at v2.6.13 48 kB view raw
1#ifndef __LINUX_USB_H 2#define __LINUX_USB_H 3 4#include <linux/mod_devicetable.h> 5#include <linux/usb_ch9.h> 6 7#define USB_MAJOR 180 8 9 10#ifdef __KERNEL__ 11 12#include <linux/config.h> 13#include <linux/errno.h> /* for -ENODEV */ 14#include <linux/delay.h> /* for mdelay() */ 15#include <linux/interrupt.h> /* for in_interrupt() */ 16#include <linux/list.h> /* for struct list_head */ 17#include <linux/kref.h> /* for struct kref */ 18#include <linux/device.h> /* for struct device */ 19#include <linux/fs.h> /* for struct file_operations */ 20#include <linux/completion.h> /* for struct completion */ 21#include <linux/sched.h> /* for current && schedule_timeout */ 22 23struct usb_device; 24struct usb_driver; 25 26/*-------------------------------------------------------------------------*/ 27 28/* 29 * Host-side wrappers for standard USB descriptors ... these are parsed 30 * from the data provided by devices. Parsing turns them from a flat 31 * sequence of descriptors into a hierarchy: 32 * 33 * - devices have one (usually) or more configs; 34 * - configs have one (often) or more interfaces; 35 * - interfaces have one (usually) or more settings; 36 * - each interface setting has zero or (usually) more endpoints. 37 * 38 * And there might be other descriptors mixed in with those. 39 * 40 * Devices may also have class-specific or vendor-specific descriptors. 41 */ 42 43/** 44 * struct usb_host_endpoint - host-side endpoint descriptor and queue 45 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder 46 * @urb_list: urbs queued to this endpoint; maintained by usbcore 47 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH) 48 * with one or more transfer descriptors (TDs) per urb 49 * @extra: descriptors following this endpoint in the configuration 50 * @extralen: how many bytes of "extra" are valid 51 * 52 * USB requests are always queued to a given endpoint, identified by a 53 * descriptor within an active interface in a given USB configuration. 54 */ 55struct usb_host_endpoint { 56 struct usb_endpoint_descriptor desc; 57 struct list_head urb_list; 58 void *hcpriv; 59 60 unsigned char *extra; /* Extra descriptors */ 61 int extralen; 62}; 63 64/* host-side wrapper for one interface setting's parsed descriptors */ 65struct usb_host_interface { 66 struct usb_interface_descriptor desc; 67 68 /* array of desc.bNumEndpoint endpoints associated with this 69 * interface setting. these will be in no particular order. 70 */ 71 struct usb_host_endpoint *endpoint; 72 73 char *string; /* iInterface string, if present */ 74 unsigned char *extra; /* Extra descriptors */ 75 int extralen; 76}; 77 78enum usb_interface_condition { 79 USB_INTERFACE_UNBOUND = 0, 80 USB_INTERFACE_BINDING, 81 USB_INTERFACE_BOUND, 82 USB_INTERFACE_UNBINDING, 83}; 84 85/** 86 * struct usb_interface - what usb device drivers talk to 87 * @altsetting: array of interface structures, one for each alternate 88 * setting that may be selected. Each one includes a set of 89 * endpoint configurations. They will be in no particular order. 90 * @num_altsetting: number of altsettings defined. 91 * @cur_altsetting: the current altsetting. 92 * @driver: the USB driver that is bound to this interface. 93 * @minor: the minor number assigned to this interface, if this 94 * interface is bound to a driver that uses the USB major number. 95 * If this interface does not use the USB major, this field should 96 * be unused. The driver should set this value in the probe() 97 * function of the driver, after it has been assigned a minor 98 * number from the USB core by calling usb_register_dev(). 99 * @condition: binding state of the interface: not bound, binding 100 * (in probe()), bound to a driver, or unbinding (in disconnect()) 101 * @dev: driver model's view of this device 102 * @class_dev: driver model's class view of this device. 103 * 104 * USB device drivers attach to interfaces on a physical device. Each 105 * interface encapsulates a single high level function, such as feeding 106 * an audio stream to a speaker or reporting a change in a volume control. 107 * Many USB devices only have one interface. The protocol used to talk to 108 * an interface's endpoints can be defined in a usb "class" specification, 109 * or by a product's vendor. The (default) control endpoint is part of 110 * every interface, but is never listed among the interface's descriptors. 111 * 112 * The driver that is bound to the interface can use standard driver model 113 * calls such as dev_get_drvdata() on the dev member of this structure. 114 * 115 * Each interface may have alternate settings. The initial configuration 116 * of a device sets altsetting 0, but the device driver can change 117 * that setting using usb_set_interface(). Alternate settings are often 118 * used to control the the use of periodic endpoints, such as by having 119 * different endpoints use different amounts of reserved USB bandwidth. 120 * All standards-conformant USB devices that use isochronous endpoints 121 * will use them in non-default settings. 122 * 123 * The USB specification says that alternate setting numbers must run from 124 * 0 to one less than the total number of alternate settings. But some 125 * devices manage to mess this up, and the structures aren't necessarily 126 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to 127 * look up an alternate setting in the altsetting array based on its number. 128 */ 129struct usb_interface { 130 /* array of alternate settings for this interface, 131 * stored in no particular order */ 132 struct usb_host_interface *altsetting; 133 134 struct usb_host_interface *cur_altsetting; /* the currently 135 * active alternate setting */ 136 unsigned num_altsetting; /* number of alternate settings */ 137 138 int minor; /* minor number this interface is bound to */ 139 enum usb_interface_condition condition; /* state of binding */ 140 struct device dev; /* interface specific device info */ 141 struct class_device *class_dev; 142}; 143#define to_usb_interface(d) container_of(d, struct usb_interface, dev) 144#define interface_to_usbdev(intf) \ 145 container_of(intf->dev.parent, struct usb_device, dev) 146 147static inline void *usb_get_intfdata (struct usb_interface *intf) 148{ 149 return dev_get_drvdata (&intf->dev); 150} 151 152static inline void usb_set_intfdata (struct usb_interface *intf, void *data) 153{ 154 dev_set_drvdata(&intf->dev, data); 155} 156 157struct usb_interface *usb_get_intf(struct usb_interface *intf); 158void usb_put_intf(struct usb_interface *intf); 159 160/* this maximum is arbitrary */ 161#define USB_MAXINTERFACES 32 162 163/** 164 * struct usb_interface_cache - long-term representation of a device interface 165 * @num_altsetting: number of altsettings defined. 166 * @ref: reference counter. 167 * @altsetting: variable-length array of interface structures, one for 168 * each alternate setting that may be selected. Each one includes a 169 * set of endpoint configurations. They will be in no particular order. 170 * 171 * These structures persist for the lifetime of a usb_device, unlike 172 * struct usb_interface (which persists only as long as its configuration 173 * is installed). The altsetting arrays can be accessed through these 174 * structures at any time, permitting comparison of configurations and 175 * providing support for the /proc/bus/usb/devices pseudo-file. 176 */ 177struct usb_interface_cache { 178 unsigned num_altsetting; /* number of alternate settings */ 179 struct kref ref; /* reference counter */ 180 181 /* variable-length array of alternate settings for this interface, 182 * stored in no particular order */ 183 struct usb_host_interface altsetting[0]; 184}; 185#define ref_to_usb_interface_cache(r) \ 186 container_of(r, struct usb_interface_cache, ref) 187#define altsetting_to_usb_interface_cache(a) \ 188 container_of(a, struct usb_interface_cache, altsetting[0]) 189 190/** 191 * struct usb_host_config - representation of a device's configuration 192 * @desc: the device's configuration descriptor. 193 * @string: pointer to the cached version of the iConfiguration string, if 194 * present for this configuration. 195 * @interface: array of pointers to usb_interface structures, one for each 196 * interface in the configuration. The number of interfaces is stored 197 * in desc.bNumInterfaces. These pointers are valid only while the 198 * the configuration is active. 199 * @intf_cache: array of pointers to usb_interface_cache structures, one 200 * for each interface in the configuration. These structures exist 201 * for the entire life of the device. 202 * @extra: pointer to buffer containing all extra descriptors associated 203 * with this configuration (those preceding the first interface 204 * descriptor). 205 * @extralen: length of the extra descriptors buffer. 206 * 207 * USB devices may have multiple configurations, but only one can be active 208 * at any time. Each encapsulates a different operational environment; 209 * for example, a dual-speed device would have separate configurations for 210 * full-speed and high-speed operation. The number of configurations 211 * available is stored in the device descriptor as bNumConfigurations. 212 * 213 * A configuration can contain multiple interfaces. Each corresponds to 214 * a different function of the USB device, and all are available whenever 215 * the configuration is active. The USB standard says that interfaces 216 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot 217 * of devices get this wrong. In addition, the interface array is not 218 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to 219 * look up an interface entry based on its number. 220 * 221 * Device drivers should not attempt to activate configurations. The choice 222 * of which configuration to install is a policy decision based on such 223 * considerations as available power, functionality provided, and the user's 224 * desires (expressed through hotplug scripts). However, drivers can call 225 * usb_reset_configuration() to reinitialize the current configuration and 226 * all its interfaces. 227 */ 228struct usb_host_config { 229 struct usb_config_descriptor desc; 230 231 char *string; 232 /* the interfaces associated with this configuration, 233 * stored in no particular order */ 234 struct usb_interface *interface[USB_MAXINTERFACES]; 235 236 /* Interface information available even when this is not the 237 * active configuration */ 238 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES]; 239 240 unsigned char *extra; /* Extra descriptors */ 241 int extralen; 242}; 243 244int __usb_get_extra_descriptor(char *buffer, unsigned size, 245 unsigned char type, void **ptr); 246#define usb_get_extra_descriptor(ifpoint,type,ptr)\ 247 __usb_get_extra_descriptor((ifpoint)->extra,(ifpoint)->extralen,\ 248 type,(void**)ptr) 249 250/* -------------------------------------------------------------------------- */ 251 252struct usb_operations; 253 254/* USB device number allocation bitmap */ 255struct usb_devmap { 256 unsigned long devicemap[128 / (8*sizeof(unsigned long))]; 257}; 258 259/* 260 * Allocated per bus (tree of devices) we have: 261 */ 262struct usb_bus { 263 struct device *controller; /* host/master side hardware */ 264 int busnum; /* Bus number (in order of reg) */ 265 char *bus_name; /* stable id (PCI slot_name etc) */ 266 u8 otg_port; /* 0, or number of OTG/HNP port */ 267 unsigned is_b_host:1; /* true during some HNP roleswitches */ 268 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */ 269 270 int devnum_next; /* Next open device number in round-robin allocation */ 271 272 struct usb_devmap devmap; /* device address allocation map */ 273 struct usb_operations *op; /* Operations (specific to the HC) */ 274 struct usb_device *root_hub; /* Root hub */ 275 struct list_head bus_list; /* list of busses */ 276 void *hcpriv; /* Host Controller private data */ 277 278 int bandwidth_allocated; /* on this bus: how much of the time 279 * reserved for periodic (intr/iso) 280 * requests is used, on average? 281 * Units: microseconds/frame. 282 * Limits: Full/low speed reserve 90%, 283 * while high speed reserves 80%. 284 */ 285 int bandwidth_int_reqs; /* number of Interrupt requests */ 286 int bandwidth_isoc_reqs; /* number of Isoc. requests */ 287 288 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */ 289 290 struct class_device *class_dev; /* class device for this bus */ 291 struct kref kref; /* handles reference counting this bus */ 292 void (*release)(struct usb_bus *bus); /* function to destroy this bus's memory */ 293#if defined(CONFIG_USB_MON) 294 struct mon_bus *mon_bus; /* non-null when associated */ 295 int monitored; /* non-zero when monitored */ 296#endif 297}; 298 299/* -------------------------------------------------------------------------- */ 300 301/* This is arbitrary. 302 * From USB 2.0 spec Table 11-13, offset 7, a hub can 303 * have up to 255 ports. The most yet reported is 10. 304 */ 305#define USB_MAXCHILDREN (16) 306 307struct usb_tt; 308 309/* 310 * struct usb_device - kernel's representation of a USB device 311 * 312 * FIXME: Write the kerneldoc! 313 * 314 * Usbcore drivers should not set usbdev->state directly. Instead use 315 * usb_set_device_state(). 316 */ 317struct usb_device { 318 int devnum; /* Address on USB bus */ 319 char devpath [16]; /* Use in messages: /port/port/... */ 320 enum usb_device_state state; /* configured, not attached, etc */ 321 enum usb_device_speed speed; /* high/full/low (or error) */ 322 323 struct usb_tt *tt; /* low/full speed dev, highspeed hub */ 324 int ttport; /* device port on that tt hub */ 325 326 struct semaphore serialize; 327 328 unsigned int toggle[2]; /* one bit for each endpoint ([0] = IN, [1] = OUT) */ 329 330 struct usb_device *parent; /* our hub, unless we're the root */ 331 struct usb_bus *bus; /* Bus we're part of */ 332 struct usb_host_endpoint ep0; 333 334 struct device dev; /* Generic device interface */ 335 336 struct usb_device_descriptor descriptor;/* Descriptor */ 337 struct usb_host_config *config; /* All of the configs */ 338 339 struct usb_host_config *actconfig;/* the active configuration */ 340 struct usb_host_endpoint *ep_in[16]; 341 struct usb_host_endpoint *ep_out[16]; 342 343 char **rawdescriptors; /* Raw descriptors for each config */ 344 345 int have_langid; /* whether string_langid is valid yet */ 346 int string_langid; /* language ID for strings */ 347 348 char *product; 349 char *manufacturer; 350 char *serial; /* static strings from the device */ 351 struct list_head filelist; 352 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */ 353 354 /* 355 * Child devices - these can be either new devices 356 * (if this is a hub device), or different instances 357 * of this same device. 358 * 359 * Each instance needs its own set of data structures. 360 */ 361 362 int maxchild; /* Number of ports if hub */ 363 struct usb_device *children[USB_MAXCHILDREN]; 364}; 365#define to_usb_device(d) container_of(d, struct usb_device, dev) 366 367extern struct usb_device *usb_get_dev(struct usb_device *dev); 368extern void usb_put_dev(struct usb_device *dev); 369 370extern void usb_lock_device(struct usb_device *udev); 371extern int usb_trylock_device(struct usb_device *udev); 372extern int usb_lock_device_for_reset(struct usb_device *udev, 373 struct usb_interface *iface); 374extern void usb_unlock_device(struct usb_device *udev); 375 376/* USB port reset for device reinitialization */ 377extern int usb_reset_device(struct usb_device *dev); 378 379extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id); 380 381/*-------------------------------------------------------------------------*/ 382 383/* for drivers using iso endpoints */ 384extern int usb_get_current_frame_number (struct usb_device *usb_dev); 385 386/* used these for multi-interface device registration */ 387extern int usb_driver_claim_interface(struct usb_driver *driver, 388 struct usb_interface *iface, void* priv); 389 390/** 391 * usb_interface_claimed - returns true iff an interface is claimed 392 * @iface: the interface being checked 393 * 394 * Returns true (nonzero) iff the interface is claimed, else false (zero). 395 * Callers must own the driver model's usb bus readlock. So driver 396 * probe() entries don't need extra locking, but other call contexts 397 * may need to explicitly claim that lock. 398 * 399 */ 400static inline int usb_interface_claimed(struct usb_interface *iface) { 401 return (iface->dev.driver != NULL); 402} 403 404extern void usb_driver_release_interface(struct usb_driver *driver, 405 struct usb_interface *iface); 406const struct usb_device_id *usb_match_id(struct usb_interface *interface, 407 const struct usb_device_id *id); 408 409extern struct usb_interface *usb_find_interface(struct usb_driver *drv, 410 int minor); 411extern struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, 412 unsigned ifnum); 413extern struct usb_host_interface *usb_altnum_to_altsetting( 414 struct usb_interface *intf, unsigned int altnum); 415 416 417/** 418 * usb_make_path - returns stable device path in the usb tree 419 * @dev: the device whose path is being constructed 420 * @buf: where to put the string 421 * @size: how big is "buf"? 422 * 423 * Returns length of the string (> 0) or negative if size was too small. 424 * 425 * This identifier is intended to be "stable", reflecting physical paths in 426 * hardware such as physical bus addresses for host controllers or ports on 427 * USB hubs. That makes it stay the same until systems are physically 428 * reconfigured, by re-cabling a tree of USB devices or by moving USB host 429 * controllers. Adding and removing devices, including virtual root hubs 430 * in host controller driver modules, does not change these path identifers; 431 * neither does rebooting or re-enumerating. These are more useful identifiers 432 * than changeable ("unstable") ones like bus numbers or device addresses. 433 * 434 * With a partial exception for devices connected to USB 2.0 root hubs, these 435 * identifiers are also predictable. So long as the device tree isn't changed, 436 * plugging any USB device into a given hub port always gives it the same path. 437 * Because of the use of "companion" controllers, devices connected to ports on 438 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are 439 * high speed, and a different one if they are full or low speed. 440 */ 441static inline int usb_make_path (struct usb_device *dev, char *buf, size_t size) 442{ 443 int actual; 444 actual = snprintf (buf, size, "usb-%s-%s", dev->bus->bus_name, dev->devpath); 445 return (actual >= (int)size) ? -1 : actual; 446} 447 448/*-------------------------------------------------------------------------*/ 449 450#define USB_DEVICE_ID_MATCH_DEVICE (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT) 451#define USB_DEVICE_ID_MATCH_DEV_RANGE (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI) 452#define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE) 453#define USB_DEVICE_ID_MATCH_DEV_INFO \ 454 (USB_DEVICE_ID_MATCH_DEV_CLASS | USB_DEVICE_ID_MATCH_DEV_SUBCLASS | USB_DEVICE_ID_MATCH_DEV_PROTOCOL) 455#define USB_DEVICE_ID_MATCH_INT_INFO \ 456 (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_INT_PROTOCOL) 457 458/** 459 * USB_DEVICE - macro used to describe a specific usb device 460 * @vend: the 16 bit USB Vendor ID 461 * @prod: the 16 bit USB Product ID 462 * 463 * This macro is used to create a struct usb_device_id that matches a 464 * specific device. 465 */ 466#define USB_DEVICE(vend,prod) \ 467 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, .idVendor = (vend), .idProduct = (prod) 468/** 469 * USB_DEVICE_VER - macro used to describe a specific usb device with a version range 470 * @vend: the 16 bit USB Vendor ID 471 * @prod: the 16 bit USB Product ID 472 * @lo: the bcdDevice_lo value 473 * @hi: the bcdDevice_hi value 474 * 475 * This macro is used to create a struct usb_device_id that matches a 476 * specific device, with a version range. 477 */ 478#define USB_DEVICE_VER(vend,prod,lo,hi) \ 479 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, .idVendor = (vend), .idProduct = (prod), .bcdDevice_lo = (lo), .bcdDevice_hi = (hi) 480 481/** 482 * USB_DEVICE_INFO - macro used to describe a class of usb devices 483 * @cl: bDeviceClass value 484 * @sc: bDeviceSubClass value 485 * @pr: bDeviceProtocol value 486 * 487 * This macro is used to create a struct usb_device_id that matches a 488 * specific class of devices. 489 */ 490#define USB_DEVICE_INFO(cl,sc,pr) \ 491 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, .bDeviceClass = (cl), .bDeviceSubClass = (sc), .bDeviceProtocol = (pr) 492 493/** 494 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces 495 * @cl: bInterfaceClass value 496 * @sc: bInterfaceSubClass value 497 * @pr: bInterfaceProtocol value 498 * 499 * This macro is used to create a struct usb_device_id that matches a 500 * specific class of interfaces. 501 */ 502#define USB_INTERFACE_INFO(cl,sc,pr) \ 503 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, .bInterfaceClass = (cl), .bInterfaceSubClass = (sc), .bInterfaceProtocol = (pr) 504 505/* -------------------------------------------------------------------------- */ 506 507/** 508 * struct usb_driver - identifies USB driver to usbcore 509 * @owner: Pointer to the module owner of this driver; initialize 510 * it using THIS_MODULE. 511 * @name: The driver name should be unique among USB drivers, 512 * and should normally be the same as the module name. 513 * @probe: Called to see if the driver is willing to manage a particular 514 * interface on a device. If it is, probe returns zero and uses 515 * dev_set_drvdata() to associate driver-specific data with the 516 * interface. It may also use usb_set_interface() to specify the 517 * appropriate altsetting. If unwilling to manage the interface, 518 * return a negative errno value. 519 * @disconnect: Called when the interface is no longer accessible, usually 520 * because its device has been (or is being) disconnected or the 521 * driver module is being unloaded. 522 * @ioctl: Used for drivers that want to talk to userspace through 523 * the "usbfs" filesystem. This lets devices provide ways to 524 * expose information to user space regardless of where they 525 * do (or don't) show up otherwise in the filesystem. 526 * @suspend: Called when the device is going to be suspended by the system. 527 * @resume: Called when the device is being resumed by the system. 528 * @id_table: USB drivers use ID table to support hotplugging. 529 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set 530 * or your driver's probe function will never get called. 531 * @driver: the driver model core driver structure. 532 * 533 * USB drivers must provide a name, probe() and disconnect() methods, 534 * and an id_table. Other driver fields are optional. 535 * 536 * The id_table is used in hotplugging. It holds a set of descriptors, 537 * and specialized data may be associated with each entry. That table 538 * is used by both user and kernel mode hotplugging support. 539 * 540 * The probe() and disconnect() methods are called in a context where 541 * they can sleep, but they should avoid abusing the privilege. Most 542 * work to connect to a device should be done when the device is opened, 543 * and undone at the last close. The disconnect code needs to address 544 * concurrency issues with respect to open() and close() methods, as 545 * well as forcing all pending I/O requests to complete (by unlinking 546 * them as necessary, and blocking until the unlinks complete). 547 */ 548struct usb_driver { 549 struct module *owner; 550 551 const char *name; 552 553 int (*probe) (struct usb_interface *intf, 554 const struct usb_device_id *id); 555 556 void (*disconnect) (struct usb_interface *intf); 557 558 int (*ioctl) (struct usb_interface *intf, unsigned int code, void *buf); 559 560 int (*suspend) (struct usb_interface *intf, pm_message_t message); 561 int (*resume) (struct usb_interface *intf); 562 563 const struct usb_device_id *id_table; 564 565 struct device_driver driver; 566}; 567#define to_usb_driver(d) container_of(d, struct usb_driver, driver) 568 569extern struct bus_type usb_bus_type; 570 571/** 572 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number 573 * @name: devfs name for this driver. Will also be used by the driver 574 * class code to create a usb class device. 575 * @fops: pointer to the struct file_operations of this driver. 576 * @mode: the mode for the devfs file to be created for this driver. 577 * @minor_base: the start of the minor range for this driver. 578 * 579 * This structure is used for the usb_register_dev() and 580 * usb_unregister_dev() functions, to consolidate a number of the 581 * parameters used for them. 582 */ 583struct usb_class_driver { 584 char *name; 585 struct file_operations *fops; 586 mode_t mode; 587 int minor_base; 588}; 589 590/* 591 * use these in module_init()/module_exit() 592 * and don't forget MODULE_DEVICE_TABLE(usb, ...) 593 */ 594extern int usb_register(struct usb_driver *); 595extern void usb_deregister(struct usb_driver *); 596 597extern int usb_register_dev(struct usb_interface *intf, 598 struct usb_class_driver *class_driver); 599extern void usb_deregister_dev(struct usb_interface *intf, 600 struct usb_class_driver *class_driver); 601 602extern int usb_disabled(void); 603 604/* -------------------------------------------------------------------------- */ 605 606/* 607 * URB support, for asynchronous request completions 608 */ 609 610/* 611 * urb->transfer_flags: 612 */ 613#define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */ 614#define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame ignored */ 615#define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */ 616#define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */ 617#define URB_ASYNC_UNLINK 0x0010 /* usb_unlink_urb() returns asap */ 618#define URB_NO_FSBR 0x0020 /* UHCI-specific */ 619#define URB_ZERO_PACKET 0x0040 /* Finish bulk OUTs with short packet */ 620#define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt needed */ 621 622struct usb_iso_packet_descriptor { 623 unsigned int offset; 624 unsigned int length; /* expected length */ 625 unsigned int actual_length; 626 unsigned int status; 627}; 628 629struct urb; 630struct pt_regs; 631 632typedef void (*usb_complete_t)(struct urb *, struct pt_regs *); 633 634/** 635 * struct urb - USB Request Block 636 * @urb_list: For use by current owner of the URB. 637 * @pipe: Holds endpoint number, direction, type, and more. 638 * Create these values with the eight macros available; 639 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl" 640 * (control), "bulk", "int" (interrupt), or "iso" (isochronous). 641 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint 642 * numbers range from zero to fifteen. Note that "in" endpoint two 643 * is a different endpoint (and pipe) from "out" endpoint two. 644 * The current configuration controls the existence, type, and 645 * maximum packet size of any given endpoint. 646 * @dev: Identifies the USB device to perform the request. 647 * @status: This is read in non-iso completion functions to get the 648 * status of the particular request. ISO requests only use it 649 * to tell whether the URB was unlinked; detailed status for 650 * each frame is in the fields of the iso_frame-desc. 651 * @transfer_flags: A variety of flags may be used to affect how URB 652 * submission, unlinking, or operation are handled. Different 653 * kinds of URB can use different flags. 654 * @transfer_buffer: This identifies the buffer to (or from) which 655 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP 656 * is set). This buffer must be suitable for DMA; allocate it with 657 * kmalloc() or equivalent. For transfers to "in" endpoints, contents 658 * of this buffer will be modified. This buffer is used for the data 659 * stage of control transfers. 660 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP, 661 * the device driver is saying that it provided this DMA address, 662 * which the host controller driver should use in preference to the 663 * transfer_buffer. 664 * @transfer_buffer_length: How big is transfer_buffer. The transfer may 665 * be broken up into chunks according to the current maximum packet 666 * size for the endpoint, which is a function of the configuration 667 * and is encoded in the pipe. When the length is zero, neither 668 * transfer_buffer nor transfer_dma is used. 669 * @actual_length: This is read in non-iso completion functions, and 670 * it tells how many bytes (out of transfer_buffer_length) were 671 * transferred. It will normally be the same as requested, unless 672 * either an error was reported or a short read was performed. 673 * The URB_SHORT_NOT_OK transfer flag may be used to make such 674 * short reads be reported as errors. 675 * @setup_packet: Only used for control transfers, this points to eight bytes 676 * of setup data. Control transfers always start by sending this data 677 * to the device. Then transfer_buffer is read or written, if needed. 678 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the 679 * device driver has provided this DMA address for the setup packet. 680 * The host controller driver should use this in preference to 681 * setup_packet. 682 * @start_frame: Returns the initial frame for isochronous transfers. 683 * @number_of_packets: Lists the number of ISO transfer buffers. 684 * @interval: Specifies the polling interval for interrupt or isochronous 685 * transfers. The units are frames (milliseconds) for for full and low 686 * speed devices, and microframes (1/8 millisecond) for highspeed ones. 687 * @error_count: Returns the number of ISO transfers that reported errors. 688 * @context: For use in completion functions. This normally points to 689 * request-specific driver context. 690 * @complete: Completion handler. This URB is passed as the parameter to the 691 * completion function. The completion function may then do what 692 * it likes with the URB, including resubmitting or freeing it. 693 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to 694 * collect the transfer status for each buffer. 695 * 696 * This structure identifies USB transfer requests. URBs must be allocated by 697 * calling usb_alloc_urb() and freed with a call to usb_free_urb(). 698 * Initialization may be done using various usb_fill_*_urb() functions. URBs 699 * are submitted using usb_submit_urb(), and pending requests may be canceled 700 * using usb_unlink_urb() or usb_kill_urb(). 701 * 702 * Data Transfer Buffers: 703 * 704 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise 705 * taken from the general page pool. That is provided by transfer_buffer 706 * (control requests also use setup_packet), and host controller drivers 707 * perform a dma mapping (and unmapping) for each buffer transferred. Those 708 * mapping operations can be expensive on some platforms (perhaps using a dma 709 * bounce buffer or talking to an IOMMU), 710 * although they're cheap on commodity x86 and ppc hardware. 711 * 712 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags, 713 * which tell the host controller driver that no such mapping is needed since 714 * the device driver is DMA-aware. For example, a device driver might 715 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map(). 716 * When these transfer flags are provided, host controller drivers will 717 * attempt to use the dma addresses found in the transfer_dma and/or 718 * setup_dma fields rather than determining a dma address themselves. (Note 719 * that transfer_buffer and setup_packet must still be set because not all 720 * host controllers use DMA, nor do virtual root hubs). 721 * 722 * Initialization: 723 * 724 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be 725 * zero), and complete fields. 726 * The URB_ASYNC_UNLINK transfer flag affects later invocations of 727 * the usb_unlink_urb() routine. Note: Failure to set URB_ASYNC_UNLINK 728 * with usb_unlink_urb() is deprecated. For synchronous unlinks use 729 * usb_kill_urb() instead. 730 * 731 * All URBs must also initialize 732 * transfer_buffer and transfer_buffer_length. They may provide the 733 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are 734 * to be treated as errors; that flag is invalid for write requests. 735 * 736 * Bulk URBs may 737 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers 738 * should always terminate with a short packet, even if it means adding an 739 * extra zero length packet. 740 * 741 * Control URBs must provide a setup_packet. The setup_packet and 742 * transfer_buffer may each be mapped for DMA or not, independently of 743 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and 744 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped. 745 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs. 746 * 747 * Interrupt URBs must provide an interval, saying how often (in milliseconds 748 * or, for highspeed devices, 125 microsecond units) 749 * to poll for transfers. After the URB has been submitted, the interval 750 * field reflects how the transfer was actually scheduled. 751 * The polling interval may be more frequent than requested. 752 * For example, some controllers have a maximum interval of 32 milliseconds, 753 * while others support intervals of up to 1024 milliseconds. 754 * Isochronous URBs also have transfer intervals. (Note that for isochronous 755 * endpoints, as well as high speed interrupt endpoints, the encoding of 756 * the transfer interval in the endpoint descriptor is logarithmic. 757 * Device drivers must convert that value to linear units themselves.) 758 * 759 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling 760 * the host controller to schedule the transfer as soon as bandwidth 761 * utilization allows, and then set start_frame to reflect the actual frame 762 * selected during submission. Otherwise drivers must specify the start_frame 763 * and handle the case where the transfer can't begin then. However, drivers 764 * won't know how bandwidth is currently allocated, and while they can 765 * find the current frame using usb_get_current_frame_number () they can't 766 * know the range for that frame number. (Ranges for frame counter values 767 * are HC-specific, and can go from 256 to 65536 frames from "now".) 768 * 769 * Isochronous URBs have a different data transfer model, in part because 770 * the quality of service is only "best effort". Callers provide specially 771 * allocated URBs, with number_of_packets worth of iso_frame_desc structures 772 * at the end. Each such packet is an individual ISO transfer. Isochronous 773 * URBs are normally queued, submitted by drivers to arrange that 774 * transfers are at least double buffered, and then explicitly resubmitted 775 * in completion handlers, so 776 * that data (such as audio or video) streams at as constant a rate as the 777 * host controller scheduler can support. 778 * 779 * Completion Callbacks: 780 * 781 * The completion callback is made in_interrupt(), and one of the first 782 * things that a completion handler should do is check the status field. 783 * The status field is provided for all URBs. It is used to report 784 * unlinked URBs, and status for all non-ISO transfers. It should not 785 * be examined before the URB is returned to the completion handler. 786 * 787 * The context field is normally used to link URBs back to the relevant 788 * driver or request state. 789 * 790 * When the completion callback is invoked for non-isochronous URBs, the 791 * actual_length field tells how many bytes were transferred. This field 792 * is updated even when the URB terminated with an error or was unlinked. 793 * 794 * ISO transfer status is reported in the status and actual_length fields 795 * of the iso_frame_desc array, and the number of errors is reported in 796 * error_count. Completion callbacks for ISO transfers will normally 797 * (re)submit URBs to ensure a constant transfer rate. 798 * 799 * Note that even fields marked "public" should not be touched by the driver 800 * when the urb is owned by the hcd, that is, since the call to 801 * usb_submit_urb() till the entry into the completion routine. 802 */ 803struct urb 804{ 805 /* private, usb core and host controller only fields in the urb */ 806 struct kref kref; /* reference count of the URB */ 807 spinlock_t lock; /* lock for the URB */ 808 void *hcpriv; /* private data for host controller */ 809 int bandwidth; /* bandwidth for INT/ISO request */ 810 atomic_t use_count; /* concurrent submissions counter */ 811 u8 reject; /* submissions will fail */ 812 813 /* public, documented fields in the urb that can be used by drivers */ 814 struct list_head urb_list; /* list head for use by the urb owner */ 815 struct usb_device *dev; /* (in) pointer to associated device */ 816 unsigned int pipe; /* (in) pipe information */ 817 int status; /* (return) non-ISO status */ 818 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/ 819 void *transfer_buffer; /* (in) associated data buffer */ 820 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */ 821 int transfer_buffer_length; /* (in) data buffer length */ 822 int actual_length; /* (return) actual transfer length */ 823 unsigned char *setup_packet; /* (in) setup packet (control only) */ 824 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */ 825 int start_frame; /* (modify) start frame (ISO) */ 826 int number_of_packets; /* (in) number of ISO packets */ 827 int interval; /* (modify) transfer interval (INT/ISO) */ 828 int error_count; /* (return) number of ISO errors */ 829 void *context; /* (in) context for completion */ 830 usb_complete_t complete; /* (in) completion routine */ 831 struct usb_iso_packet_descriptor iso_frame_desc[0]; /* (in) ISO ONLY */ 832}; 833 834/* -------------------------------------------------------------------------- */ 835 836/** 837 * usb_fill_control_urb - initializes a control urb 838 * @urb: pointer to the urb to initialize. 839 * @dev: pointer to the struct usb_device for this urb. 840 * @pipe: the endpoint pipe 841 * @setup_packet: pointer to the setup_packet buffer 842 * @transfer_buffer: pointer to the transfer buffer 843 * @buffer_length: length of the transfer buffer 844 * @complete: pointer to the usb_complete_t function 845 * @context: what to set the urb context to. 846 * 847 * Initializes a control urb with the proper information needed to submit 848 * it to a device. 849 */ 850static inline void usb_fill_control_urb (struct urb *urb, 851 struct usb_device *dev, 852 unsigned int pipe, 853 unsigned char *setup_packet, 854 void *transfer_buffer, 855 int buffer_length, 856 usb_complete_t complete, 857 void *context) 858{ 859 spin_lock_init(&urb->lock); 860 urb->dev = dev; 861 urb->pipe = pipe; 862 urb->setup_packet = setup_packet; 863 urb->transfer_buffer = transfer_buffer; 864 urb->transfer_buffer_length = buffer_length; 865 urb->complete = complete; 866 urb->context = context; 867} 868 869/** 870 * usb_fill_bulk_urb - macro to help initialize a bulk urb 871 * @urb: pointer to the urb to initialize. 872 * @dev: pointer to the struct usb_device for this urb. 873 * @pipe: the endpoint pipe 874 * @transfer_buffer: pointer to the transfer buffer 875 * @buffer_length: length of the transfer buffer 876 * @complete: pointer to the usb_complete_t function 877 * @context: what to set the urb context to. 878 * 879 * Initializes a bulk urb with the proper information needed to submit it 880 * to a device. 881 */ 882static inline void usb_fill_bulk_urb (struct urb *urb, 883 struct usb_device *dev, 884 unsigned int pipe, 885 void *transfer_buffer, 886 int buffer_length, 887 usb_complete_t complete, 888 void *context) 889{ 890 spin_lock_init(&urb->lock); 891 urb->dev = dev; 892 urb->pipe = pipe; 893 urb->transfer_buffer = transfer_buffer; 894 urb->transfer_buffer_length = buffer_length; 895 urb->complete = complete; 896 urb->context = context; 897} 898 899/** 900 * usb_fill_int_urb - macro to help initialize a interrupt urb 901 * @urb: pointer to the urb to initialize. 902 * @dev: pointer to the struct usb_device for this urb. 903 * @pipe: the endpoint pipe 904 * @transfer_buffer: pointer to the transfer buffer 905 * @buffer_length: length of the transfer buffer 906 * @complete: pointer to the usb_complete_t function 907 * @context: what to set the urb context to. 908 * @interval: what to set the urb interval to, encoded like 909 * the endpoint descriptor's bInterval value. 910 * 911 * Initializes a interrupt urb with the proper information needed to submit 912 * it to a device. 913 * Note that high speed interrupt endpoints use a logarithmic encoding of 914 * the endpoint interval, and express polling intervals in microframes 915 * (eight per millisecond) rather than in frames (one per millisecond). 916 */ 917static inline void usb_fill_int_urb (struct urb *urb, 918 struct usb_device *dev, 919 unsigned int pipe, 920 void *transfer_buffer, 921 int buffer_length, 922 usb_complete_t complete, 923 void *context, 924 int interval) 925{ 926 spin_lock_init(&urb->lock); 927 urb->dev = dev; 928 urb->pipe = pipe; 929 urb->transfer_buffer = transfer_buffer; 930 urb->transfer_buffer_length = buffer_length; 931 urb->complete = complete; 932 urb->context = context; 933 if (dev->speed == USB_SPEED_HIGH) 934 urb->interval = 1 << (interval - 1); 935 else 936 urb->interval = interval; 937 urb->start_frame = -1; 938} 939 940extern void usb_init_urb(struct urb *urb); 941extern struct urb *usb_alloc_urb(int iso_packets, unsigned mem_flags); 942extern void usb_free_urb(struct urb *urb); 943#define usb_put_urb usb_free_urb 944extern struct urb *usb_get_urb(struct urb *urb); 945extern int usb_submit_urb(struct urb *urb, unsigned mem_flags); 946extern int usb_unlink_urb(struct urb *urb); 947extern void usb_kill_urb(struct urb *urb); 948 949#define HAVE_USB_BUFFERS 950void *usb_buffer_alloc (struct usb_device *dev, size_t size, 951 unsigned mem_flags, dma_addr_t *dma); 952void usb_buffer_free (struct usb_device *dev, size_t size, 953 void *addr, dma_addr_t dma); 954 955#if 0 956struct urb *usb_buffer_map (struct urb *urb); 957void usb_buffer_dmasync (struct urb *urb); 958void usb_buffer_unmap (struct urb *urb); 959#endif 960 961struct scatterlist; 962int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe, 963 struct scatterlist *sg, int nents); 964#if 0 965void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe, 966 struct scatterlist *sg, int n_hw_ents); 967#endif 968void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe, 969 struct scatterlist *sg, int n_hw_ents); 970 971/*-------------------------------------------------------------------* 972 * SYNCHRONOUS CALL SUPPORT * 973 *-------------------------------------------------------------------*/ 974 975extern int usb_control_msg(struct usb_device *dev, unsigned int pipe, 976 __u8 request, __u8 requesttype, __u16 value, __u16 index, 977 void *data, __u16 size, int timeout); 978extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 979 void *data, int len, int *actual_length, 980 int timeout); 981 982/* selective suspend/resume */ 983extern int usb_suspend_device(struct usb_device *dev, pm_message_t message); 984extern int usb_resume_device(struct usb_device *dev); 985 986 987/* wrappers around usb_control_msg() for the most common standard requests */ 988extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype, 989 unsigned char descindex, void *buf, int size); 990extern int usb_get_status(struct usb_device *dev, 991 int type, int target, void *data); 992extern int usb_get_string(struct usb_device *dev, 993 unsigned short langid, unsigned char index, void *buf, int size); 994extern int usb_string(struct usb_device *dev, int index, 995 char *buf, size_t size); 996 997/* wrappers that also update important state inside usbcore */ 998extern int usb_clear_halt(struct usb_device *dev, int pipe); 999extern int usb_reset_configuration(struct usb_device *dev); 1000extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate); 1001 1002/* 1003 * timeouts, in milliseconds, used for sending/receiving control messages 1004 * they typically complete within a few frames (msec) after they're issued 1005 * USB identifies 5 second timeouts, maybe more in a few cases, and a few 1006 * slow devices (like some MGE Ellipse UPSes) actually push that limit. 1007 */ 1008#define USB_CTRL_GET_TIMEOUT 5000 1009#define USB_CTRL_SET_TIMEOUT 5000 1010 1011 1012/** 1013 * struct usb_sg_request - support for scatter/gather I/O 1014 * @status: zero indicates success, else negative errno 1015 * @bytes: counts bytes transferred. 1016 * 1017 * These requests are initialized using usb_sg_init(), and then are used 1018 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most 1019 * members of the request object aren't for driver access. 1020 * 1021 * The status and bytecount values are valid only after usb_sg_wait() 1022 * returns. If the status is zero, then the bytecount matches the total 1023 * from the request. 1024 * 1025 * After an error completion, drivers may need to clear a halt condition 1026 * on the endpoint. 1027 */ 1028struct usb_sg_request { 1029 int status; 1030 size_t bytes; 1031 1032 /* 1033 * members below are private to usbcore, 1034 * and are not provided for driver access! 1035 */ 1036 spinlock_t lock; 1037 1038 struct usb_device *dev; 1039 int pipe; 1040 struct scatterlist *sg; 1041 int nents; 1042 1043 int entries; 1044 struct urb **urbs; 1045 1046 int count; 1047 struct completion complete; 1048}; 1049 1050int usb_sg_init ( 1051 struct usb_sg_request *io, 1052 struct usb_device *dev, 1053 unsigned pipe, 1054 unsigned period, 1055 struct scatterlist *sg, 1056 int nents, 1057 size_t length, 1058 unsigned mem_flags 1059); 1060void usb_sg_cancel (struct usb_sg_request *io); 1061void usb_sg_wait (struct usb_sg_request *io); 1062 1063 1064/* -------------------------------------------------------------------------- */ 1065 1066/* 1067 * For various legacy reasons, Linux has a small cookie that's paired with 1068 * a struct usb_device to identify an endpoint queue. Queue characteristics 1069 * are defined by the endpoint's descriptor. This cookie is called a "pipe", 1070 * an unsigned int encoded as: 1071 * 1072 * - direction: bit 7 (0 = Host-to-Device [Out], 1073 * 1 = Device-to-Host [In] ... 1074 * like endpoint bEndpointAddress) 1075 * - device address: bits 8-14 ... bit positions known to uhci-hcd 1076 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd 1077 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt, 1078 * 10 = control, 11 = bulk) 1079 * 1080 * Given the device address and endpoint descriptor, pipes are redundant. 1081 */ 1082 1083/* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */ 1084/* (yet ... they're the values used by usbfs) */ 1085#define PIPE_ISOCHRONOUS 0 1086#define PIPE_INTERRUPT 1 1087#define PIPE_CONTROL 2 1088#define PIPE_BULK 3 1089 1090#define usb_pipein(pipe) ((pipe) & USB_DIR_IN) 1091#define usb_pipeout(pipe) (!usb_pipein(pipe)) 1092 1093#define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f) 1094#define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf) 1095 1096#define usb_pipetype(pipe) (((pipe) >> 30) & 3) 1097#define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS) 1098#define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT) 1099#define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL) 1100#define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK) 1101 1102/* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */ 1103#define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1) 1104#define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep))) 1105#define usb_settoggle(dev, ep, out, bit) ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | ((bit) << (ep))) 1106 1107 1108static inline unsigned int __create_pipe(struct usb_device *dev, unsigned int endpoint) 1109{ 1110 return (dev->devnum << 8) | (endpoint << 15); 1111} 1112 1113/* Create various pipes... */ 1114#define usb_sndctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint)) 1115#define usb_rcvctrlpipe(dev,endpoint) ((PIPE_CONTROL << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1116#define usb_sndisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint)) 1117#define usb_rcvisocpipe(dev,endpoint) ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1118#define usb_sndbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint)) 1119#define usb_rcvbulkpipe(dev,endpoint) ((PIPE_BULK << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1120#define usb_sndintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint)) 1121#define usb_rcvintpipe(dev,endpoint) ((PIPE_INTERRUPT << 30) | __create_pipe(dev,endpoint) | USB_DIR_IN) 1122 1123/*-------------------------------------------------------------------------*/ 1124 1125static inline __u16 1126usb_maxpacket(struct usb_device *udev, int pipe, int is_out) 1127{ 1128 struct usb_host_endpoint *ep; 1129 unsigned epnum = usb_pipeendpoint(pipe); 1130 1131 if (is_out) { 1132 WARN_ON(usb_pipein(pipe)); 1133 ep = udev->ep_out[epnum]; 1134 } else { 1135 WARN_ON(usb_pipeout(pipe)); 1136 ep = udev->ep_in[epnum]; 1137 } 1138 if (!ep) 1139 return 0; 1140 1141 /* NOTE: only 0x07ff bits are for packet size... */ 1142 return le16_to_cpu(ep->desc.wMaxPacketSize); 1143} 1144 1145/* -------------------------------------------------------------------------- */ 1146 1147#ifdef DEBUG 1148#define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , __FILE__ , ## arg) 1149#else 1150#define dbg(format, arg...) do {} while (0) 1151#endif 1152 1153#define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , __FILE__ , ## arg) 1154#define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , __FILE__ , ## arg) 1155#define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , __FILE__ , ## arg) 1156 1157 1158#endif /* __KERNEL__ */ 1159 1160#endif