlock_irq(&np->lock); 1901 return 0; 1902} 1903 1904static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1905{ 1906 struct fe_priv *np = netdev_priv(dev); 1907 1908 if (ecmd->port != PORT_MII) 1909 return -EINVAL; 1910 if (ecmd->transceiver != XCVR_EXTERNAL) 1911 return -EINVAL; 1912 if (ecmd->phy_address != np->phyaddr) { 1913 /* TODO: support switching between multiple phys. Should be 1914 * trivial, but not enabled due to lack of test hardware. */ 1915 return -EINVAL; 1916 } 1917 if (ecmd->autoneg == AUTONEG_ENABLE) { 1918 u32 mask; 1919 1920 mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | 1921 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full; 1922 if (np->gigabit == PHY_GIGABIT) 1923 mask |= ADVERTISED_1000baseT_Full; 1924 1925 if ((ecmd->advertising & mask) == 0) 1926 return -EINVAL; 1927 1928 } else if (ecmd->autoneg == AUTONEG_DISABLE) { 1929 /* Note: autonegotiation disable, speed 1000 intentionally 1930 * forbidden - noone should need that. */ 1931 1932 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100) 1933 return -EINVAL; 1934 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) 1935 return -EINVAL; 1936 } else { 1937 return -EINVAL; 1938 } 1939 1940 spin_lock_irq(&np->lock); 1941 if (ecmd->autoneg == AUTONEG_ENABLE) { 1942 int adv, bmcr; 1943 1944 np->autoneg = 1; 1945 1946 /* advertise only what has been requested */ 1947 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1948 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); 1949 if (ecmd->advertising & ADVERTISED_10baseT_Half) 1950 adv |= ADVERTISE_10HALF; 1951 if (ecmd->advertising & ADVERTISED_10baseT_Full) 1952 adv |= ADVERTISE_10FULL; 1953 if (ecmd->advertising & ADVERTISED_100baseT_Half) 1954 adv |= ADVERTISE_100HALF; 1955 if (ecmd->advertising & ADVERTISED_100baseT_Full) 1956 adv |= ADVERTISE_100FULL; 1957 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 1958 1959 if (np->gigabit == PHY_GIGABIT) { 1960 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 1961 adv &= ~ADVERTISE_1000FULL; 1962 if (ecmd->advertising & ADVERTISED_1000baseT_Full) 1963 adv |= ADVERTISE_1000FULL; 1964 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv); 1965 } 1966 1967 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1968 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 1969 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 1970 1971 } else { 1972 int adv, bmcr; 1973 1974 np->autoneg = 0; 1975 1976 adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ); 1977 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); 1978 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF) 1979 adv |= ADVERTISE_10HALF; 1980 if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL) 1981 adv |= ADVERTISE_10FULL; 1982 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF) 1983 adv |= ADVERTISE_100HALF; 1984 if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL) 1985 adv |= ADVERTISE_100FULL; 1986 mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv); 1987 np->fixed_mode = adv; 1988 1989 if (np->gigabit == PHY_GIGABIT) { 1990 adv = mii_rw(dev, np->phyaddr, MII_1000BT_CR, MII_READ); 1991 adv &= ~ADVERTISE_1000FULL; 1992 mii_rw(dev, np->phyaddr, MII_1000BT_CR, adv); 1993 } 1994 1995 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 1996 bmcr |= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_FULLDPLX); 1997 if (adv & (ADVERTISE_10FULL|ADVERTISE_100FULL)) 1998 bmcr |= BMCR_FULLDPLX; 1999 if (adv & (ADVERTISE_100HALF|ADVERTISE_100FULL)) 2000 bmcr |= BMCR_SPEED100; 2001 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 2002 2003 if (netif_running(dev)) { 2004 /* Wait a bit and then reconfigure the nic. */ 2005 udelay(10); 2006 nv_linkchange(dev); 2007 } 2008 } 2009 spin_unlock_irq(&np->lock); 2010 2011 return 0; 2012} 2013 2014#define FORCEDETH_REGS_VER 1 2015#define FORCEDETH_REGS_SIZE 0x400 /* 256 32-bit registers */ 2016 2017static int nv_get_regs_len(struct net_device *dev) 2018{ 2019 return FORCEDETH_REGS_SIZE; 2020} 2021 2022static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) 2023{ 2024 struct fe_priv *np = get_nvpriv(dev); 2025 u8 __iomem *base = get_hwbase(dev); 2026 u32 *rbuf = buf; 2027 int i; 2028 2029 regs->version = FORCEDETH_REGS_VER; 2030 spin_lock_irq(&np->lock); 2031 for (i=0;i<FORCEDETH_REGS_SIZE/sizeof(u32);i++) 2032 rbuf[i] = readl(base + i*sizeof(u32)); 2033 spin_unlock_irq(&np->lock); 2034} 2035 2036static int nv_nway_reset(struct net_device *dev) 2037{ 2038 struct fe_priv *np = get_nvpriv(dev); 2039 int ret; 2040 2041 spin_lock_irq(&np->lock); 2042 if (np->autoneg) { 2043 int bmcr; 2044 2045 bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ); 2046 bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); 2047 mii_rw(dev, np->phyaddr, MII_BMCR, bmcr); 2048 2049 ret = 0; 2050 } else { 2051 ret = -EINVAL; 2052 } 2053 spin_unlock_irq(&np->lock); 2054 2055 return ret; 2056} 2057 2058static struct ethtool_ops ops = { 2059 .get_drvinfo = nv_get_drvinfo, 2060 .get_link = ethtool_op_get_link, 2061 .get_wol = nv_get_wol, 2062 .set_wol = nv_set_wol, 2063 .get_settings = nv_get_settings, 2064 .set_settings = nv_set_settings, 2065 .get_regs_len = nv_get_regs_len, 2066 .get_regs = nv_get_regs, 2067 .nway_reset = nv_nway_reset, 2068}; 2069 2070static int nv_open(struct net_device *dev) 2071{ 2072 struct fe_priv *np = get_nvpriv(dev); 2073 u8 __iomem *base = get_hwbase(dev); 2074 int ret, oom, i; 2075 2076 dprintk(KERN_DEBUG "nv_open: begin\n"); 2077 2078 /* 1) erase previous misconfiguration */ 2079 /* 4.1-1: stop adapter: ignored, 4.3 seems to be overkill */ 2080 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 2081 writel(0, base + NvRegMulticastAddrB); 2082 writel(0, base + NvRegMulticastMaskA); 2083 writel(0, base + NvRegMulticastMaskB); 2084 writel(0, base + NvRegPacketFilterFlags); 2085 2086 writel(0, base + NvRegTransmitterControl); 2087 writel(0, base + NvRegReceiverControl); 2088 2089 writel(0, base + NvRegAdapterControl); 2090 2091 /* 2) initialize descriptor rings */ 2092 set_bufsize(dev); 2093 oom = nv_init_ring(dev); 2094 2095 writel(0, base + NvRegLinkSpeed); 2096 writel(0, base + NvRegUnknownTransmitterReg); 2097 nv_txrx_reset(dev); 2098 writel(0, base + NvRegUnknownSetupReg6); 2099 2100 np->in_shutdown = 0; 2101 2102 /* 3) set mac address */ 2103 nv_copy_mac_to_hw(dev); 2104 2105 /* 4) give hw rings */ 2106 writel((u32) np->ring_addr, base + NvRegRxRingPhysAddr); 2107 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 2108 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr); 2109 else 2110 writel((u32) (np->ring_addr + RX_RING*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr); 2111 writel( ((RX_RING-1) << NVREG_RINGSZ_RXSHIFT) + ((TX_RING-1) << NVREG_RINGSZ_TXSHIFT), 2112 base + NvRegRingSizes); 2113 2114 /* 5) continue setup */ 2115 writel(np->linkspeed, base + NvRegLinkSpeed); 2116 writel(NVREG_UNKSETUP3_VAL1, base + NvRegUnknownSetupReg3); 2117 writel(np->desc_ver, base + NvRegTxRxControl); 2118 pci_push(base); 2119 writel(NVREG_TXRXCTL_BIT1|np->desc_ver, base + NvRegTxRxControl); 2120 reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31, 2121 NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX, 2122 KERN_INFO "open: SetupReg5, Bit 31 remained off\n"); 2123 2124 writel(0, base + NvRegUnknownSetupReg4); 2125 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 2126 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus); 2127 2128 /* 6) continue setup */ 2129 writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1); 2130 writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus); 2131 writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags); 2132 writel(np->rx_buf_sz, base + NvRegOffloadConfig); 2133 2134 writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus); 2135 get_random_bytes(&i, sizeof(i)); 2136 writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed); 2137 writel(NVREG_UNKSETUP1_VAL, base + NvRegUnknownSetupReg1); 2138 writel(NVREG_UNKSETUP2_VAL, base + NvRegUnknownSetupReg2); 2139 writel(NVREG_POLL_DEFAULT, base + NvRegPollingInterval); 2140 writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6); 2141 writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING, 2142 base + NvRegAdapterControl); 2143 writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed); 2144 writel(NVREG_UNKSETUP4_VAL, base + NvRegUnknownSetupReg4); 2145 writel(NVREG_WAKEUPFLAGS_VAL, base + NvRegWakeUpFlags); 2146 2147 i = readl(base + NvRegPowerState); 2148 if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0) 2149 writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState); 2150 2151 pci_push(base); 2152 udelay(10); 2153 writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState); 2154 2155 writel(0, base + NvRegIrqMask); 2156 pci_push(base); 2157 writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus); 2158 writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus); 2159 pci_push(base); 2160 2161 ret = request_irq(dev->irq, &nv_nic_irq, SA_SHIRQ, dev->name, dev); 2162 if (ret) 2163 goto out_drain; 2164 2165 /* ask for interrupts */ 2166 writel(np->irqmask, base + NvRegIrqMask); 2167 2168 spin_lock_irq(&np->lock); 2169 writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA); 2170 writel(0, base + NvRegMulticastAddrB); 2171 writel(0, base + NvRegMulticastMaskA); 2172 writel(0, base + NvRegMulticastMaskB); 2173 writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags); 2174 /* One manual link speed update: Interrupts are enabled, future link 2175 * speed changes cause interrupts and are handled by nv_link_irq(). 2176 */ 2177 { 2178 u32 miistat; 2179 miistat = readl(base + NvRegMIIStatus); 2180 writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus); 2181 dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat); 2182 } 2183 /* set linkspeed to invalid value, thus force nv_update_linkspeed 2184 * to init hw */ 2185 np->linkspeed = 0; 2186 ret = nv_update_linkspeed(dev); 2187 nv_start_rx(dev); 2188 nv_start_tx(dev); 2189 netif_start_queue(dev); 2190 if (ret) { 2191 netif_carrier_on(dev); 2192 } else { 2193 printk("%s: no link during initialization.\n", dev->name); 2194 netif_carrier_off(dev); 2195 } 2196 if (oom) 2197 mod_timer(&np->oom_kick, jiffies + OOM_REFILL); 2198 spin_unlock_irq(&np->lock); 2199 2200 return 0; 2201out_drain: 2202 drain_ring(dev); 2203 return ret; 2204} 2205 2206static int nv_close(struct net_device *dev) 2207{ 2208 struct fe_priv *np = get_nvpriv(dev); 2209 u8 __iomem *base; 2210 2211 spin_lock_irq(&np->lock); 2212 np->in_shutdown = 1; 2213 spin_unlock_irq(&np->lock); 2214 synchronize_irq(dev->irq); 2215 2216 del_timer_sync(&np->oom_kick); 2217 del_timer_sync(&np->nic_poll); 2218 2219 netif_stop_queue(dev); 2220 spin_lock_irq(&np->lock); 2221 nv_stop_tx(dev); 2222 nv_stop_rx(dev); 2223 nv_txrx_reset(dev); 2224 2225 /* disable interrupts on the nic or we will lock up */ 2226 base = get_hwbase(dev); 2227 writel(0, base + NvRegIrqMask); 2228 pci_push(base); 2229 dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name); 2230 2231 spin_unlock_irq(&np->lock); 2232 2233 free_irq(dev->irq, dev); 2234 2235 drain_ring(dev); 2236 2237 if (np->wolenabled) 2238 nv_start_rx(dev); 2239 2240 /* special op: write back the misordered MAC address - otherwise 2241 * the next nv_probe would see a wrong address. 2242 */ 2243 writel(np->orig_mac[0], base + NvRegMacAddrA); 2244 writel(np->orig_mac[1], base + NvRegMacAddrB); 2245 2246 /* FIXME: power down nic */ 2247 2248 return 0; 2249} 2250 2251static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) 2252{ 2253 struct net_device *dev; 2254 struct fe_priv *np; 2255 unsigned long addr; 2256 u8 __iomem *base; 2257 int err, i; 2258 2259 dev = alloc_etherdev(sizeof(struct fe_priv)); 2260 err = -ENOMEM; 2261 if (!dev) 2262 goto out; 2263 2264 np = get_nvpriv(dev); 2265 np->pci_dev = pci_dev; 2266 spin_lock_init(&np->lock); 2267 SET_MODULE_OWNER(dev); 2268 SET_NETDEV_DEV(dev, &pci_dev->dev); 2269 2270 init_timer(&np->oom_kick); 2271 np->oom_kick.data = (unsigned long) dev; 2272 np->oom_kick.function = &nv_do_rx_refill; /* timer handler */ 2273 init_timer(&np->nic_poll); 2274 np->nic_poll.data = (unsigned long) dev; 2275 np->nic_poll.function = &nv_do_nic_poll; /* timer handler */ 2276 2277 err = pci_enable_device(pci_dev); 2278 if (err) { 2279 printk(KERN_INFO "forcedeth: pci_enable_dev failed (%d) for device %s\n", 2280 err, pci_name(pci_dev)); 2281 goto out_free; 2282 } 2283 2284 pci_set_master(pci_dev); 2285 2286 err = pci_request_regions(pci_dev, DRV_NAME); 2287 if (err < 0) 2288 goto out_disable; 2289 2290 err = -EINVAL; 2291 addr = 0; 2292 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 2293 dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n", 2294 pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i), 2295 pci_resource_len(pci_dev, i), 2296 pci_resource_flags(pci_dev, i)); 2297 if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM && 2298 pci_resource_len(pci_dev, i) >= NV_PCI_REGSZ) { 2299 addr = pci_resource_start(pci_dev, i); 2300 break; 2301 } 2302 } 2303 if (i == DEVICE_COUNT_RESOURCE) { 2304 printk(KERN_INFO "forcedeth: Couldn't find register window for device %s.\n", 2305 pci_name(pci_dev)); 2306 goto out_relreg; 2307 } 2308 2309 /* handle different descriptor versions */ 2310 if (id->driver_data & DEV_HAS_HIGH_DMA) { 2311 /* packet format 3: supports 40-bit addressing */ 2312 np->desc_ver = DESC_VER_3; 2313 if (pci_set_dma_mask(pci_dev, 0x0000007fffffffffULL)) { 2314 printk(KERN_INFO "forcedeth: 64-bit DMA failed, using 32-bit addressing for device %s.\n", 2315 pci_name(pci_dev)); 2316 } 2317 } else if (id->driver_data & DEV_HAS_LARGEDESC) { 2318 /* packet format 2: supports jumbo frames */ 2319 np->desc_ver = DESC_VER_2; 2320 } else { 2321 /* original packet format */ 2322 np->desc_ver = DESC_VER_1; 2323 } 2324 2325 np->pkt_limit = NV_PKTLIMIT_1; 2326 if (id->driver_data & DEV_HAS_LARGEDESC) 2327 np->pkt_limit = NV_PKTLIMIT_2; 2328 2329 err = -ENOMEM; 2330 np->base = ioremap(addr, NV_PCI_REGSZ); 2331 if (!np->base) 2332 goto out_relreg; 2333 dev->base_addr = (unsigned long)np->base; 2334 2335 dev->irq = pci_dev->irq; 2336 2337 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) { 2338 np->rx_ring.orig = pci_alloc_consistent(pci_dev, 2339 sizeof(struct ring_desc) * (RX_RING + TX_RING), 2340 &np->ring_addr); 2341 if (!np->rx_ring.orig) 2342 goto out_unmap; 2343 np->tx_ring.orig = &np->rx_ring.orig[RX_RING]; 2344 } else { 2345 np->rx_ring.ex = pci_alloc_consistent(pci_dev, 2346 sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), 2347 &np->ring_addr); 2348 if (!np->rx_ring.ex) 2349 goto out_unmap; 2350 np->tx_ring.ex = &np->rx_ring.ex[RX_RING]; 2351 } 2352 2353 dev->open = nv_open; 2354 dev->stop = nv_close; 2355 dev->hard_start_xmit = nv_start_xmit; 2356 dev->get_stats = nv_get_stats; 2357 dev->change_mtu = nv_change_mtu; 2358 dev->set_mac_address = nv_set_mac_address; 2359 dev->set_multicast_list = nv_set_multicast; 2360#ifdef CONFIG_NET_POLL_CONTROLLER 2361 dev->poll_controller = nv_poll_controller; 2362#endif 2363 SET_ETHTOOL_OPS(dev, &ops); 2364 dev->tx_timeout = nv_tx_timeout; 2365 dev->watchdog_timeo = NV_WATCHDOG_TIMEO; 2366 2367 pci_set_drvdata(pci_dev, dev); 2368 2369 /* read the mac address */ 2370 base = get_hwbase(dev); 2371 np->orig_mac[0] = readl(base + NvRegMacAddrA); 2372 np->orig_mac[1] = readl(base + NvRegMacAddrB); 2373 2374 dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff; 2375 dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff; 2376 dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff; 2377 dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff; 2378 dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff; 2379 dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff; 2380 2381 if (!is_valid_ether_addr(dev->dev_addr)) { 2382 /* 2383 * Bad mac address. At least one bios sets the mac address 2384 * to 01:23:45:67:89:ab 2385 */ 2386 printk(KERN_ERR "%s: Invalid Mac address detected: %02x:%02x:%02x:%02x:%02x:%02x\n", 2387 pci_name(pci_dev), 2388 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], 2389 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); 2390 printk(KERN_ERR "Please complain to your hardware vendor. Switching to a random MAC.\n"); 2391 dev->dev_addr[0] = 0x00; 2392 dev->dev_addr[1] = 0x00; 2393 dev->dev_addr[2] = 0x6c; 2394 get_random_bytes(&dev->dev_addr[3], 3); 2395 } 2396 2397 dprintk(KERN_DEBUG "%s: MAC Address %02x:%02x:%02x:%02x:%02x:%02x\n", pci_name(pci_dev), 2398 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], 2399 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]); 2400 2401 /* disable WOL */ 2402 writel(0, base + NvRegWakeUpFlags); 2403 np->wolenabled = 0; 2404 2405 if (np->desc_ver == DESC_VER_1) { 2406 np->tx_flags = NV_TX_LASTPACKET|NV_TX_VALID; 2407 } else { 2408 np->tx_flags = NV_TX2_LASTPACKET|NV_TX2_VALID; 2409 } 2410 np->irqmask = NVREG_IRQMASK_WANTED; 2411 if (id->driver_data & DEV_NEED_TIMERIRQ) 2412 np->irqmask |= NVREG_IRQ_TIMER; 2413 if (id->driver_data & DEV_NEED_LINKTIMER) { 2414 dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev)); 2415 np->need_linktimer = 1; 2416 np->link_timeout = jiffies + LINK_TIMEOUT; 2417 } else { 2418 dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev)); 2419 np->need_linktimer = 0; 2420 } 2421 2422 /* find a suitable phy */ 2423 for (i = 1; i < 32; i++) { 2424 int id1, id2; 2425 2426 spin_lock_irq(&np->lock); 2427 id1 = mii_rw(dev, i, MII_PHYSID1, MII_READ); 2428 spin_unlock_irq(&np->lock); 2429 if (id1 < 0 || id1 == 0xffff) 2430 continue; 2431 spin_lock_irq(&np->lock); 2432 id2 = mii_rw(dev, i, MII_PHYSID2, MII_READ); 2433 spin_unlock_irq(&np->lock); 2434 if (id2 < 0 || id2 == 0xffff) 2435 continue; 2436 2437 id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT; 2438 id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT; 2439 dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n", 2440 pci_name(pci_dev), id1, id2, i); 2441 np->phyaddr = i; 2442 np->phy_oui = id1 | id2; 2443 break; 2444 } 2445 if (i == 32) { 2446 /* PHY in isolate mode? No phy attached and user wants to 2447 * test loopback? Very odd, but can be correct. 2448 */ 2449 printk(KERN_INFO "%s: open: Could not find a valid PHY.\n", 2450 pci_name(pci_dev)); 2451 } 2452 2453 if (i != 32) { 2454 /* reset it */ 2455 phy_init(dev); 2456 } 2457 2458 /* set default link speed settings */ 2459 np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10; 2460 np->duplex = 0; 2461 np->autoneg = 1; 2462 2463 err = register_netdev(dev); 2464 if (err) { 2465 printk(KERN_INFO "forcedeth: unable to register netdev: %d\n", err); 2466 goto out_freering; 2467 } 2468 printk(KERN_INFO "%s: forcedeth.c: subsystem: %05x:%04x bound to %s\n", 2469 dev->name, pci_dev->subsystem_vendor, pci_dev->subsystem_device, 2470 pci_name(pci_dev)); 2471 2472 return 0; 2473 2474out_freering: 2475 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 2476 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), 2477 np->rx_ring.orig, np->ring_addr); 2478 else 2479 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), 2480 np->rx_ring.ex, np->ring_addr); 2481 pci_set_drvdata(pci_dev, NULL); 2482out_unmap: 2483 iounmap(get_hwbase(dev)); 2484out_relreg: 2485 pci_release_regions(pci_dev); 2486out_disable: 2487 pci_disable_device(pci_dev); 2488out_free: 2489 free_netdev(dev); 2490out: 2491 return err; 2492} 2493 2494static void __devexit nv_remove(struct pci_dev *pci_dev) 2495{ 2496 struct net_device *dev = pci_get_drvdata(pci_dev); 2497 struct fe_priv *np = get_nvpriv(dev); 2498 2499 unregister_netdev(dev); 2500 2501 /* free all structures */ 2502 if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) 2503 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (RX_RING + TX_RING), np->rx_ring.orig, np->ring_addr); 2504 else 2505 pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (RX_RING + TX_RING), np->rx_ring.ex, np->ring_addr); 2506 iounmap(get_hwbase(dev)); 2507 pci_release_regions(pci_dev); 2508 pci_disable_device(pci_dev); 2509 free_netdev(dev); 2510 pci_set_drvdata(pci_dev, NULL); 2511} 2512 2513static struct pci_device_id pci_tbl[] = { 2514 { /* nForce Ethernet Controller */ 2515 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1), 2516 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 2517 }, 2518 { /* nForce2 Ethernet Controller */ 2519 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2), 2520 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 2521 }, 2522 { /* nForce3 Ethernet Controller */ 2523 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3), 2524 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER, 2525 }, 2526 { /* nForce3 Ethernet Controller */ 2527 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4), 2528 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC, 2529 }, 2530 { /* nForce3 Ethernet Controller */ 2531 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5), 2532 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC, 2533 }, 2534 { /* nForce3 Ethernet Controller */ 2535 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6), 2536 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC, 2537 }, 2538 { /* nForce3 Ethernet Controller */ 2539 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7), 2540 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC, 2541 }, 2542 { /* CK804 Ethernet Controller */ 2543 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8), 2544 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA, 2545 }, 2546 { /* CK804 Ethernet Controller */ 2547 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9), 2548 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA, 2549 }, 2550 { /* MCP04 Ethernet Controller */ 2551 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10), 2552 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA, 2553 }, 2554 { /* MCP04 Ethernet Controller */ 2555 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11), 2556 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA, 2557 }, 2558 { /* MCP51 Ethernet Controller */ 2559 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12), 2560 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA, 2561 }, 2562 { /* MCP51 Ethernet Controller */ 2563 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13), 2564 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA, 2565 }, 2566 { /* MCP55 Ethernet Controller */ 2567 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14), 2568 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA, 2569 }, 2570 { /* MCP55 Ethernet Controller */ 2571 PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15), 2572 .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA, 2573 }, 2574 {0,}, 2575}; 2576 2577static struct pci_driver driver = { 2578 .name = "forcedeth", 2579 .id_table = pci_tbl, 2580 .probe = nv_probe, 2581 .remove = __devexit_p(nv_remove), 2582}; 2583 2584 2585static int __init init_nic(void) 2586{ 2587 printk(KERN_INFO "forcedeth.c: Reverse Engineered nForce ethernet driver. Version %s.\n", FORCEDETH_VERSION); 2588 return pci_module_init(&driver); 2589} 2590 2591static void __exit exit_nic(void) 2592{ 2593 pci_unregister_driver(&driver); 2594} 2595 2596module_param(max_interrupt_work, int, 0); 2597MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt"); 2598 2599MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>"); 2600MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver"); 2601MODULE_LICENSE("GPL"); 2602 2603MODULE_DEVICE_TABLE(pci, pci_tbl); 2604 2605module_init(init_nic); 2606module_exit(exit_nic);