at v2.6.14-rc2 2681 lines 77 kB view raw
1/******************************************************************************* 2 3 4 Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 2 of the License, or (at your option) 9 any later version. 10 11 This program is distributed in the hope that it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 59 18 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 20 The full GNU General Public License is included in this distribution in the 21 file called LICENSE. 22 23 Contact Information: 24 Linux NICS <linux.nics@intel.com> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27*******************************************************************************/ 28 29/* 30 * e100.c: Intel(R) PRO/100 ethernet driver 31 * 32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on 33 * original e100 driver, but better described as a munging of 34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers. 35 * 36 * References: 37 * Intel 8255x 10/100 Mbps Ethernet Controller Family, 38 * Open Source Software Developers Manual, 39 * http://sourceforge.net/projects/e1000 40 * 41 * 42 * Theory of Operation 43 * 44 * I. General 45 * 46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet 47 * controller family, which includes the 82557, 82558, 82559, 82550, 48 * 82551, and 82562 devices. 82558 and greater controllers 49 * integrate the Intel 82555 PHY. The controllers are used in 50 * server and client network interface cards, as well as in 51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx 52 * configurations. 8255x supports a 32-bit linear addressing 53 * mode and operates at 33Mhz PCI clock rate. 54 * 55 * II. Driver Operation 56 * 57 * Memory-mapped mode is used exclusively to access the device's 58 * shared-memory structure, the Control/Status Registers (CSR). All 59 * setup, configuration, and control of the device, including queuing 60 * of Tx, Rx, and configuration commands is through the CSR. 61 * cmd_lock serializes accesses to the CSR command register. cb_lock 62 * protects the shared Command Block List (CBL). 63 * 64 * 8255x is highly MII-compliant and all access to the PHY go 65 * through the Management Data Interface (MDI). Consequently, the 66 * driver leverages the mii.c library shared with other MII-compliant 67 * devices. 68 * 69 * Big- and Little-Endian byte order as well as 32- and 64-bit 70 * archs are supported. Weak-ordered memory and non-cache-coherent 71 * archs are supported. 72 * 73 * III. Transmit 74 * 75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked 76 * together in a fixed-size ring (CBL) thus forming the flexible mode 77 * memory structure. A TCB marked with the suspend-bit indicates 78 * the end of the ring. The last TCB processed suspends the 79 * controller, and the controller can be restarted by issue a CU 80 * resume command to continue from the suspend point, or a CU start 81 * command to start at a given position in the ring. 82 * 83 * Non-Tx commands (config, multicast setup, etc) are linked 84 * into the CBL ring along with Tx commands. The common structure 85 * used for both Tx and non-Tx commands is the Command Block (CB). 86 * 87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean 88 * is the next CB to check for completion; cb_to_send is the first 89 * CB to start on in case of a previous failure to resume. CB clean 90 * up happens in interrupt context in response to a CU interrupt. 91 * cbs_avail keeps track of number of free CB resources available. 92 * 93 * Hardware padding of short packets to minimum packet size is 94 * enabled. 82557 pads with 7Eh, while the later controllers pad 95 * with 00h. 96 * 97 * IV. Recieve 98 * 99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame 100 * Descriptors (RFD) + data buffer, thus forming the simplified mode 101 * memory structure. Rx skbs are allocated to contain both the RFD 102 * and the data buffer, but the RFD is pulled off before the skb is 103 * indicated. The data buffer is aligned such that encapsulated 104 * protocol headers are u32-aligned. Since the RFD is part of the 105 * mapped shared memory, and completion status is contained within 106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent 107 * view from software and hardware. 108 * 109 * Under typical operation, the receive unit (RU) is start once, 110 * and the controller happily fills RFDs as frames arrive. If 111 * replacement RFDs cannot be allocated, or the RU goes non-active, 112 * the RU must be restarted. Frame arrival generates an interrupt, 113 * and Rx indication and re-allocation happen in the same context, 114 * therefore no locking is required. A software-generated interrupt 115 * is generated from the watchdog to recover from a failed allocation 116 * senario where all Rx resources have been indicated and none re- 117 * placed. 118 * 119 * V. Miscellaneous 120 * 121 * VLAN offloading of tagging, stripping and filtering is not 122 * supported, but driver will accommodate the extra 4-byte VLAN tag 123 * for processing by upper layers. Tx/Rx Checksum offloading is not 124 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is 125 * not supported (hardware limitation). 126 * 127 * MagicPacket(tm) WoL support is enabled/disabled via ethtool. 128 * 129 * Thanks to JC (jchapman@katalix.com) for helping with 130 * testing/troubleshooting the development driver. 131 * 132 * TODO: 133 * o several entry points race with dev->close 134 * o check for tx-no-resources/stop Q races with tx clean/wake Q 135 */ 136 137#include <linux/config.h> 138#include <linux/module.h> 139#include <linux/moduleparam.h> 140#include <linux/kernel.h> 141#include <linux/types.h> 142#include <linux/slab.h> 143#include <linux/delay.h> 144#include <linux/init.h> 145#include <linux/pci.h> 146#include <linux/dma-mapping.h> 147#include <linux/netdevice.h> 148#include <linux/etherdevice.h> 149#include <linux/mii.h> 150#include <linux/if_vlan.h> 151#include <linux/skbuff.h> 152#include <linux/ethtool.h> 153#include <linux/string.h> 154#include <asm/unaligned.h> 155 156 157#define DRV_NAME "e100" 158#define DRV_EXT "-NAPI" 159#define DRV_VERSION "3.4.14-k2"DRV_EXT 160#define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver" 161#define DRV_COPYRIGHT "Copyright(c) 1999-2005 Intel Corporation" 162#define PFX DRV_NAME ": " 163 164#define E100_WATCHDOG_PERIOD (2 * HZ) 165#define E100_NAPI_WEIGHT 16 166 167MODULE_DESCRIPTION(DRV_DESCRIPTION); 168MODULE_AUTHOR(DRV_COPYRIGHT); 169MODULE_LICENSE("GPL"); 170MODULE_VERSION(DRV_VERSION); 171 172static int debug = 3; 173module_param(debug, int, 0); 174MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 175#define DPRINTK(nlevel, klevel, fmt, args...) \ 176 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \ 177 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \ 178 __FUNCTION__ , ## args)) 179 180#define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\ 181 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \ 182 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich } 183static struct pci_device_id e100_id_table[] = { 184 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0), 185 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0), 186 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3), 187 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3), 188 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3), 189 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3), 190 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3), 191 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4), 192 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4), 193 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4), 194 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4), 195 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4), 196 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4), 197 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5), 198 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5), 199 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5), 200 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5), 201 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5), 202 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5), 203 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5), 204 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5), 205 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0), 206 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6), 207 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6), 208 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6), 209 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6), 210 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6), 211 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6), 212 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6), 213 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6), 214 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7), 215 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7), 216 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7), 217 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7), 218 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7), 219 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0), 220 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0), 221 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2), 222 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2), 223 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2), 224 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7), 225 { 0, } 226}; 227MODULE_DEVICE_TABLE(pci, e100_id_table); 228 229enum mac { 230 mac_82557_D100_A = 0, 231 mac_82557_D100_B = 1, 232 mac_82557_D100_C = 2, 233 mac_82558_D101_A4 = 4, 234 mac_82558_D101_B0 = 5, 235 mac_82559_D101M = 8, 236 mac_82559_D101S = 9, 237 mac_82550_D102 = 12, 238 mac_82550_D102_C = 13, 239 mac_82551_E = 14, 240 mac_82551_F = 15, 241 mac_82551_10 = 16, 242 mac_unknown = 0xFF, 243}; 244 245enum phy { 246 phy_100a = 0x000003E0, 247 phy_100c = 0x035002A8, 248 phy_82555_tx = 0x015002A8, 249 phy_nsc_tx = 0x5C002000, 250 phy_82562_et = 0x033002A8, 251 phy_82562_em = 0x032002A8, 252 phy_82562_ek = 0x031002A8, 253 phy_82562_eh = 0x017002A8, 254 phy_unknown = 0xFFFFFFFF, 255}; 256 257/* CSR (Control/Status Registers) */ 258struct csr { 259 struct { 260 u8 status; 261 u8 stat_ack; 262 u8 cmd_lo; 263 u8 cmd_hi; 264 u32 gen_ptr; 265 } scb; 266 u32 port; 267 u16 flash_ctrl; 268 u8 eeprom_ctrl_lo; 269 u8 eeprom_ctrl_hi; 270 u32 mdi_ctrl; 271 u32 rx_dma_count; 272}; 273 274enum scb_status { 275 rus_ready = 0x10, 276 rus_mask = 0x3C, 277}; 278 279enum ru_state { 280 RU_SUSPENDED = 0, 281 RU_RUNNING = 1, 282 RU_UNINITIALIZED = -1, 283}; 284 285enum scb_stat_ack { 286 stat_ack_not_ours = 0x00, 287 stat_ack_sw_gen = 0x04, 288 stat_ack_rnr = 0x10, 289 stat_ack_cu_idle = 0x20, 290 stat_ack_frame_rx = 0x40, 291 stat_ack_cu_cmd_done = 0x80, 292 stat_ack_not_present = 0xFF, 293 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx), 294 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done), 295}; 296 297enum scb_cmd_hi { 298 irq_mask_none = 0x00, 299 irq_mask_all = 0x01, 300 irq_sw_gen = 0x02, 301}; 302 303enum scb_cmd_lo { 304 cuc_nop = 0x00, 305 ruc_start = 0x01, 306 ruc_load_base = 0x06, 307 cuc_start = 0x10, 308 cuc_resume = 0x20, 309 cuc_dump_addr = 0x40, 310 cuc_dump_stats = 0x50, 311 cuc_load_base = 0x60, 312 cuc_dump_reset = 0x70, 313}; 314 315enum cuc_dump { 316 cuc_dump_complete = 0x0000A005, 317 cuc_dump_reset_complete = 0x0000A007, 318}; 319 320enum port { 321 software_reset = 0x0000, 322 selftest = 0x0001, 323 selective_reset = 0x0002, 324}; 325 326enum eeprom_ctrl_lo { 327 eesk = 0x01, 328 eecs = 0x02, 329 eedi = 0x04, 330 eedo = 0x08, 331}; 332 333enum mdi_ctrl { 334 mdi_write = 0x04000000, 335 mdi_read = 0x08000000, 336 mdi_ready = 0x10000000, 337}; 338 339enum eeprom_op { 340 op_write = 0x05, 341 op_read = 0x06, 342 op_ewds = 0x10, 343 op_ewen = 0x13, 344}; 345 346enum eeprom_offsets { 347 eeprom_cnfg_mdix = 0x03, 348 eeprom_id = 0x0A, 349 eeprom_config_asf = 0x0D, 350 eeprom_smbus_addr = 0x90, 351}; 352 353enum eeprom_cnfg_mdix { 354 eeprom_mdix_enabled = 0x0080, 355}; 356 357enum eeprom_id { 358 eeprom_id_wol = 0x0020, 359}; 360 361enum eeprom_config_asf { 362 eeprom_asf = 0x8000, 363 eeprom_gcl = 0x4000, 364}; 365 366enum cb_status { 367 cb_complete = 0x8000, 368 cb_ok = 0x2000, 369}; 370 371enum cb_command { 372 cb_nop = 0x0000, 373 cb_iaaddr = 0x0001, 374 cb_config = 0x0002, 375 cb_multi = 0x0003, 376 cb_tx = 0x0004, 377 cb_ucode = 0x0005, 378 cb_dump = 0x0006, 379 cb_tx_sf = 0x0008, 380 cb_cid = 0x1f00, 381 cb_i = 0x2000, 382 cb_s = 0x4000, 383 cb_el = 0x8000, 384}; 385 386struct rfd { 387 u16 status; 388 u16 command; 389 u32 link; 390 u32 rbd; 391 u16 actual_size; 392 u16 size; 393}; 394 395struct rx { 396 struct rx *next, *prev; 397 struct sk_buff *skb; 398 dma_addr_t dma_addr; 399}; 400 401#if defined(__BIG_ENDIAN_BITFIELD) 402#define X(a,b) b,a 403#else 404#define X(a,b) a,b 405#endif 406struct config { 407/*0*/ u8 X(byte_count:6, pad0:2); 408/*1*/ u8 X(X(rx_fifo_limit:4, tx_fifo_limit:3), pad1:1); 409/*2*/ u8 adaptive_ifs; 410/*3*/ u8 X(X(X(X(mwi_enable:1, type_enable:1), read_align_enable:1), 411 term_write_cache_line:1), pad3:4); 412/*4*/ u8 X(rx_dma_max_count:7, pad4:1); 413/*5*/ u8 X(tx_dma_max_count:7, dma_max_count_enable:1); 414/*6*/ u8 X(X(X(X(X(X(X(late_scb_update:1, direct_rx_dma:1), 415 tno_intr:1), cna_intr:1), standard_tcb:1), standard_stat_counter:1), 416 rx_discard_overruns:1), rx_save_bad_frames:1); 417/*7*/ u8 X(X(X(X(X(rx_discard_short_frames:1, tx_underrun_retry:2), 418 pad7:2), rx_extended_rfd:1), tx_two_frames_in_fifo:1), 419 tx_dynamic_tbd:1); 420/*8*/ u8 X(X(mii_mode:1, pad8:6), csma_disabled:1); 421/*9*/ u8 X(X(X(X(X(rx_tcpudp_checksum:1, pad9:3), vlan_arp_tco:1), 422 link_status_wake:1), arp_wake:1), mcmatch_wake:1); 423/*10*/ u8 X(X(X(pad10:3, no_source_addr_insertion:1), preamble_length:2), 424 loopback:2); 425/*11*/ u8 X(linear_priority:3, pad11:5); 426/*12*/ u8 X(X(linear_priority_mode:1, pad12:3), ifs:4); 427/*13*/ u8 ip_addr_lo; 428/*14*/ u8 ip_addr_hi; 429/*15*/ u8 X(X(X(X(X(X(X(promiscuous_mode:1, broadcast_disabled:1), 430 wait_after_win:1), pad15_1:1), ignore_ul_bit:1), crc_16_bit:1), 431 pad15_2:1), crs_or_cdt:1); 432/*16*/ u8 fc_delay_lo; 433/*17*/ u8 fc_delay_hi; 434/*18*/ u8 X(X(X(X(X(rx_stripping:1, tx_padding:1), rx_crc_transfer:1), 435 rx_long_ok:1), fc_priority_threshold:3), pad18:1); 436/*19*/ u8 X(X(X(X(X(X(X(addr_wake:1, magic_packet_disable:1), 437 fc_disable:1), fc_restop:1), fc_restart:1), fc_reject:1), 438 full_duplex_force:1), full_duplex_pin:1); 439/*20*/ u8 X(X(X(pad20_1:5, fc_priority_location:1), multi_ia:1), pad20_2:1); 440/*21*/ u8 X(X(pad21_1:3, multicast_all:1), pad21_2:4); 441/*22*/ u8 X(X(rx_d102_mode:1, rx_vlan_drop:1), pad22:6); 442 u8 pad_d102[9]; 443}; 444 445#define E100_MAX_MULTICAST_ADDRS 64 446struct multi { 447 u16 count; 448 u8 addr[E100_MAX_MULTICAST_ADDRS * ETH_ALEN + 2/*pad*/]; 449}; 450 451/* Important: keep total struct u32-aligned */ 452#define UCODE_SIZE 134 453struct cb { 454 u16 status; 455 u16 command; 456 u32 link; 457 union { 458 u8 iaaddr[ETH_ALEN]; 459 u32 ucode[UCODE_SIZE]; 460 struct config config; 461 struct multi multi; 462 struct { 463 u32 tbd_array; 464 u16 tcb_byte_count; 465 u8 threshold; 466 u8 tbd_count; 467 struct { 468 u32 buf_addr; 469 u16 size; 470 u16 eol; 471 } tbd; 472 } tcb; 473 u32 dump_buffer_addr; 474 } u; 475 struct cb *next, *prev; 476 dma_addr_t dma_addr; 477 struct sk_buff *skb; 478}; 479 480enum loopback { 481 lb_none = 0, lb_mac = 1, lb_phy = 3, 482}; 483 484struct stats { 485 u32 tx_good_frames, tx_max_collisions, tx_late_collisions, 486 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions, 487 tx_multiple_collisions, tx_total_collisions; 488 u32 rx_good_frames, rx_crc_errors, rx_alignment_errors, 489 rx_resource_errors, rx_overrun_errors, rx_cdt_errors, 490 rx_short_frame_errors; 491 u32 fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported; 492 u16 xmt_tco_frames, rcv_tco_frames; 493 u32 complete; 494}; 495 496struct mem { 497 struct { 498 u32 signature; 499 u32 result; 500 } selftest; 501 struct stats stats; 502 u8 dump_buf[596]; 503}; 504 505struct param_range { 506 u32 min; 507 u32 max; 508 u32 count; 509}; 510 511struct params { 512 struct param_range rfds; 513 struct param_range cbs; 514}; 515 516struct nic { 517 /* Begin: frequently used values: keep adjacent for cache effect */ 518 u32 msg_enable ____cacheline_aligned; 519 struct net_device *netdev; 520 struct pci_dev *pdev; 521 522 struct rx *rxs ____cacheline_aligned; 523 struct rx *rx_to_use; 524 struct rx *rx_to_clean; 525 struct rfd blank_rfd; 526 enum ru_state ru_running; 527 528 spinlock_t cb_lock ____cacheline_aligned; 529 spinlock_t cmd_lock; 530 struct csr __iomem *csr; 531 enum scb_cmd_lo cuc_cmd; 532 unsigned int cbs_avail; 533 struct cb *cbs; 534 struct cb *cb_to_use; 535 struct cb *cb_to_send; 536 struct cb *cb_to_clean; 537 u16 tx_command; 538 /* End: frequently used values: keep adjacent for cache effect */ 539 540 enum { 541 ich = (1 << 0), 542 promiscuous = (1 << 1), 543 multicast_all = (1 << 2), 544 wol_magic = (1 << 3), 545 ich_10h_workaround = (1 << 4), 546 } flags ____cacheline_aligned; 547 548 enum mac mac; 549 enum phy phy; 550 struct params params; 551 struct net_device_stats net_stats; 552 struct timer_list watchdog; 553 struct timer_list blink_timer; 554 struct mii_if_info mii; 555 struct work_struct tx_timeout_task; 556 enum loopback loopback; 557 558 struct mem *mem; 559 dma_addr_t dma_addr; 560 561 dma_addr_t cbs_dma_addr; 562 u8 adaptive_ifs; 563 u8 tx_threshold; 564 u32 tx_frames; 565 u32 tx_collisions; 566 u32 tx_deferred; 567 u32 tx_single_collisions; 568 u32 tx_multiple_collisions; 569 u32 tx_fc_pause; 570 u32 tx_tco_frames; 571 572 u32 rx_fc_pause; 573 u32 rx_fc_unsupported; 574 u32 rx_tco_frames; 575 u32 rx_over_length_errors; 576 577 u8 rev_id; 578 u16 leds; 579 u16 eeprom_wc; 580 u16 eeprom[256]; 581}; 582 583static inline void e100_write_flush(struct nic *nic) 584{ 585 /* Flush previous PCI writes through intermediate bridges 586 * by doing a benign read */ 587 (void)readb(&nic->csr->scb.status); 588} 589 590static inline void e100_enable_irq(struct nic *nic) 591{ 592 unsigned long flags; 593 594 spin_lock_irqsave(&nic->cmd_lock, flags); 595 writeb(irq_mask_none, &nic->csr->scb.cmd_hi); 596 spin_unlock_irqrestore(&nic->cmd_lock, flags); 597 e100_write_flush(nic); 598} 599 600static inline void e100_disable_irq(struct nic *nic) 601{ 602 unsigned long flags; 603 604 spin_lock_irqsave(&nic->cmd_lock, flags); 605 writeb(irq_mask_all, &nic->csr->scb.cmd_hi); 606 spin_unlock_irqrestore(&nic->cmd_lock, flags); 607 e100_write_flush(nic); 608} 609 610static void e100_hw_reset(struct nic *nic) 611{ 612 /* Put CU and RU into idle with a selective reset to get 613 * device off of PCI bus */ 614 writel(selective_reset, &nic->csr->port); 615 e100_write_flush(nic); udelay(20); 616 617 /* Now fully reset device */ 618 writel(software_reset, &nic->csr->port); 619 e100_write_flush(nic); udelay(20); 620 621 /* Mask off our interrupt line - it's unmasked after reset */ 622 e100_disable_irq(nic); 623} 624 625static int e100_self_test(struct nic *nic) 626{ 627 u32 dma_addr = nic->dma_addr + offsetof(struct mem, selftest); 628 629 /* Passing the self-test is a pretty good indication 630 * that the device can DMA to/from host memory */ 631 632 nic->mem->selftest.signature = 0; 633 nic->mem->selftest.result = 0xFFFFFFFF; 634 635 writel(selftest | dma_addr, &nic->csr->port); 636 e100_write_flush(nic); 637 /* Wait 10 msec for self-test to complete */ 638 msleep(10); 639 640 /* Interrupts are enabled after self-test */ 641 e100_disable_irq(nic); 642 643 /* Check results of self-test */ 644 if(nic->mem->selftest.result != 0) { 645 DPRINTK(HW, ERR, "Self-test failed: result=0x%08X\n", 646 nic->mem->selftest.result); 647 return -ETIMEDOUT; 648 } 649 if(nic->mem->selftest.signature == 0) { 650 DPRINTK(HW, ERR, "Self-test failed: timed out\n"); 651 return -ETIMEDOUT; 652 } 653 654 return 0; 655} 656 657static void e100_eeprom_write(struct nic *nic, u16 addr_len, u16 addr, u16 data) 658{ 659 u32 cmd_addr_data[3]; 660 u8 ctrl; 661 int i, j; 662 663 /* Three cmds: write/erase enable, write data, write/erase disable */ 664 cmd_addr_data[0] = op_ewen << (addr_len - 2); 665 cmd_addr_data[1] = (((op_write << addr_len) | addr) << 16) | 666 cpu_to_le16(data); 667 cmd_addr_data[2] = op_ewds << (addr_len - 2); 668 669 /* Bit-bang cmds to write word to eeprom */ 670 for(j = 0; j < 3; j++) { 671 672 /* Chip select */ 673 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 674 e100_write_flush(nic); udelay(4); 675 676 for(i = 31; i >= 0; i--) { 677 ctrl = (cmd_addr_data[j] & (1 << i)) ? 678 eecs | eedi : eecs; 679 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); 680 e100_write_flush(nic); udelay(4); 681 682 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 683 e100_write_flush(nic); udelay(4); 684 } 685 /* Wait 10 msec for cmd to complete */ 686 msleep(10); 687 688 /* Chip deselect */ 689 writeb(0, &nic->csr->eeprom_ctrl_lo); 690 e100_write_flush(nic); udelay(4); 691 } 692}; 693 694/* General technique stolen from the eepro100 driver - very clever */ 695static u16 e100_eeprom_read(struct nic *nic, u16 *addr_len, u16 addr) 696{ 697 u32 cmd_addr_data; 698 u16 data = 0; 699 u8 ctrl; 700 int i; 701 702 cmd_addr_data = ((op_read << *addr_len) | addr) << 16; 703 704 /* Chip select */ 705 writeb(eecs | eesk, &nic->csr->eeprom_ctrl_lo); 706 e100_write_flush(nic); udelay(4); 707 708 /* Bit-bang to read word from eeprom */ 709 for(i = 31; i >= 0; i--) { 710 ctrl = (cmd_addr_data & (1 << i)) ? eecs | eedi : eecs; 711 writeb(ctrl, &nic->csr->eeprom_ctrl_lo); 712 e100_write_flush(nic); udelay(4); 713 714 writeb(ctrl | eesk, &nic->csr->eeprom_ctrl_lo); 715 e100_write_flush(nic); udelay(4); 716 717 /* Eeprom drives a dummy zero to EEDO after receiving 718 * complete address. Use this to adjust addr_len. */ 719 ctrl = readb(&nic->csr->eeprom_ctrl_lo); 720 if(!(ctrl & eedo) && i > 16) { 721 *addr_len -= (i - 16); 722 i = 17; 723 } 724 725 data = (data << 1) | (ctrl & eedo ? 1 : 0); 726 } 727 728 /* Chip deselect */ 729 writeb(0, &nic->csr->eeprom_ctrl_lo); 730 e100_write_flush(nic); udelay(4); 731 732 return le16_to_cpu(data); 733}; 734 735/* Load entire EEPROM image into driver cache and validate checksum */ 736static int e100_eeprom_load(struct nic *nic) 737{ 738 u16 addr, addr_len = 8, checksum = 0; 739 740 /* Try reading with an 8-bit addr len to discover actual addr len */ 741 e100_eeprom_read(nic, &addr_len, 0); 742 nic->eeprom_wc = 1 << addr_len; 743 744 for(addr = 0; addr < nic->eeprom_wc; addr++) { 745 nic->eeprom[addr] = e100_eeprom_read(nic, &addr_len, addr); 746 if(addr < nic->eeprom_wc - 1) 747 checksum += cpu_to_le16(nic->eeprom[addr]); 748 } 749 750 /* The checksum, stored in the last word, is calculated such that 751 * the sum of words should be 0xBABA */ 752 checksum = le16_to_cpu(0xBABA - checksum); 753 if(checksum != nic->eeprom[nic->eeprom_wc - 1]) { 754 DPRINTK(PROBE, ERR, "EEPROM corrupted\n"); 755 return -EAGAIN; 756 } 757 758 return 0; 759} 760 761/* Save (portion of) driver EEPROM cache to device and update checksum */ 762static int e100_eeprom_save(struct nic *nic, u16 start, u16 count) 763{ 764 u16 addr, addr_len = 8, checksum = 0; 765 766 /* Try reading with an 8-bit addr len to discover actual addr len */ 767 e100_eeprom_read(nic, &addr_len, 0); 768 nic->eeprom_wc = 1 << addr_len; 769 770 if(start + count >= nic->eeprom_wc) 771 return -EINVAL; 772 773 for(addr = start; addr < start + count; addr++) 774 e100_eeprom_write(nic, addr_len, addr, nic->eeprom[addr]); 775 776 /* The checksum, stored in the last word, is calculated such that 777 * the sum of words should be 0xBABA */ 778 for(addr = 0; addr < nic->eeprom_wc - 1; addr++) 779 checksum += cpu_to_le16(nic->eeprom[addr]); 780 nic->eeprom[nic->eeprom_wc - 1] = le16_to_cpu(0xBABA - checksum); 781 e100_eeprom_write(nic, addr_len, nic->eeprom_wc - 1, 782 nic->eeprom[nic->eeprom_wc - 1]); 783 784 return 0; 785} 786 787#define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */ 788#define E100_WAIT_SCB_FAST 20 /* delay like the old code */ 789static inline int e100_exec_cmd(struct nic *nic, u8 cmd, dma_addr_t dma_addr) 790{ 791 unsigned long flags; 792 unsigned int i; 793 int err = 0; 794 795 spin_lock_irqsave(&nic->cmd_lock, flags); 796 797 /* Previous command is accepted when SCB clears */ 798 for(i = 0; i < E100_WAIT_SCB_TIMEOUT; i++) { 799 if(likely(!readb(&nic->csr->scb.cmd_lo))) 800 break; 801 cpu_relax(); 802 if(unlikely(i > E100_WAIT_SCB_FAST)) 803 udelay(5); 804 } 805 if(unlikely(i == E100_WAIT_SCB_TIMEOUT)) { 806 err = -EAGAIN; 807 goto err_unlock; 808 } 809 810 if(unlikely(cmd != cuc_resume)) 811 writel(dma_addr, &nic->csr->scb.gen_ptr); 812 writeb(cmd, &nic->csr->scb.cmd_lo); 813 814err_unlock: 815 spin_unlock_irqrestore(&nic->cmd_lock, flags); 816 817 return err; 818} 819 820static inline int e100_exec_cb(struct nic *nic, struct sk_buff *skb, 821 void (*cb_prepare)(struct nic *, struct cb *, struct sk_buff *)) 822{ 823 struct cb *cb; 824 unsigned long flags; 825 int err = 0; 826 827 spin_lock_irqsave(&nic->cb_lock, flags); 828 829 if(unlikely(!nic->cbs_avail)) { 830 err = -ENOMEM; 831 goto err_unlock; 832 } 833 834 cb = nic->cb_to_use; 835 nic->cb_to_use = cb->next; 836 nic->cbs_avail--; 837 cb->skb = skb; 838 839 if(unlikely(!nic->cbs_avail)) 840 err = -ENOSPC; 841 842 cb_prepare(nic, cb, skb); 843 844 /* Order is important otherwise we'll be in a race with h/w: 845 * set S-bit in current first, then clear S-bit in previous. */ 846 cb->command |= cpu_to_le16(cb_s); 847 wmb(); 848 cb->prev->command &= cpu_to_le16(~cb_s); 849 850 while(nic->cb_to_send != nic->cb_to_use) { 851 if(unlikely(e100_exec_cmd(nic, nic->cuc_cmd, 852 nic->cb_to_send->dma_addr))) { 853 /* Ok, here's where things get sticky. It's 854 * possible that we can't schedule the command 855 * because the controller is too busy, so 856 * let's just queue the command and try again 857 * when another command is scheduled. */ 858 if(err == -ENOSPC) { 859 //request a reset 860 schedule_work(&nic->tx_timeout_task); 861 } 862 break; 863 } else { 864 nic->cuc_cmd = cuc_resume; 865 nic->cb_to_send = nic->cb_to_send->next; 866 } 867 } 868 869err_unlock: 870 spin_unlock_irqrestore(&nic->cb_lock, flags); 871 872 return err; 873} 874 875static u16 mdio_ctrl(struct nic *nic, u32 addr, u32 dir, u32 reg, u16 data) 876{ 877 u32 data_out = 0; 878 unsigned int i; 879 880 writel((reg << 16) | (addr << 21) | dir | data, &nic->csr->mdi_ctrl); 881 882 for(i = 0; i < 100; i++) { 883 udelay(20); 884 if((data_out = readl(&nic->csr->mdi_ctrl)) & mdi_ready) 885 break; 886 } 887 888 DPRINTK(HW, DEBUG, 889 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n", 890 dir == mdi_read ? "READ" : "WRITE", addr, reg, data, data_out); 891 return (u16)data_out; 892} 893 894static int mdio_read(struct net_device *netdev, int addr, int reg) 895{ 896 return mdio_ctrl(netdev_priv(netdev), addr, mdi_read, reg, 0); 897} 898 899static void mdio_write(struct net_device *netdev, int addr, int reg, int data) 900{ 901 mdio_ctrl(netdev_priv(netdev), addr, mdi_write, reg, data); 902} 903 904static void e100_get_defaults(struct nic *nic) 905{ 906 struct param_range rfds = { .min = 16, .max = 256, .count = 256 }; 907 struct param_range cbs = { .min = 64, .max = 256, .count = 128 }; 908 909 pci_read_config_byte(nic->pdev, PCI_REVISION_ID, &nic->rev_id); 910 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */ 911 nic->mac = (nic->flags & ich) ? mac_82559_D101M : nic->rev_id; 912 if(nic->mac == mac_unknown) 913 nic->mac = mac_82557_D100_A; 914 915 nic->params.rfds = rfds; 916 nic->params.cbs = cbs; 917 918 /* Quadwords to DMA into FIFO before starting frame transmit */ 919 nic->tx_threshold = 0xE0; 920 921 /* no interrupt for every tx completion, delay = 256us if not 557*/ 922 nic->tx_command = cpu_to_le16(cb_tx | cb_tx_sf | 923 ((nic->mac >= mac_82558_D101_A4) ? cb_cid : cb_i)); 924 925 /* Template for a freshly allocated RFD */ 926 nic->blank_rfd.command = cpu_to_le16(cb_el); 927 nic->blank_rfd.rbd = 0xFFFFFFFF; 928 nic->blank_rfd.size = cpu_to_le16(VLAN_ETH_FRAME_LEN); 929 930 /* MII setup */ 931 nic->mii.phy_id_mask = 0x1F; 932 nic->mii.reg_num_mask = 0x1F; 933 nic->mii.dev = nic->netdev; 934 nic->mii.mdio_read = mdio_read; 935 nic->mii.mdio_write = mdio_write; 936} 937 938static void e100_configure(struct nic *nic, struct cb *cb, struct sk_buff *skb) 939{ 940 struct config *config = &cb->u.config; 941 u8 *c = (u8 *)config; 942 943 cb->command = cpu_to_le16(cb_config); 944 945 memset(config, 0, sizeof(struct config)); 946 947 config->byte_count = 0x16; /* bytes in this struct */ 948 config->rx_fifo_limit = 0x8; /* bytes in FIFO before DMA */ 949 config->direct_rx_dma = 0x1; /* reserved */ 950 config->standard_tcb = 0x1; /* 1=standard, 0=extended */ 951 config->standard_stat_counter = 0x1; /* 1=standard, 0=extended */ 952 config->rx_discard_short_frames = 0x1; /* 1=discard, 0=pass */ 953 config->tx_underrun_retry = 0x3; /* # of underrun retries */ 954 config->mii_mode = 0x1; /* 1=MII mode, 0=503 mode */ 955 config->pad10 = 0x6; 956 config->no_source_addr_insertion = 0x1; /* 1=no, 0=yes */ 957 config->preamble_length = 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */ 958 config->ifs = 0x6; /* x16 = inter frame spacing */ 959 config->ip_addr_hi = 0xF2; /* ARP IP filter - not used */ 960 config->pad15_1 = 0x1; 961 config->pad15_2 = 0x1; 962 config->crs_or_cdt = 0x0; /* 0=CRS only, 1=CRS or CDT */ 963 config->fc_delay_hi = 0x40; /* time delay for fc frame */ 964 config->tx_padding = 0x1; /* 1=pad short frames */ 965 config->fc_priority_threshold = 0x7; /* 7=priority fc disabled */ 966 config->pad18 = 0x1; 967 config->full_duplex_pin = 0x1; /* 1=examine FDX# pin */ 968 config->pad20_1 = 0x1F; 969 config->fc_priority_location = 0x1; /* 1=byte#31, 0=byte#19 */ 970 config->pad21_1 = 0x5; 971 972 config->adaptive_ifs = nic->adaptive_ifs; 973 config->loopback = nic->loopback; 974 975 if(nic->mii.force_media && nic->mii.full_duplex) 976 config->full_duplex_force = 0x1; /* 1=force, 0=auto */ 977 978 if(nic->flags & promiscuous || nic->loopback) { 979 config->rx_save_bad_frames = 0x1; /* 1=save, 0=discard */ 980 config->rx_discard_short_frames = 0x0; /* 1=discard, 0=save */ 981 config->promiscuous_mode = 0x1; /* 1=on, 0=off */ 982 } 983 984 if(nic->flags & multicast_all) 985 config->multicast_all = 0x1; /* 1=accept, 0=no */ 986 987 /* disable WoL when up */ 988 if(netif_running(nic->netdev) || !(nic->flags & wol_magic)) 989 config->magic_packet_disable = 0x1; /* 1=off, 0=on */ 990 991 if(nic->mac >= mac_82558_D101_A4) { 992 config->fc_disable = 0x1; /* 1=Tx fc off, 0=Tx fc on */ 993 config->mwi_enable = 0x1; /* 1=enable, 0=disable */ 994 config->standard_tcb = 0x0; /* 1=standard, 0=extended */ 995 config->rx_long_ok = 0x1; /* 1=VLANs ok, 0=standard */ 996 if(nic->mac >= mac_82559_D101M) 997 config->tno_intr = 0x1; /* TCO stats enable */ 998 else 999 config->standard_stat_counter = 0x0; 1000 } 1001 1002 DPRINTK(HW, DEBUG, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1003 c[0], c[1], c[2], c[3], c[4], c[5], c[6], c[7]); 1004 DPRINTK(HW, DEBUG, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1005 c[8], c[9], c[10], c[11], c[12], c[13], c[14], c[15]); 1006 DPRINTK(HW, DEBUG, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", 1007 c[16], c[17], c[18], c[19], c[20], c[21], c[22], c[23]); 1008} 1009 1010/********************************************************/ 1011/* Micro code for 8086:1229 Rev 8 */ 1012/********************************************************/ 1013 1014/* Parameter values for the D101M B-step */ 1015#define D101M_CPUSAVER_TIMER_DWORD 78 1016#define D101M_CPUSAVER_BUNDLE_DWORD 65 1017#define D101M_CPUSAVER_MIN_SIZE_DWORD 126 1018 1019#define D101M_B_RCVBUNDLE_UCODE \ 1020{\ 10210x00550215, 0xFFFF0437, 0xFFFFFFFF, 0x06A70789, 0xFFFFFFFF, 0x0558FFFF, \ 10220x000C0001, 0x00101312, 0x000C0008, 0x00380216, \ 10230x0010009C, 0x00204056, 0x002380CC, 0x00380056, \ 10240x0010009C, 0x00244C0B, 0x00000800, 0x00124818, \ 10250x00380438, 0x00000000, 0x00140000, 0x00380555, \ 10260x00308000, 0x00100662, 0x00100561, 0x000E0408, \ 10270x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 10280x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 10290x000C007E, 0x00222C21, 0x000C0002, 0x00103093, \ 10300x00380C7A, 0x00080000, 0x00103090, 0x00380C7A, \ 10310x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10320x0010009C, 0x00244C2D, 0x00010004, 0x00041000, \ 10330x003A0437, 0x00044010, 0x0038078A, 0x00000000, \ 10340x00100099, 0x00206C7A, 0x0010009C, 0x00244C48, \ 10350x00130824, 0x000C0001, 0x00101213, 0x00260C75, \ 10360x00041000, 0x00010004, 0x00130826, 0x000C0006, \ 10370x002206A8, 0x0013C926, 0x00101313, 0x003806A8, \ 10380x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10390x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10400x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 10410x00101210, 0x00380C34, 0x00000000, 0x00000000, \ 10420x0021155B, 0x00100099, 0x00206559, 0x0010009C, \ 10430x00244559, 0x00130836, 0x000C0000, 0x00220C62, \ 10440x000C0001, 0x00101B13, 0x00229C0E, 0x00210C0E, \ 10450x00226C0E, 0x00216C0E, 0x0022FC0E, 0x00215C0E, \ 10460x00214C0E, 0x00380555, 0x00010004, 0x00041000, \ 10470x00278C67, 0x00040800, 0x00018100, 0x003A0437, \ 10480x00130826, 0x000C0001, 0x00220559, 0x00101313, \ 10490x00380559, 0x00000000, 0x00000000, 0x00000000, \ 10500x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10510x00000000, 0x00130831, 0x0010090B, 0x00124813, \ 10520x000CFF80, 0x002606AB, 0x00041000, 0x00010004, \ 10530x003806A8, 0x00000000, 0x00000000, 0x00000000, \ 1054} 1055 1056/********************************************************/ 1057/* Micro code for 8086:1229 Rev 9 */ 1058/********************************************************/ 1059 1060/* Parameter values for the D101S */ 1061#define D101S_CPUSAVER_TIMER_DWORD 78 1062#define D101S_CPUSAVER_BUNDLE_DWORD 67 1063#define D101S_CPUSAVER_MIN_SIZE_DWORD 128 1064 1065#define D101S_RCVBUNDLE_UCODE \ 1066{\ 10670x00550242, 0xFFFF047E, 0xFFFFFFFF, 0x06FF0818, 0xFFFFFFFF, 0x05A6FFFF, \ 10680x000C0001, 0x00101312, 0x000C0008, 0x00380243, \ 10690x0010009C, 0x00204056, 0x002380D0, 0x00380056, \ 10700x0010009C, 0x00244F8B, 0x00000800, 0x00124818, \ 10710x0038047F, 0x00000000, 0x00140000, 0x003805A3, \ 10720x00308000, 0x00100610, 0x00100561, 0x000E0408, \ 10730x00134861, 0x000C0002, 0x00103093, 0x00308000, \ 10740x00100624, 0x00100561, 0x000E0408, 0x00100861, \ 10750x000C007E, 0x00222FA1, 0x000C0002, 0x00103093, \ 10760x00380F90, 0x00080000, 0x00103090, 0x00380F90, \ 10770x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10780x0010009C, 0x00244FAD, 0x00010004, 0x00041000, \ 10790x003A047E, 0x00044010, 0x00380819, 0x00000000, \ 10800x00100099, 0x00206FFD, 0x0010009A, 0x0020AFFD, \ 10810x0010009C, 0x00244FC8, 0x00130824, 0x000C0001, \ 10820x00101213, 0x00260FF7, 0x00041000, 0x00010004, \ 10830x00130826, 0x000C0006, 0x00220700, 0x0013C926, \ 10840x00101313, 0x00380700, 0x00000000, 0x00000000, \ 10850x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10860x00080600, 0x00101B10, 0x00050004, 0x00100826, \ 10870x00101210, 0x00380FB6, 0x00000000, 0x00000000, \ 10880x002115A9, 0x00100099, 0x002065A7, 0x0010009A, \ 10890x0020A5A7, 0x0010009C, 0x002445A7, 0x00130836, \ 10900x000C0000, 0x00220FE4, 0x000C0001, 0x00101B13, \ 10910x00229F8E, 0x00210F8E, 0x00226F8E, 0x00216F8E, \ 10920x0022FF8E, 0x00215F8E, 0x00214F8E, 0x003805A3, \ 10930x00010004, 0x00041000, 0x00278FE9, 0x00040800, \ 10940x00018100, 0x003A047E, 0x00130826, 0x000C0001, \ 10950x002205A7, 0x00101313, 0x003805A7, 0x00000000, \ 10960x00000000, 0x00000000, 0x00000000, 0x00000000, \ 10970x00000000, 0x00000000, 0x00000000, 0x00130831, \ 10980x0010090B, 0x00124813, 0x000CFF80, 0x00260703, \ 10990x00041000, 0x00010004, 0x00380700 \ 1100} 1101 1102/********************************************************/ 1103/* Micro code for the 8086:1229 Rev F/10 */ 1104/********************************************************/ 1105 1106/* Parameter values for the D102 E-step */ 1107#define D102_E_CPUSAVER_TIMER_DWORD 42 1108#define D102_E_CPUSAVER_BUNDLE_DWORD 54 1109#define D102_E_CPUSAVER_MIN_SIZE_DWORD 46 1110 1111#define D102_E_RCVBUNDLE_UCODE \ 1112{\ 11130x007D028F, 0x0E4204F9, 0x14ED0C85, 0x14FA14E9, 0x0EF70E36, 0x1FFF1FFF, \ 11140x00E014B9, 0x00000000, 0x00000000, 0x00000000, \ 11150x00E014BD, 0x00000000, 0x00000000, 0x00000000, \ 11160x00E014D5, 0x00000000, 0x00000000, 0x00000000, \ 11170x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11180x00E014C1, 0x00000000, 0x00000000, 0x00000000, \ 11190x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11200x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11210x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11220x00E014C8, 0x00000000, 0x00000000, 0x00000000, \ 11230x00200600, 0x00E014EE, 0x00000000, 0x00000000, \ 11240x0030FF80, 0x00940E46, 0x00038200, 0x00102000, \ 11250x00E00E43, 0x00000000, 0x00000000, 0x00000000, \ 11260x00300006, 0x00E014FB, 0x00000000, 0x00000000, \ 11270x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11280x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11290x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11300x00906E41, 0x00800E3C, 0x00E00E39, 0x00000000, \ 11310x00906EFD, 0x00900EFD, 0x00E00EF8, 0x00000000, \ 11320x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11330x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11340x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11350x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11360x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11370x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11380x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11390x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11400x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11410x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11420x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11430x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11440x00000000, 0x00000000, 0x00000000, 0x00000000, \ 11450x00000000, 0x00000000, 0x00000000, 0x00000000, \ 1146} 1147 1148static void e100_load_ucode(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1149{ 1150/* *INDENT-OFF* */ 1151 static struct { 1152 u32 ucode[UCODE_SIZE + 1]; 1153 u8 mac; 1154 u8 timer_dword; 1155 u8 bundle_dword; 1156 u8 min_size_dword; 1157 } ucode_opts[] = { 1158 { D101M_B_RCVBUNDLE_UCODE, 1159 mac_82559_D101M, 1160 D101M_CPUSAVER_TIMER_DWORD, 1161 D101M_CPUSAVER_BUNDLE_DWORD, 1162 D101M_CPUSAVER_MIN_SIZE_DWORD }, 1163 { D101S_RCVBUNDLE_UCODE, 1164 mac_82559_D101S, 1165 D101S_CPUSAVER_TIMER_DWORD, 1166 D101S_CPUSAVER_BUNDLE_DWORD, 1167 D101S_CPUSAVER_MIN_SIZE_DWORD }, 1168 { D102_E_RCVBUNDLE_UCODE, 1169 mac_82551_F, 1170 D102_E_CPUSAVER_TIMER_DWORD, 1171 D102_E_CPUSAVER_BUNDLE_DWORD, 1172 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1173 { D102_E_RCVBUNDLE_UCODE, 1174 mac_82551_10, 1175 D102_E_CPUSAVER_TIMER_DWORD, 1176 D102_E_CPUSAVER_BUNDLE_DWORD, 1177 D102_E_CPUSAVER_MIN_SIZE_DWORD }, 1178 { {0}, 0, 0, 0, 0} 1179 }, *opts; 1180/* *INDENT-ON* */ 1181 1182#define BUNDLESMALL 1 1183#define BUNDLEMAX 50 1184#define INTDELAY 15000 1185 1186 opts = ucode_opts; 1187 1188 /* do not load u-code for ICH devices */ 1189 if (nic->flags & ich) 1190 return; 1191 1192 /* Search for ucode match against h/w rev_id */ 1193 while (opts->mac) { 1194 if (nic->mac == opts->mac) { 1195 int i; 1196 u32 *ucode = opts->ucode; 1197 1198 /* Insert user-tunable settings */ 1199 ucode[opts->timer_dword] &= 0xFFFF0000; 1200 ucode[opts->timer_dword] |= 1201 (u16) INTDELAY; 1202 ucode[opts->bundle_dword] &= 0xFFFF0000; 1203 ucode[opts->bundle_dword] |= (u16) BUNDLEMAX; 1204 ucode[opts->min_size_dword] &= 0xFFFF0000; 1205 ucode[opts->min_size_dword] |= 1206 (BUNDLESMALL) ? 0xFFFF : 0xFF80; 1207 1208 for(i = 0; i < UCODE_SIZE; i++) 1209 cb->u.ucode[i] = cpu_to_le32(ucode[i]); 1210 cb->command = cpu_to_le16(cb_ucode); 1211 return; 1212 } 1213 opts++; 1214 } 1215 1216 cb->command = cpu_to_le16(cb_nop); 1217} 1218 1219static void e100_setup_iaaddr(struct nic *nic, struct cb *cb, 1220 struct sk_buff *skb) 1221{ 1222 cb->command = cpu_to_le16(cb_iaaddr); 1223 memcpy(cb->u.iaaddr, nic->netdev->dev_addr, ETH_ALEN); 1224} 1225 1226static void e100_dump(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1227{ 1228 cb->command = cpu_to_le16(cb_dump); 1229 cb->u.dump_buffer_addr = cpu_to_le32(nic->dma_addr + 1230 offsetof(struct mem, dump_buf)); 1231} 1232 1233#define NCONFIG_AUTO_SWITCH 0x0080 1234#define MII_NSC_CONG MII_RESV1 1235#define NSC_CONG_ENABLE 0x0100 1236#define NSC_CONG_TXREADY 0x0400 1237#define ADVERTISE_FC_SUPPORTED 0x0400 1238static int e100_phy_init(struct nic *nic) 1239{ 1240 struct net_device *netdev = nic->netdev; 1241 u32 addr; 1242 u16 bmcr, stat, id_lo, id_hi, cong; 1243 1244 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */ 1245 for(addr = 0; addr < 32; addr++) { 1246 nic->mii.phy_id = (addr == 0) ? 1 : (addr == 1) ? 0 : addr; 1247 bmcr = mdio_read(netdev, nic->mii.phy_id, MII_BMCR); 1248 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1249 stat = mdio_read(netdev, nic->mii.phy_id, MII_BMSR); 1250 if(!((bmcr == 0xFFFF) || ((stat == 0) && (bmcr == 0)))) 1251 break; 1252 } 1253 DPRINTK(HW, DEBUG, "phy_addr = %d\n", nic->mii.phy_id); 1254 if(addr == 32) 1255 return -EAGAIN; 1256 1257 /* Selected the phy and isolate the rest */ 1258 for(addr = 0; addr < 32; addr++) { 1259 if(addr != nic->mii.phy_id) { 1260 mdio_write(netdev, addr, MII_BMCR, BMCR_ISOLATE); 1261 } else { 1262 bmcr = mdio_read(netdev, addr, MII_BMCR); 1263 mdio_write(netdev, addr, MII_BMCR, 1264 bmcr & ~BMCR_ISOLATE); 1265 } 1266 } 1267 1268 /* Get phy ID */ 1269 id_lo = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID1); 1270 id_hi = mdio_read(netdev, nic->mii.phy_id, MII_PHYSID2); 1271 nic->phy = (u32)id_hi << 16 | (u32)id_lo; 1272 DPRINTK(HW, DEBUG, "phy ID = 0x%08X\n", nic->phy); 1273 1274 /* Handle National tx phys */ 1275#define NCS_PHY_MODEL_MASK 0xFFF0FFFF 1276 if((nic->phy & NCS_PHY_MODEL_MASK) == phy_nsc_tx) { 1277 /* Disable congestion control */ 1278 cong = mdio_read(netdev, nic->mii.phy_id, MII_NSC_CONG); 1279 cong |= NSC_CONG_TXREADY; 1280 cong &= ~NSC_CONG_ENABLE; 1281 mdio_write(netdev, nic->mii.phy_id, MII_NSC_CONG, cong); 1282 } 1283 1284 if((nic->mac >= mac_82550_D102) || ((nic->flags & ich) && 1285 (mdio_read(netdev, nic->mii.phy_id, MII_TPISTATUS) & 0x8000))) { 1286 /* enable/disable MDI/MDI-X auto-switching. 1287 MDI/MDI-X auto-switching is disabled for 82551ER/QM chips */ 1288 if((nic->mac == mac_82551_E) || (nic->mac == mac_82551_F) || 1289 (nic->mac == mac_82551_10) || (nic->mii.force_media) || 1290 !(nic->eeprom[eeprom_cnfg_mdix] & eeprom_mdix_enabled)) 1291 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, 0); 1292 else 1293 mdio_write(netdev, nic->mii.phy_id, MII_NCONFIG, NCONFIG_AUTO_SWITCH); 1294 } 1295 1296 return 0; 1297} 1298 1299static int e100_hw_init(struct nic *nic) 1300{ 1301 int err; 1302 1303 e100_hw_reset(nic); 1304 1305 DPRINTK(HW, ERR, "e100_hw_init\n"); 1306 if(!in_interrupt() && (err = e100_self_test(nic))) 1307 return err; 1308 1309 if((err = e100_phy_init(nic))) 1310 return err; 1311 if((err = e100_exec_cmd(nic, cuc_load_base, 0))) 1312 return err; 1313 if((err = e100_exec_cmd(nic, ruc_load_base, 0))) 1314 return err; 1315 if((err = e100_exec_cb(nic, NULL, e100_load_ucode))) 1316 return err; 1317 if((err = e100_exec_cb(nic, NULL, e100_configure))) 1318 return err; 1319 if((err = e100_exec_cb(nic, NULL, e100_setup_iaaddr))) 1320 return err; 1321 if((err = e100_exec_cmd(nic, cuc_dump_addr, 1322 nic->dma_addr + offsetof(struct mem, stats)))) 1323 return err; 1324 if((err = e100_exec_cmd(nic, cuc_dump_reset, 0))) 1325 return err; 1326 1327 e100_disable_irq(nic); 1328 1329 return 0; 1330} 1331 1332static void e100_multi(struct nic *nic, struct cb *cb, struct sk_buff *skb) 1333{ 1334 struct net_device *netdev = nic->netdev; 1335 struct dev_mc_list *list = netdev->mc_list; 1336 u16 i, count = min(netdev->mc_count, E100_MAX_MULTICAST_ADDRS); 1337 1338 cb->command = cpu_to_le16(cb_multi); 1339 cb->u.multi.count = cpu_to_le16(count * ETH_ALEN); 1340 for(i = 0; list && i < count; i++, list = list->next) 1341 memcpy(&cb->u.multi.addr[i*ETH_ALEN], &list->dmi_addr, 1342 ETH_ALEN); 1343} 1344 1345static void e100_set_multicast_list(struct net_device *netdev) 1346{ 1347 struct nic *nic = netdev_priv(netdev); 1348 1349 DPRINTK(HW, DEBUG, "mc_count=%d, flags=0x%04X\n", 1350 netdev->mc_count, netdev->flags); 1351 1352 if(netdev->flags & IFF_PROMISC) 1353 nic->flags |= promiscuous; 1354 else 1355 nic->flags &= ~promiscuous; 1356 1357 if(netdev->flags & IFF_ALLMULTI || 1358 netdev->mc_count > E100_MAX_MULTICAST_ADDRS) 1359 nic->flags |= multicast_all; 1360 else 1361 nic->flags &= ~multicast_all; 1362 1363 e100_exec_cb(nic, NULL, e100_configure); 1364 e100_exec_cb(nic, NULL, e100_multi); 1365} 1366 1367static void e100_update_stats(struct nic *nic) 1368{ 1369 struct net_device_stats *ns = &nic->net_stats; 1370 struct stats *s = &nic->mem->stats; 1371 u32 *complete = (nic->mac < mac_82558_D101_A4) ? &s->fc_xmt_pause : 1372 (nic->mac < mac_82559_D101M) ? (u32 *)&s->xmt_tco_frames : 1373 &s->complete; 1374 1375 /* Device's stats reporting may take several microseconds to 1376 * complete, so where always waiting for results of the 1377 * previous command. */ 1378 1379 if(*complete == le32_to_cpu(cuc_dump_reset_complete)) { 1380 *complete = 0; 1381 nic->tx_frames = le32_to_cpu(s->tx_good_frames); 1382 nic->tx_collisions = le32_to_cpu(s->tx_total_collisions); 1383 ns->tx_aborted_errors += le32_to_cpu(s->tx_max_collisions); 1384 ns->tx_window_errors += le32_to_cpu(s->tx_late_collisions); 1385 ns->tx_carrier_errors += le32_to_cpu(s->tx_lost_crs); 1386 ns->tx_fifo_errors += le32_to_cpu(s->tx_underruns); 1387 ns->collisions += nic->tx_collisions; 1388 ns->tx_errors += le32_to_cpu(s->tx_max_collisions) + 1389 le32_to_cpu(s->tx_lost_crs); 1390 ns->rx_length_errors += le32_to_cpu(s->rx_short_frame_errors) + 1391 nic->rx_over_length_errors; 1392 ns->rx_crc_errors += le32_to_cpu(s->rx_crc_errors); 1393 ns->rx_frame_errors += le32_to_cpu(s->rx_alignment_errors); 1394 ns->rx_over_errors += le32_to_cpu(s->rx_overrun_errors); 1395 ns->rx_fifo_errors += le32_to_cpu(s->rx_overrun_errors); 1396 ns->rx_missed_errors += le32_to_cpu(s->rx_resource_errors); 1397 ns->rx_errors += le32_to_cpu(s->rx_crc_errors) + 1398 le32_to_cpu(s->rx_alignment_errors) + 1399 le32_to_cpu(s->rx_short_frame_errors) + 1400 le32_to_cpu(s->rx_cdt_errors); 1401 nic->tx_deferred += le32_to_cpu(s->tx_deferred); 1402 nic->tx_single_collisions += 1403 le32_to_cpu(s->tx_single_collisions); 1404 nic->tx_multiple_collisions += 1405 le32_to_cpu(s->tx_multiple_collisions); 1406 if(nic->mac >= mac_82558_D101_A4) { 1407 nic->tx_fc_pause += le32_to_cpu(s->fc_xmt_pause); 1408 nic->rx_fc_pause += le32_to_cpu(s->fc_rcv_pause); 1409 nic->rx_fc_unsupported += 1410 le32_to_cpu(s->fc_rcv_unsupported); 1411 if(nic->mac >= mac_82559_D101M) { 1412 nic->tx_tco_frames += 1413 le16_to_cpu(s->xmt_tco_frames); 1414 nic->rx_tco_frames += 1415 le16_to_cpu(s->rcv_tco_frames); 1416 } 1417 } 1418 } 1419 1420 1421 if(e100_exec_cmd(nic, cuc_dump_reset, 0)) 1422 DPRINTK(TX_ERR, DEBUG, "exec cuc_dump_reset failed\n"); 1423} 1424 1425static void e100_adjust_adaptive_ifs(struct nic *nic, int speed, int duplex) 1426{ 1427 /* Adjust inter-frame-spacing (IFS) between two transmits if 1428 * we're getting collisions on a half-duplex connection. */ 1429 1430 if(duplex == DUPLEX_HALF) { 1431 u32 prev = nic->adaptive_ifs; 1432 u32 min_frames = (speed == SPEED_100) ? 1000 : 100; 1433 1434 if((nic->tx_frames / 32 < nic->tx_collisions) && 1435 (nic->tx_frames > min_frames)) { 1436 if(nic->adaptive_ifs < 60) 1437 nic->adaptive_ifs += 5; 1438 } else if (nic->tx_frames < min_frames) { 1439 if(nic->adaptive_ifs >= 5) 1440 nic->adaptive_ifs -= 5; 1441 } 1442 if(nic->adaptive_ifs != prev) 1443 e100_exec_cb(nic, NULL, e100_configure); 1444 } 1445} 1446 1447static void e100_watchdog(unsigned long data) 1448{ 1449 struct nic *nic = (struct nic *)data; 1450 struct ethtool_cmd cmd; 1451 1452 DPRINTK(TIMER, DEBUG, "right now = %ld\n", jiffies); 1453 1454 /* mii library handles link maintenance tasks */ 1455 1456 mii_ethtool_gset(&nic->mii, &cmd); 1457 1458 if(mii_link_ok(&nic->mii) && !netif_carrier_ok(nic->netdev)) { 1459 DPRINTK(LINK, INFO, "link up, %sMbps, %s-duplex\n", 1460 cmd.speed == SPEED_100 ? "100" : "10", 1461 cmd.duplex == DUPLEX_FULL ? "full" : "half"); 1462 } else if(!mii_link_ok(&nic->mii) && netif_carrier_ok(nic->netdev)) { 1463 DPRINTK(LINK, INFO, "link down\n"); 1464 } 1465 1466 mii_check_link(&nic->mii); 1467 1468 /* Software generated interrupt to recover from (rare) Rx 1469 * allocation failure. 1470 * Unfortunately have to use a spinlock to not re-enable interrupts 1471 * accidentally, due to hardware that shares a register between the 1472 * interrupt mask bit and the SW Interrupt generation bit */ 1473 spin_lock_irq(&nic->cmd_lock); 1474 writeb(readb(&nic->csr->scb.cmd_hi) | irq_sw_gen,&nic->csr->scb.cmd_hi); 1475 spin_unlock_irq(&nic->cmd_lock); 1476 e100_write_flush(nic); 1477 1478 e100_update_stats(nic); 1479 e100_adjust_adaptive_ifs(nic, cmd.speed, cmd.duplex); 1480 1481 if(nic->mac <= mac_82557_D100_C) 1482 /* Issue a multicast command to workaround a 557 lock up */ 1483 e100_set_multicast_list(nic->netdev); 1484 1485 if(nic->flags & ich && cmd.speed==SPEED_10 && cmd.duplex==DUPLEX_HALF) 1486 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */ 1487 nic->flags |= ich_10h_workaround; 1488 else 1489 nic->flags &= ~ich_10h_workaround; 1490 1491 mod_timer(&nic->watchdog, jiffies + E100_WATCHDOG_PERIOD); 1492} 1493 1494static inline void e100_xmit_prepare(struct nic *nic, struct cb *cb, 1495 struct sk_buff *skb) 1496{ 1497 cb->command = nic->tx_command; 1498 /* interrupt every 16 packets regardless of delay */ 1499 if((nic->cbs_avail & ~15) == nic->cbs_avail) 1500 cb->command |= cpu_to_le16(cb_i); 1501 cb->u.tcb.tbd_array = cb->dma_addr + offsetof(struct cb, u.tcb.tbd); 1502 cb->u.tcb.tcb_byte_count = 0; 1503 cb->u.tcb.threshold = nic->tx_threshold; 1504 cb->u.tcb.tbd_count = 1; 1505 cb->u.tcb.tbd.buf_addr = cpu_to_le32(pci_map_single(nic->pdev, 1506 skb->data, skb->len, PCI_DMA_TODEVICE)); 1507 /* check for mapping failure? */ 1508 cb->u.tcb.tbd.size = cpu_to_le16(skb->len); 1509} 1510 1511static int e100_xmit_frame(struct sk_buff *skb, struct net_device *netdev) 1512{ 1513 struct nic *nic = netdev_priv(netdev); 1514 int err; 1515 1516 if(nic->flags & ich_10h_workaround) { 1517 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang. 1518 Issue a NOP command followed by a 1us delay before 1519 issuing the Tx command. */ 1520 if(e100_exec_cmd(nic, cuc_nop, 0)) 1521 DPRINTK(TX_ERR, DEBUG, "exec cuc_nop failed\n"); 1522 udelay(1); 1523 } 1524 1525 err = e100_exec_cb(nic, skb, e100_xmit_prepare); 1526 1527 switch(err) { 1528 case -ENOSPC: 1529 /* We queued the skb, but now we're out of space. */ 1530 DPRINTK(TX_ERR, DEBUG, "No space for CB\n"); 1531 netif_stop_queue(netdev); 1532 break; 1533 case -ENOMEM: 1534 /* This is a hard error - log it. */ 1535 DPRINTK(TX_ERR, DEBUG, "Out of Tx resources, returning skb\n"); 1536 netif_stop_queue(netdev); 1537 return 1; 1538 } 1539 1540 netdev->trans_start = jiffies; 1541 return 0; 1542} 1543 1544static inline int e100_tx_clean(struct nic *nic) 1545{ 1546 struct cb *cb; 1547 int tx_cleaned = 0; 1548 1549 spin_lock(&nic->cb_lock); 1550 1551 DPRINTK(TX_DONE, DEBUG, "cb->status = 0x%04X\n", 1552 nic->cb_to_clean->status); 1553 1554 /* Clean CBs marked complete */ 1555 for(cb = nic->cb_to_clean; 1556 cb->status & cpu_to_le16(cb_complete); 1557 cb = nic->cb_to_clean = cb->next) { 1558 if(likely(cb->skb != NULL)) { 1559 nic->net_stats.tx_packets++; 1560 nic->net_stats.tx_bytes += cb->skb->len; 1561 1562 pci_unmap_single(nic->pdev, 1563 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1564 le16_to_cpu(cb->u.tcb.tbd.size), 1565 PCI_DMA_TODEVICE); 1566 dev_kfree_skb_any(cb->skb); 1567 cb->skb = NULL; 1568 tx_cleaned = 1; 1569 } 1570 cb->status = 0; 1571 nic->cbs_avail++; 1572 } 1573 1574 spin_unlock(&nic->cb_lock); 1575 1576 /* Recover from running out of Tx resources in xmit_frame */ 1577 if(unlikely(tx_cleaned && netif_queue_stopped(nic->netdev))) 1578 netif_wake_queue(nic->netdev); 1579 1580 return tx_cleaned; 1581} 1582 1583static void e100_clean_cbs(struct nic *nic) 1584{ 1585 if(nic->cbs) { 1586 while(nic->cbs_avail != nic->params.cbs.count) { 1587 struct cb *cb = nic->cb_to_clean; 1588 if(cb->skb) { 1589 pci_unmap_single(nic->pdev, 1590 le32_to_cpu(cb->u.tcb.tbd.buf_addr), 1591 le16_to_cpu(cb->u.tcb.tbd.size), 1592 PCI_DMA_TODEVICE); 1593 dev_kfree_skb(cb->skb); 1594 } 1595 nic->cb_to_clean = nic->cb_to_clean->next; 1596 nic->cbs_avail++; 1597 } 1598 pci_free_consistent(nic->pdev, 1599 sizeof(struct cb) * nic->params.cbs.count, 1600 nic->cbs, nic->cbs_dma_addr); 1601 nic->cbs = NULL; 1602 nic->cbs_avail = 0; 1603 } 1604 nic->cuc_cmd = cuc_start; 1605 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = 1606 nic->cbs; 1607} 1608 1609static int e100_alloc_cbs(struct nic *nic) 1610{ 1611 struct cb *cb; 1612 unsigned int i, count = nic->params.cbs.count; 1613 1614 nic->cuc_cmd = cuc_start; 1615 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = NULL; 1616 nic->cbs_avail = 0; 1617 1618 nic->cbs = pci_alloc_consistent(nic->pdev, 1619 sizeof(struct cb) * count, &nic->cbs_dma_addr); 1620 if(!nic->cbs) 1621 return -ENOMEM; 1622 1623 for(cb = nic->cbs, i = 0; i < count; cb++, i++) { 1624 cb->next = (i + 1 < count) ? cb + 1 : nic->cbs; 1625 cb->prev = (i == 0) ? nic->cbs + count - 1 : cb - 1; 1626 1627 cb->dma_addr = nic->cbs_dma_addr + i * sizeof(struct cb); 1628 cb->link = cpu_to_le32(nic->cbs_dma_addr + 1629 ((i+1) % count) * sizeof(struct cb)); 1630 cb->skb = NULL; 1631 } 1632 1633 nic->cb_to_use = nic->cb_to_send = nic->cb_to_clean = nic->cbs; 1634 nic->cbs_avail = count; 1635 1636 return 0; 1637} 1638 1639static inline void e100_start_receiver(struct nic *nic, struct rx *rx) 1640{ 1641 if(!nic->rxs) return; 1642 if(RU_SUSPENDED != nic->ru_running) return; 1643 1644 /* handle init time starts */ 1645 if(!rx) rx = nic->rxs; 1646 1647 /* (Re)start RU if suspended or idle and RFA is non-NULL */ 1648 if(rx->skb) { 1649 e100_exec_cmd(nic, ruc_start, rx->dma_addr); 1650 nic->ru_running = RU_RUNNING; 1651 } 1652} 1653 1654#define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN) 1655static inline int e100_rx_alloc_skb(struct nic *nic, struct rx *rx) 1656{ 1657 if(!(rx->skb = dev_alloc_skb(RFD_BUF_LEN + NET_IP_ALIGN))) 1658 return -ENOMEM; 1659 1660 /* Align, init, and map the RFD. */ 1661 rx->skb->dev = nic->netdev; 1662 skb_reserve(rx->skb, NET_IP_ALIGN); 1663 memcpy(rx->skb->data, &nic->blank_rfd, sizeof(struct rfd)); 1664 rx->dma_addr = pci_map_single(nic->pdev, rx->skb->data, 1665 RFD_BUF_LEN, PCI_DMA_BIDIRECTIONAL); 1666 1667 if(pci_dma_mapping_error(rx->dma_addr)) { 1668 dev_kfree_skb_any(rx->skb); 1669 rx->skb = 0; 1670 rx->dma_addr = 0; 1671 return -ENOMEM; 1672 } 1673 1674 /* Link the RFD to end of RFA by linking previous RFD to 1675 * this one, and clearing EL bit of previous. */ 1676 if(rx->prev->skb) { 1677 struct rfd *prev_rfd = (struct rfd *)rx->prev->skb->data; 1678 put_unaligned(cpu_to_le32(rx->dma_addr), 1679 (u32 *)&prev_rfd->link); 1680 wmb(); 1681 prev_rfd->command &= ~cpu_to_le16(cb_el); 1682 pci_dma_sync_single_for_device(nic->pdev, rx->prev->dma_addr, 1683 sizeof(struct rfd), PCI_DMA_TODEVICE); 1684 } 1685 1686 return 0; 1687} 1688 1689static inline int e100_rx_indicate(struct nic *nic, struct rx *rx, 1690 unsigned int *work_done, unsigned int work_to_do) 1691{ 1692 struct sk_buff *skb = rx->skb; 1693 struct rfd *rfd = (struct rfd *)skb->data; 1694 u16 rfd_status, actual_size; 1695 1696 if(unlikely(work_done && *work_done >= work_to_do)) 1697 return -EAGAIN; 1698 1699 /* Need to sync before taking a peek at cb_complete bit */ 1700 pci_dma_sync_single_for_cpu(nic->pdev, rx->dma_addr, 1701 sizeof(struct rfd), PCI_DMA_FROMDEVICE); 1702 rfd_status = le16_to_cpu(rfd->status); 1703 1704 DPRINTK(RX_STATUS, DEBUG, "status=0x%04X\n", rfd_status); 1705 1706 /* If data isn't ready, nothing to indicate */ 1707 if(unlikely(!(rfd_status & cb_complete))) 1708 return -ENODATA; 1709 1710 /* Get actual data size */ 1711 actual_size = le16_to_cpu(rfd->actual_size) & 0x3FFF; 1712 if(unlikely(actual_size > RFD_BUF_LEN - sizeof(struct rfd))) 1713 actual_size = RFD_BUF_LEN - sizeof(struct rfd); 1714 1715 /* Get data */ 1716 pci_unmap_single(nic->pdev, rx->dma_addr, 1717 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1718 1719 /* this allows for a fast restart without re-enabling interrupts */ 1720 if(le16_to_cpu(rfd->command) & cb_el) 1721 nic->ru_running = RU_SUSPENDED; 1722 1723 /* Pull off the RFD and put the actual data (minus eth hdr) */ 1724 skb_reserve(skb, sizeof(struct rfd)); 1725 skb_put(skb, actual_size); 1726 skb->protocol = eth_type_trans(skb, nic->netdev); 1727 1728 if(unlikely(!(rfd_status & cb_ok))) { 1729 /* Don't indicate if hardware indicates errors */ 1730 dev_kfree_skb_any(skb); 1731 } else if(actual_size > ETH_DATA_LEN + VLAN_ETH_HLEN) { 1732 /* Don't indicate oversized frames */ 1733 nic->rx_over_length_errors++; 1734 dev_kfree_skb_any(skb); 1735 } else { 1736 nic->net_stats.rx_packets++; 1737 nic->net_stats.rx_bytes += actual_size; 1738 nic->netdev->last_rx = jiffies; 1739 netif_receive_skb(skb); 1740 if(work_done) 1741 (*work_done)++; 1742 } 1743 1744 rx->skb = NULL; 1745 1746 return 0; 1747} 1748 1749static inline void e100_rx_clean(struct nic *nic, unsigned int *work_done, 1750 unsigned int work_to_do) 1751{ 1752 struct rx *rx; 1753 int restart_required = 0; 1754 struct rx *rx_to_start = NULL; 1755 1756 /* are we already rnr? then pay attention!!! this ensures that 1757 * the state machine progression never allows a start with a 1758 * partially cleaned list, avoiding a race between hardware 1759 * and rx_to_clean when in NAPI mode */ 1760 if(RU_SUSPENDED == nic->ru_running) 1761 restart_required = 1; 1762 1763 /* Indicate newly arrived packets */ 1764 for(rx = nic->rx_to_clean; rx->skb; rx = nic->rx_to_clean = rx->next) { 1765 int err = e100_rx_indicate(nic, rx, work_done, work_to_do); 1766 if(-EAGAIN == err) { 1767 /* hit quota so have more work to do, restart once 1768 * cleanup is complete */ 1769 restart_required = 0; 1770 break; 1771 } else if(-ENODATA == err) 1772 break; /* No more to clean */ 1773 } 1774 1775 /* save our starting point as the place we'll restart the receiver */ 1776 if(restart_required) 1777 rx_to_start = nic->rx_to_clean; 1778 1779 /* Alloc new skbs to refill list */ 1780 for(rx = nic->rx_to_use; !rx->skb; rx = nic->rx_to_use = rx->next) { 1781 if(unlikely(e100_rx_alloc_skb(nic, rx))) 1782 break; /* Better luck next time (see watchdog) */ 1783 } 1784 1785 if(restart_required) { 1786 // ack the rnr? 1787 writeb(stat_ack_rnr, &nic->csr->scb.stat_ack); 1788 e100_start_receiver(nic, rx_to_start); 1789 if(work_done) 1790 (*work_done)++; 1791 } 1792} 1793 1794static void e100_rx_clean_list(struct nic *nic) 1795{ 1796 struct rx *rx; 1797 unsigned int i, count = nic->params.rfds.count; 1798 1799 nic->ru_running = RU_UNINITIALIZED; 1800 1801 if(nic->rxs) { 1802 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1803 if(rx->skb) { 1804 pci_unmap_single(nic->pdev, rx->dma_addr, 1805 RFD_BUF_LEN, PCI_DMA_FROMDEVICE); 1806 dev_kfree_skb(rx->skb); 1807 } 1808 } 1809 kfree(nic->rxs); 1810 nic->rxs = NULL; 1811 } 1812 1813 nic->rx_to_use = nic->rx_to_clean = NULL; 1814} 1815 1816static int e100_rx_alloc_list(struct nic *nic) 1817{ 1818 struct rx *rx; 1819 unsigned int i, count = nic->params.rfds.count; 1820 1821 nic->rx_to_use = nic->rx_to_clean = NULL; 1822 nic->ru_running = RU_UNINITIALIZED; 1823 1824 if(!(nic->rxs = kmalloc(sizeof(struct rx) * count, GFP_ATOMIC))) 1825 return -ENOMEM; 1826 memset(nic->rxs, 0, sizeof(struct rx) * count); 1827 1828 for(rx = nic->rxs, i = 0; i < count; rx++, i++) { 1829 rx->next = (i + 1 < count) ? rx + 1 : nic->rxs; 1830 rx->prev = (i == 0) ? nic->rxs + count - 1 : rx - 1; 1831 if(e100_rx_alloc_skb(nic, rx)) { 1832 e100_rx_clean_list(nic); 1833 return -ENOMEM; 1834 } 1835 } 1836 1837 nic->rx_to_use = nic->rx_to_clean = nic->rxs; 1838 nic->ru_running = RU_SUSPENDED; 1839 1840 return 0; 1841} 1842 1843static irqreturn_t e100_intr(int irq, void *dev_id, struct pt_regs *regs) 1844{ 1845 struct net_device *netdev = dev_id; 1846 struct nic *nic = netdev_priv(netdev); 1847 u8 stat_ack = readb(&nic->csr->scb.stat_ack); 1848 1849 DPRINTK(INTR, DEBUG, "stat_ack = 0x%02X\n", stat_ack); 1850 1851 if(stat_ack == stat_ack_not_ours || /* Not our interrupt */ 1852 stat_ack == stat_ack_not_present) /* Hardware is ejected */ 1853 return IRQ_NONE; 1854 1855 /* Ack interrupt(s) */ 1856 writeb(stat_ack, &nic->csr->scb.stat_ack); 1857 1858 /* We hit Receive No Resource (RNR); restart RU after cleaning */ 1859 if(stat_ack & stat_ack_rnr) 1860 nic->ru_running = RU_SUSPENDED; 1861 1862 if(likely(netif_rx_schedule_prep(netdev))) { 1863 e100_disable_irq(nic); 1864 __netif_rx_schedule(netdev); 1865 } 1866 1867 return IRQ_HANDLED; 1868} 1869 1870static int e100_poll(struct net_device *netdev, int *budget) 1871{ 1872 struct nic *nic = netdev_priv(netdev); 1873 unsigned int work_to_do = min(netdev->quota, *budget); 1874 unsigned int work_done = 0; 1875 int tx_cleaned; 1876 1877 e100_rx_clean(nic, &work_done, work_to_do); 1878 tx_cleaned = e100_tx_clean(nic); 1879 1880 /* If no Rx and Tx cleanup work was done, exit polling mode. */ 1881 if((!tx_cleaned && (work_done == 0)) || !netif_running(netdev)) { 1882 netif_rx_complete(netdev); 1883 e100_enable_irq(nic); 1884 return 0; 1885 } 1886 1887 *budget -= work_done; 1888 netdev->quota -= work_done; 1889 1890 return 1; 1891} 1892 1893#ifdef CONFIG_NET_POLL_CONTROLLER 1894static void e100_netpoll(struct net_device *netdev) 1895{ 1896 struct nic *nic = netdev_priv(netdev); 1897 1898 e100_disable_irq(nic); 1899 e100_intr(nic->pdev->irq, netdev, NULL); 1900 e100_tx_clean(nic); 1901 e100_enable_irq(nic); 1902} 1903#endif 1904 1905static struct net_device_stats *e100_get_stats(struct net_device *netdev) 1906{ 1907 struct nic *nic = netdev_priv(netdev); 1908 return &nic->net_stats; 1909} 1910 1911static int e100_set_mac_address(struct net_device *netdev, void *p) 1912{ 1913 struct nic *nic = netdev_priv(netdev); 1914 struct sockaddr *addr = p; 1915 1916 if (!is_valid_ether_addr(addr->sa_data)) 1917 return -EADDRNOTAVAIL; 1918 1919 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 1920 e100_exec_cb(nic, NULL, e100_setup_iaaddr); 1921 1922 return 0; 1923} 1924 1925static int e100_change_mtu(struct net_device *netdev, int new_mtu) 1926{ 1927 if(new_mtu < ETH_ZLEN || new_mtu > ETH_DATA_LEN) 1928 return -EINVAL; 1929 netdev->mtu = new_mtu; 1930 return 0; 1931} 1932 1933#ifdef CONFIG_PM 1934static int e100_asf(struct nic *nic) 1935{ 1936 /* ASF can be enabled from eeprom */ 1937 return((nic->pdev->device >= 0x1050) && (nic->pdev->device <= 0x1057) && 1938 (nic->eeprom[eeprom_config_asf] & eeprom_asf) && 1939 !(nic->eeprom[eeprom_config_asf] & eeprom_gcl) && 1940 ((nic->eeprom[eeprom_smbus_addr] & 0xFF) != 0xFE)); 1941} 1942#endif 1943 1944static int e100_up(struct nic *nic) 1945{ 1946 int err; 1947 1948 if((err = e100_rx_alloc_list(nic))) 1949 return err; 1950 if((err = e100_alloc_cbs(nic))) 1951 goto err_rx_clean_list; 1952 if((err = e100_hw_init(nic))) 1953 goto err_clean_cbs; 1954 e100_set_multicast_list(nic->netdev); 1955 e100_start_receiver(nic, 0); 1956 mod_timer(&nic->watchdog, jiffies); 1957 if((err = request_irq(nic->pdev->irq, e100_intr, SA_SHIRQ, 1958 nic->netdev->name, nic->netdev))) 1959 goto err_no_irq; 1960 netif_wake_queue(nic->netdev); 1961 netif_poll_enable(nic->netdev); 1962 /* enable ints _after_ enabling poll, preventing a race between 1963 * disable ints+schedule */ 1964 e100_enable_irq(nic); 1965 return 0; 1966 1967err_no_irq: 1968 del_timer_sync(&nic->watchdog); 1969err_clean_cbs: 1970 e100_clean_cbs(nic); 1971err_rx_clean_list: 1972 e100_rx_clean_list(nic); 1973 return err; 1974} 1975 1976static void e100_down(struct nic *nic) 1977{ 1978 /* wait here for poll to complete */ 1979 netif_poll_disable(nic->netdev); 1980 netif_stop_queue(nic->netdev); 1981 e100_hw_reset(nic); 1982 free_irq(nic->pdev->irq, nic->netdev); 1983 del_timer_sync(&nic->watchdog); 1984 netif_carrier_off(nic->netdev); 1985 e100_clean_cbs(nic); 1986 e100_rx_clean_list(nic); 1987} 1988 1989static void e100_tx_timeout(struct net_device *netdev) 1990{ 1991 struct nic *nic = netdev_priv(netdev); 1992 1993 /* Reset outside of interrupt context, to avoid request_irq 1994 * in interrupt context */ 1995 schedule_work(&nic->tx_timeout_task); 1996} 1997 1998static void e100_tx_timeout_task(struct net_device *netdev) 1999{ 2000 struct nic *nic = netdev_priv(netdev); 2001 2002 DPRINTK(TX_ERR, DEBUG, "scb.status=0x%02X\n", 2003 readb(&nic->csr->scb.status)); 2004 e100_down(netdev_priv(netdev)); 2005 e100_up(netdev_priv(netdev)); 2006} 2007 2008static int e100_loopback_test(struct nic *nic, enum loopback loopback_mode) 2009{ 2010 int err; 2011 struct sk_buff *skb; 2012 2013 /* Use driver resources to perform internal MAC or PHY 2014 * loopback test. A single packet is prepared and transmitted 2015 * in loopback mode, and the test passes if the received 2016 * packet compares byte-for-byte to the transmitted packet. */ 2017 2018 if((err = e100_rx_alloc_list(nic))) 2019 return err; 2020 if((err = e100_alloc_cbs(nic))) 2021 goto err_clean_rx; 2022 2023 /* ICH PHY loopback is broken so do MAC loopback instead */ 2024 if(nic->flags & ich && loopback_mode == lb_phy) 2025 loopback_mode = lb_mac; 2026 2027 nic->loopback = loopback_mode; 2028 if((err = e100_hw_init(nic))) 2029 goto err_loopback_none; 2030 2031 if(loopback_mode == lb_phy) 2032 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 2033 BMCR_LOOPBACK); 2034 2035 e100_start_receiver(nic, 0); 2036 2037 if(!(skb = dev_alloc_skb(ETH_DATA_LEN))) { 2038 err = -ENOMEM; 2039 goto err_loopback_none; 2040 } 2041 skb_put(skb, ETH_DATA_LEN); 2042 memset(skb->data, 0xFF, ETH_DATA_LEN); 2043 e100_xmit_frame(skb, nic->netdev); 2044 2045 msleep(10); 2046 2047 if(memcmp(nic->rx_to_clean->skb->data + sizeof(struct rfd), 2048 skb->data, ETH_DATA_LEN)) 2049 err = -EAGAIN; 2050 2051err_loopback_none: 2052 mdio_write(nic->netdev, nic->mii.phy_id, MII_BMCR, 0); 2053 nic->loopback = lb_none; 2054 e100_hw_init(nic); 2055 e100_clean_cbs(nic); 2056err_clean_rx: 2057 e100_rx_clean_list(nic); 2058 return err; 2059} 2060 2061#define MII_LED_CONTROL 0x1B 2062static void e100_blink_led(unsigned long data) 2063{ 2064 struct nic *nic = (struct nic *)data; 2065 enum led_state { 2066 led_on = 0x01, 2067 led_off = 0x04, 2068 led_on_559 = 0x05, 2069 led_on_557 = 0x07, 2070 }; 2071 2072 nic->leds = (nic->leds & led_on) ? led_off : 2073 (nic->mac < mac_82559_D101M) ? led_on_557 : led_on_559; 2074 mdio_write(nic->netdev, nic->mii.phy_id, MII_LED_CONTROL, nic->leds); 2075 mod_timer(&nic->blink_timer, jiffies + HZ / 4); 2076} 2077 2078static int e100_get_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2079{ 2080 struct nic *nic = netdev_priv(netdev); 2081 return mii_ethtool_gset(&nic->mii, cmd); 2082} 2083 2084static int e100_set_settings(struct net_device *netdev, struct ethtool_cmd *cmd) 2085{ 2086 struct nic *nic = netdev_priv(netdev); 2087 int err; 2088 2089 mdio_write(netdev, nic->mii.phy_id, MII_BMCR, BMCR_RESET); 2090 err = mii_ethtool_sset(&nic->mii, cmd); 2091 e100_exec_cb(nic, NULL, e100_configure); 2092 2093 return err; 2094} 2095 2096static void e100_get_drvinfo(struct net_device *netdev, 2097 struct ethtool_drvinfo *info) 2098{ 2099 struct nic *nic = netdev_priv(netdev); 2100 strcpy(info->driver, DRV_NAME); 2101 strcpy(info->version, DRV_VERSION); 2102 strcpy(info->fw_version, "N/A"); 2103 strcpy(info->bus_info, pci_name(nic->pdev)); 2104} 2105 2106static int e100_get_regs_len(struct net_device *netdev) 2107{ 2108 struct nic *nic = netdev_priv(netdev); 2109#define E100_PHY_REGS 0x1C 2110#define E100_REGS_LEN 1 + E100_PHY_REGS + \ 2111 sizeof(nic->mem->dump_buf) / sizeof(u32) 2112 return E100_REGS_LEN * sizeof(u32); 2113} 2114 2115static void e100_get_regs(struct net_device *netdev, 2116 struct ethtool_regs *regs, void *p) 2117{ 2118 struct nic *nic = netdev_priv(netdev); 2119 u32 *buff = p; 2120 int i; 2121 2122 regs->version = (1 << 24) | nic->rev_id; 2123 buff[0] = readb(&nic->csr->scb.cmd_hi) << 24 | 2124 readb(&nic->csr->scb.cmd_lo) << 16 | 2125 readw(&nic->csr->scb.status); 2126 for(i = E100_PHY_REGS; i >= 0; i--) 2127 buff[1 + E100_PHY_REGS - i] = 2128 mdio_read(netdev, nic->mii.phy_id, i); 2129 memset(nic->mem->dump_buf, 0, sizeof(nic->mem->dump_buf)); 2130 e100_exec_cb(nic, NULL, e100_dump); 2131 msleep(10); 2132 memcpy(&buff[2 + E100_PHY_REGS], nic->mem->dump_buf, 2133 sizeof(nic->mem->dump_buf)); 2134} 2135 2136static void e100_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2137{ 2138 struct nic *nic = netdev_priv(netdev); 2139 wol->supported = (nic->mac >= mac_82558_D101_A4) ? WAKE_MAGIC : 0; 2140 wol->wolopts = (nic->flags & wol_magic) ? WAKE_MAGIC : 0; 2141} 2142 2143static int e100_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) 2144{ 2145 struct nic *nic = netdev_priv(netdev); 2146 2147 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0) 2148 return -EOPNOTSUPP; 2149 2150 if(wol->wolopts) 2151 nic->flags |= wol_magic; 2152 else 2153 nic->flags &= ~wol_magic; 2154 2155 e100_exec_cb(nic, NULL, e100_configure); 2156 2157 return 0; 2158} 2159 2160static u32 e100_get_msglevel(struct net_device *netdev) 2161{ 2162 struct nic *nic = netdev_priv(netdev); 2163 return nic->msg_enable; 2164} 2165 2166static void e100_set_msglevel(struct net_device *netdev, u32 value) 2167{ 2168 struct nic *nic = netdev_priv(netdev); 2169 nic->msg_enable = value; 2170} 2171 2172static int e100_nway_reset(struct net_device *netdev) 2173{ 2174 struct nic *nic = netdev_priv(netdev); 2175 return mii_nway_restart(&nic->mii); 2176} 2177 2178static u32 e100_get_link(struct net_device *netdev) 2179{ 2180 struct nic *nic = netdev_priv(netdev); 2181 return mii_link_ok(&nic->mii); 2182} 2183 2184static int e100_get_eeprom_len(struct net_device *netdev) 2185{ 2186 struct nic *nic = netdev_priv(netdev); 2187 return nic->eeprom_wc << 1; 2188} 2189 2190#define E100_EEPROM_MAGIC 0x1234 2191static int e100_get_eeprom(struct net_device *netdev, 2192 struct ethtool_eeprom *eeprom, u8 *bytes) 2193{ 2194 struct nic *nic = netdev_priv(netdev); 2195 2196 eeprom->magic = E100_EEPROM_MAGIC; 2197 memcpy(bytes, &((u8 *)nic->eeprom)[eeprom->offset], eeprom->len); 2198 2199 return 0; 2200} 2201 2202static int e100_set_eeprom(struct net_device *netdev, 2203 struct ethtool_eeprom *eeprom, u8 *bytes) 2204{ 2205 struct nic *nic = netdev_priv(netdev); 2206 2207 if(eeprom->magic != E100_EEPROM_MAGIC) 2208 return -EINVAL; 2209 2210 memcpy(&((u8 *)nic->eeprom)[eeprom->offset], bytes, eeprom->len); 2211 2212 return e100_eeprom_save(nic, eeprom->offset >> 1, 2213 (eeprom->len >> 1) + 1); 2214} 2215 2216static void e100_get_ringparam(struct net_device *netdev, 2217 struct ethtool_ringparam *ring) 2218{ 2219 struct nic *nic = netdev_priv(netdev); 2220 struct param_range *rfds = &nic->params.rfds; 2221 struct param_range *cbs = &nic->params.cbs; 2222 2223 ring->rx_max_pending = rfds->max; 2224 ring->tx_max_pending = cbs->max; 2225 ring->rx_mini_max_pending = 0; 2226 ring->rx_jumbo_max_pending = 0; 2227 ring->rx_pending = rfds->count; 2228 ring->tx_pending = cbs->count; 2229 ring->rx_mini_pending = 0; 2230 ring->rx_jumbo_pending = 0; 2231} 2232 2233static int e100_set_ringparam(struct net_device *netdev, 2234 struct ethtool_ringparam *ring) 2235{ 2236 struct nic *nic = netdev_priv(netdev); 2237 struct param_range *rfds = &nic->params.rfds; 2238 struct param_range *cbs = &nic->params.cbs; 2239 2240 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 2241 return -EINVAL; 2242 2243 if(netif_running(netdev)) 2244 e100_down(nic); 2245 rfds->count = max(ring->rx_pending, rfds->min); 2246 rfds->count = min(rfds->count, rfds->max); 2247 cbs->count = max(ring->tx_pending, cbs->min); 2248 cbs->count = min(cbs->count, cbs->max); 2249 DPRINTK(DRV, INFO, "Ring Param settings: rx: %d, tx %d\n", 2250 rfds->count, cbs->count); 2251 if(netif_running(netdev)) 2252 e100_up(nic); 2253 2254 return 0; 2255} 2256 2257static const char e100_gstrings_test[][ETH_GSTRING_LEN] = { 2258 "Link test (on/offline)", 2259 "Eeprom test (on/offline)", 2260 "Self test (offline)", 2261 "Mac loopback (offline)", 2262 "Phy loopback (offline)", 2263}; 2264#define E100_TEST_LEN sizeof(e100_gstrings_test) / ETH_GSTRING_LEN 2265 2266static int e100_diag_test_count(struct net_device *netdev) 2267{ 2268 return E100_TEST_LEN; 2269} 2270 2271static void e100_diag_test(struct net_device *netdev, 2272 struct ethtool_test *test, u64 *data) 2273{ 2274 struct ethtool_cmd cmd; 2275 struct nic *nic = netdev_priv(netdev); 2276 int i, err; 2277 2278 memset(data, 0, E100_TEST_LEN * sizeof(u64)); 2279 data[0] = !mii_link_ok(&nic->mii); 2280 data[1] = e100_eeprom_load(nic); 2281 if(test->flags & ETH_TEST_FL_OFFLINE) { 2282 2283 /* save speed, duplex & autoneg settings */ 2284 err = mii_ethtool_gset(&nic->mii, &cmd); 2285 2286 if(netif_running(netdev)) 2287 e100_down(nic); 2288 data[2] = e100_self_test(nic); 2289 data[3] = e100_loopback_test(nic, lb_mac); 2290 data[4] = e100_loopback_test(nic, lb_phy); 2291 2292 /* restore speed, duplex & autoneg settings */ 2293 err = mii_ethtool_sset(&nic->mii, &cmd); 2294 2295 if(netif_running(netdev)) 2296 e100_up(nic); 2297 } 2298 for(i = 0; i < E100_TEST_LEN; i++) 2299 test->flags |= data[i] ? ETH_TEST_FL_FAILED : 0; 2300 2301 msleep_interruptible(4 * 1000); 2302} 2303 2304static int e100_phys_id(struct net_device *netdev, u32 data) 2305{ 2306 struct nic *nic = netdev_priv(netdev); 2307 2308 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ)) 2309 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ); 2310 mod_timer(&nic->blink_timer, jiffies); 2311 msleep_interruptible(data * 1000); 2312 del_timer_sync(&nic->blink_timer); 2313 mdio_write(netdev, nic->mii.phy_id, MII_LED_CONTROL, 0); 2314 2315 return 0; 2316} 2317 2318static const char e100_gstrings_stats[][ETH_GSTRING_LEN] = { 2319 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors", 2320 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions", 2321 "rx_length_errors", "rx_over_errors", "rx_crc_errors", 2322 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors", 2323 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors", 2324 "tx_heartbeat_errors", "tx_window_errors", 2325 /* device-specific stats */ 2326 "tx_deferred", "tx_single_collisions", "tx_multi_collisions", 2327 "tx_flow_control_pause", "rx_flow_control_pause", 2328 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets", 2329}; 2330#define E100_NET_STATS_LEN 21 2331#define E100_STATS_LEN sizeof(e100_gstrings_stats) / ETH_GSTRING_LEN 2332 2333static int e100_get_stats_count(struct net_device *netdev) 2334{ 2335 return E100_STATS_LEN; 2336} 2337 2338static void e100_get_ethtool_stats(struct net_device *netdev, 2339 struct ethtool_stats *stats, u64 *data) 2340{ 2341 struct nic *nic = netdev_priv(netdev); 2342 int i; 2343 2344 for(i = 0; i < E100_NET_STATS_LEN; i++) 2345 data[i] = ((unsigned long *)&nic->net_stats)[i]; 2346 2347 data[i++] = nic->tx_deferred; 2348 data[i++] = nic->tx_single_collisions; 2349 data[i++] = nic->tx_multiple_collisions; 2350 data[i++] = nic->tx_fc_pause; 2351 data[i++] = nic->rx_fc_pause; 2352 data[i++] = nic->rx_fc_unsupported; 2353 data[i++] = nic->tx_tco_frames; 2354 data[i++] = nic->rx_tco_frames; 2355} 2356 2357static void e100_get_strings(struct net_device *netdev, u32 stringset, u8 *data) 2358{ 2359 switch(stringset) { 2360 case ETH_SS_TEST: 2361 memcpy(data, *e100_gstrings_test, sizeof(e100_gstrings_test)); 2362 break; 2363 case ETH_SS_STATS: 2364 memcpy(data, *e100_gstrings_stats, sizeof(e100_gstrings_stats)); 2365 break; 2366 } 2367} 2368 2369static struct ethtool_ops e100_ethtool_ops = { 2370 .get_settings = e100_get_settings, 2371 .set_settings = e100_set_settings, 2372 .get_drvinfo = e100_get_drvinfo, 2373 .get_regs_len = e100_get_regs_len, 2374 .get_regs = e100_get_regs, 2375 .get_wol = e100_get_wol, 2376 .set_wol = e100_set_wol, 2377 .get_msglevel = e100_get_msglevel, 2378 .set_msglevel = e100_set_msglevel, 2379 .nway_reset = e100_nway_reset, 2380 .get_link = e100_get_link, 2381 .get_eeprom_len = e100_get_eeprom_len, 2382 .get_eeprom = e100_get_eeprom, 2383 .set_eeprom = e100_set_eeprom, 2384 .get_ringparam = e100_get_ringparam, 2385 .set_ringparam = e100_set_ringparam, 2386 .self_test_count = e100_diag_test_count, 2387 .self_test = e100_diag_test, 2388 .get_strings = e100_get_strings, 2389 .phys_id = e100_phys_id, 2390 .get_stats_count = e100_get_stats_count, 2391 .get_ethtool_stats = e100_get_ethtool_stats, 2392}; 2393 2394static int e100_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 2395{ 2396 struct nic *nic = netdev_priv(netdev); 2397 2398 return generic_mii_ioctl(&nic->mii, if_mii(ifr), cmd, NULL); 2399} 2400 2401static int e100_alloc(struct nic *nic) 2402{ 2403 nic->mem = pci_alloc_consistent(nic->pdev, sizeof(struct mem), 2404 &nic->dma_addr); 2405 return nic->mem ? 0 : -ENOMEM; 2406} 2407 2408static void e100_free(struct nic *nic) 2409{ 2410 if(nic->mem) { 2411 pci_free_consistent(nic->pdev, sizeof(struct mem), 2412 nic->mem, nic->dma_addr); 2413 nic->mem = NULL; 2414 } 2415} 2416 2417static int e100_open(struct net_device *netdev) 2418{ 2419 struct nic *nic = netdev_priv(netdev); 2420 int err = 0; 2421 2422 netif_carrier_off(netdev); 2423 if((err = e100_up(nic))) 2424 DPRINTK(IFUP, ERR, "Cannot open interface, aborting.\n"); 2425 return err; 2426} 2427 2428static int e100_close(struct net_device *netdev) 2429{ 2430 e100_down(netdev_priv(netdev)); 2431 return 0; 2432} 2433 2434static int __devinit e100_probe(struct pci_dev *pdev, 2435 const struct pci_device_id *ent) 2436{ 2437 struct net_device *netdev; 2438 struct nic *nic; 2439 int err; 2440 2441 if(!(netdev = alloc_etherdev(sizeof(struct nic)))) { 2442 if(((1 << debug) - 1) & NETIF_MSG_PROBE) 2443 printk(KERN_ERR PFX "Etherdev alloc failed, abort.\n"); 2444 return -ENOMEM; 2445 } 2446 2447 netdev->open = e100_open; 2448 netdev->stop = e100_close; 2449 netdev->hard_start_xmit = e100_xmit_frame; 2450 netdev->get_stats = e100_get_stats; 2451 netdev->set_multicast_list = e100_set_multicast_list; 2452 netdev->set_mac_address = e100_set_mac_address; 2453 netdev->change_mtu = e100_change_mtu; 2454 netdev->do_ioctl = e100_do_ioctl; 2455 SET_ETHTOOL_OPS(netdev, &e100_ethtool_ops); 2456 netdev->tx_timeout = e100_tx_timeout; 2457 netdev->watchdog_timeo = E100_WATCHDOG_PERIOD; 2458 netdev->poll = e100_poll; 2459 netdev->weight = E100_NAPI_WEIGHT; 2460#ifdef CONFIG_NET_POLL_CONTROLLER 2461 netdev->poll_controller = e100_netpoll; 2462#endif 2463 strcpy(netdev->name, pci_name(pdev)); 2464 2465 nic = netdev_priv(netdev); 2466 nic->netdev = netdev; 2467 nic->pdev = pdev; 2468 nic->msg_enable = (1 << debug) - 1; 2469 pci_set_drvdata(pdev, netdev); 2470 2471 if((err = pci_enable_device(pdev))) { 2472 DPRINTK(PROBE, ERR, "Cannot enable PCI device, aborting.\n"); 2473 goto err_out_free_dev; 2474 } 2475 2476 if(!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 2477 DPRINTK(PROBE, ERR, "Cannot find proper PCI device " 2478 "base address, aborting.\n"); 2479 err = -ENODEV; 2480 goto err_out_disable_pdev; 2481 } 2482 2483 if((err = pci_request_regions(pdev, DRV_NAME))) { 2484 DPRINTK(PROBE, ERR, "Cannot obtain PCI resources, aborting.\n"); 2485 goto err_out_disable_pdev; 2486 } 2487 2488 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) { 2489 DPRINTK(PROBE, ERR, "No usable DMA configuration, aborting.\n"); 2490 goto err_out_free_res; 2491 } 2492 2493 SET_MODULE_OWNER(netdev); 2494 SET_NETDEV_DEV(netdev, &pdev->dev); 2495 2496 nic->csr = ioremap(pci_resource_start(pdev, 0), sizeof(struct csr)); 2497 if(!nic->csr) { 2498 DPRINTK(PROBE, ERR, "Cannot map device registers, aborting.\n"); 2499 err = -ENOMEM; 2500 goto err_out_free_res; 2501 } 2502 2503 if(ent->driver_data) 2504 nic->flags |= ich; 2505 else 2506 nic->flags &= ~ich; 2507 2508 e100_get_defaults(nic); 2509 2510 /* locks must be initialized before calling hw_reset */ 2511 spin_lock_init(&nic->cb_lock); 2512 spin_lock_init(&nic->cmd_lock); 2513 2514 /* Reset the device before pci_set_master() in case device is in some 2515 * funky state and has an interrupt pending - hint: we don't have the 2516 * interrupt handler registered yet. */ 2517 e100_hw_reset(nic); 2518 2519 pci_set_master(pdev); 2520 2521 init_timer(&nic->watchdog); 2522 nic->watchdog.function = e100_watchdog; 2523 nic->watchdog.data = (unsigned long)nic; 2524 init_timer(&nic->blink_timer); 2525 nic->blink_timer.function = e100_blink_led; 2526 nic->blink_timer.data = (unsigned long)nic; 2527 2528 INIT_WORK(&nic->tx_timeout_task, 2529 (void (*)(void *))e100_tx_timeout_task, netdev); 2530 2531 if((err = e100_alloc(nic))) { 2532 DPRINTK(PROBE, ERR, "Cannot alloc driver memory, aborting.\n"); 2533 goto err_out_iounmap; 2534 } 2535 2536 if((err = e100_eeprom_load(nic))) 2537 goto err_out_free; 2538 2539 e100_phy_init(nic); 2540 2541 memcpy(netdev->dev_addr, nic->eeprom, ETH_ALEN); 2542 if(!is_valid_ether_addr(netdev->dev_addr)) { 2543 DPRINTK(PROBE, ERR, "Invalid MAC address from " 2544 "EEPROM, aborting.\n"); 2545 err = -EAGAIN; 2546 goto err_out_free; 2547 } 2548 2549 /* Wol magic packet can be enabled from eeprom */ 2550 if((nic->mac >= mac_82558_D101_A4) && 2551 (nic->eeprom[eeprom_id] & eeprom_id_wol)) 2552 nic->flags |= wol_magic; 2553 2554 /* ack any pending wake events, disable PME */ 2555 pci_enable_wake(pdev, 0, 0); 2556 2557 strcpy(netdev->name, "eth%d"); 2558 if((err = register_netdev(netdev))) { 2559 DPRINTK(PROBE, ERR, "Cannot register net device, aborting.\n"); 2560 goto err_out_free; 2561 } 2562 2563 DPRINTK(PROBE, INFO, "addr 0x%lx, irq %d, " 2564 "MAC addr %02X:%02X:%02X:%02X:%02X:%02X\n", 2565 pci_resource_start(pdev, 0), pdev->irq, 2566 netdev->dev_addr[0], netdev->dev_addr[1], netdev->dev_addr[2], 2567 netdev->dev_addr[3], netdev->dev_addr[4], netdev->dev_addr[5]); 2568 2569 return 0; 2570 2571err_out_free: 2572 e100_free(nic); 2573err_out_iounmap: 2574 iounmap(nic->csr); 2575err_out_free_res: 2576 pci_release_regions(pdev); 2577err_out_disable_pdev: 2578 pci_disable_device(pdev); 2579err_out_free_dev: 2580 pci_set_drvdata(pdev, NULL); 2581 free_netdev(netdev); 2582 return err; 2583} 2584 2585static void __devexit e100_remove(struct pci_dev *pdev) 2586{ 2587 struct net_device *netdev = pci_get_drvdata(pdev); 2588 2589 if(netdev) { 2590 struct nic *nic = netdev_priv(netdev); 2591 unregister_netdev(netdev); 2592 e100_free(nic); 2593 iounmap(nic->csr); 2594 free_netdev(netdev); 2595 pci_release_regions(pdev); 2596 pci_disable_device(pdev); 2597 pci_set_drvdata(pdev, NULL); 2598 } 2599} 2600 2601#ifdef CONFIG_PM 2602static int e100_suspend(struct pci_dev *pdev, pm_message_t state) 2603{ 2604 struct net_device *netdev = pci_get_drvdata(pdev); 2605 struct nic *nic = netdev_priv(netdev); 2606 2607 if(netif_running(netdev)) 2608 e100_down(nic); 2609 e100_hw_reset(nic); 2610 netif_device_detach(netdev); 2611 2612 pci_save_state(pdev); 2613 pci_enable_wake(pdev, pci_choose_state(pdev, state), nic->flags & (wol_magic | e100_asf(nic))); 2614 pci_disable_device(pdev); 2615 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 2616 2617 return 0; 2618} 2619 2620static int e100_resume(struct pci_dev *pdev) 2621{ 2622 struct net_device *netdev = pci_get_drvdata(pdev); 2623 struct nic *nic = netdev_priv(netdev); 2624 2625 pci_set_power_state(pdev, PCI_D0); 2626 pci_restore_state(pdev); 2627 /* ack any pending wake events, disable PME */ 2628 pci_enable_wake(pdev, 0, 0); 2629 if(e100_hw_init(nic)) 2630 DPRINTK(HW, ERR, "e100_hw_init failed\n"); 2631 2632 netif_device_attach(netdev); 2633 if(netif_running(netdev)) 2634 e100_up(nic); 2635 2636 return 0; 2637} 2638#endif 2639 2640 2641static void e100_shutdown(struct pci_dev *pdev) 2642{ 2643 struct net_device *netdev = pci_get_drvdata(pdev); 2644 struct nic *nic = netdev_priv(netdev); 2645 2646#ifdef CONFIG_PM 2647 pci_enable_wake(pdev, 0, nic->flags & (wol_magic | e100_asf(nic))); 2648#else 2649 pci_enable_wake(pdev, 0, nic->flags & (wol_magic)); 2650#endif 2651} 2652 2653 2654static struct pci_driver e100_driver = { 2655 .name = DRV_NAME, 2656 .id_table = e100_id_table, 2657 .probe = e100_probe, 2658 .remove = __devexit_p(e100_remove), 2659#ifdef CONFIG_PM 2660 .suspend = e100_suspend, 2661 .resume = e100_resume, 2662#endif 2663 .shutdown = e100_shutdown, 2664}; 2665 2666static int __init e100_init_module(void) 2667{ 2668 if(((1 << debug) - 1) & NETIF_MSG_DRV) { 2669 printk(KERN_INFO PFX "%s, %s\n", DRV_DESCRIPTION, DRV_VERSION); 2670 printk(KERN_INFO PFX "%s\n", DRV_COPYRIGHT); 2671 } 2672 return pci_module_init(&e100_driver); 2673} 2674 2675static void __exit e100_cleanup_module(void) 2676{ 2677 pci_unregister_driver(&e100_driver); 2678} 2679 2680module_init(e100_init_module); 2681module_exit(e100_cleanup_module);