at v2.6.13 33 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/sched.h> 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/config.h> 10#include <linux/gfp.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/prio_tree.h> 15#include <linux/fs.h> 16 17struct mempolicy; 18struct anon_vma; 19 20#ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 21extern unsigned long max_mapnr; 22#endif 23 24extern unsigned long num_physpages; 25extern void * high_memory; 26extern unsigned long vmalloc_earlyreserve; 27extern int page_cluster; 28 29#ifdef CONFIG_SYSCTL 30extern int sysctl_legacy_va_layout; 31#else 32#define sysctl_legacy_va_layout 0 33#endif 34 35#include <asm/page.h> 36#include <asm/pgtable.h> 37#include <asm/processor.h> 38#include <asm/atomic.h> 39 40#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 41 42/* 43 * Linux kernel virtual memory manager primitives. 44 * The idea being to have a "virtual" mm in the same way 45 * we have a virtual fs - giving a cleaner interface to the 46 * mm details, and allowing different kinds of memory mappings 47 * (from shared memory to executable loading to arbitrary 48 * mmap() functions). 49 */ 50 51/* 52 * This struct defines a memory VMM memory area. There is one of these 53 * per VM-area/task. A VM area is any part of the process virtual memory 54 * space that has a special rule for the page-fault handlers (ie a shared 55 * library, the executable area etc). 56 */ 57struct vm_area_struct { 58 struct mm_struct * vm_mm; /* The address space we belong to. */ 59 unsigned long vm_start; /* Our start address within vm_mm. */ 60 unsigned long vm_end; /* The first byte after our end address 61 within vm_mm. */ 62 63 /* linked list of VM areas per task, sorted by address */ 64 struct vm_area_struct *vm_next; 65 66 pgprot_t vm_page_prot; /* Access permissions of this VMA. */ 67 unsigned long vm_flags; /* Flags, listed below. */ 68 69 struct rb_node vm_rb; 70 71 /* 72 * For areas with an address space and backing store, 73 * linkage into the address_space->i_mmap prio tree, or 74 * linkage to the list of like vmas hanging off its node, or 75 * linkage of vma in the address_space->i_mmap_nonlinear list. 76 */ 77 union { 78 struct { 79 struct list_head list; 80 void *parent; /* aligns with prio_tree_node parent */ 81 struct vm_area_struct *head; 82 } vm_set; 83 84 struct raw_prio_tree_node prio_tree_node; 85 } shared; 86 87 /* 88 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 89 * list, after a COW of one of the file pages. A MAP_SHARED vma 90 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 91 * or brk vma (with NULL file) can only be in an anon_vma list. 92 */ 93 struct list_head anon_vma_node; /* Serialized by anon_vma->lock */ 94 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 95 96 /* Function pointers to deal with this struct. */ 97 struct vm_operations_struct * vm_ops; 98 99 /* Information about our backing store: */ 100 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 101 units, *not* PAGE_CACHE_SIZE */ 102 struct file * vm_file; /* File we map to (can be NULL). */ 103 void * vm_private_data; /* was vm_pte (shared mem) */ 104 unsigned long vm_truncate_count;/* truncate_count or restart_addr */ 105 106#ifndef CONFIG_MMU 107 atomic_t vm_usage; /* refcount (VMAs shared if !MMU) */ 108#endif 109#ifdef CONFIG_NUMA 110 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 111#endif 112}; 113 114/* 115 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 116 * disabled, then there's a single shared list of VMAs maintained by the 117 * system, and mm's subscribe to these individually 118 */ 119struct vm_list_struct { 120 struct vm_list_struct *next; 121 struct vm_area_struct *vma; 122}; 123 124#ifndef CONFIG_MMU 125extern struct rb_root nommu_vma_tree; 126extern struct rw_semaphore nommu_vma_sem; 127 128extern unsigned int kobjsize(const void *objp); 129#endif 130 131/* 132 * vm_flags.. 133 */ 134#define VM_READ 0x00000001 /* currently active flags */ 135#define VM_WRITE 0x00000002 136#define VM_EXEC 0x00000004 137#define VM_SHARED 0x00000008 138 139#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 140#define VM_MAYWRITE 0x00000020 141#define VM_MAYEXEC 0x00000040 142#define VM_MAYSHARE 0x00000080 143 144#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 145#define VM_GROWSUP 0x00000200 146#define VM_SHM 0x00000400 /* shared memory area, don't swap out */ 147#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 148 149#define VM_EXECUTABLE 0x00001000 150#define VM_LOCKED 0x00002000 151#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 152 153 /* Used by sys_madvise() */ 154#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 155#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 156 157#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 158#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 159#define VM_RESERVED 0x00080000 /* Don't unmap it from swap_out */ 160#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 161#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 162#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 163#define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 164 165#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 166#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 167#endif 168 169#ifdef CONFIG_STACK_GROWSUP 170#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 171#else 172#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 173#endif 174 175#define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 176#define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 177#define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 178#define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 179#define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 180 181/* 182 * mapping from the currently active vm_flags protection bits (the 183 * low four bits) to a page protection mask.. 184 */ 185extern pgprot_t protection_map[16]; 186 187 188/* 189 * These are the virtual MM functions - opening of an area, closing and 190 * unmapping it (needed to keep files on disk up-to-date etc), pointer 191 * to the functions called when a no-page or a wp-page exception occurs. 192 */ 193struct vm_operations_struct { 194 void (*open)(struct vm_area_struct * area); 195 void (*close)(struct vm_area_struct * area); 196 struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); 197 int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); 198#ifdef CONFIG_NUMA 199 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 200 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 201 unsigned long addr); 202#endif 203}; 204 205struct mmu_gather; 206struct inode; 207 208#ifdef ARCH_HAS_ATOMIC_UNSIGNED 209typedef unsigned page_flags_t; 210#else 211typedef unsigned long page_flags_t; 212#endif 213 214/* 215 * Each physical page in the system has a struct page associated with 216 * it to keep track of whatever it is we are using the page for at the 217 * moment. Note that we have no way to track which tasks are using 218 * a page. 219 */ 220struct page { 221 page_flags_t flags; /* Atomic flags, some possibly 222 * updated asynchronously */ 223 atomic_t _count; /* Usage count, see below. */ 224 atomic_t _mapcount; /* Count of ptes mapped in mms, 225 * to show when page is mapped 226 * & limit reverse map searches. 227 */ 228 unsigned long private; /* Mapping-private opaque data: 229 * usually used for buffer_heads 230 * if PagePrivate set; used for 231 * swp_entry_t if PageSwapCache 232 * When page is free, this indicates 233 * order in the buddy system. 234 */ 235 struct address_space *mapping; /* If low bit clear, points to 236 * inode address_space, or NULL. 237 * If page mapped as anonymous 238 * memory, low bit is set, and 239 * it points to anon_vma object: 240 * see PAGE_MAPPING_ANON below. 241 */ 242 pgoff_t index; /* Our offset within mapping. */ 243 struct list_head lru; /* Pageout list, eg. active_list 244 * protected by zone->lru_lock ! 245 */ 246 /* 247 * On machines where all RAM is mapped into kernel address space, 248 * we can simply calculate the virtual address. On machines with 249 * highmem some memory is mapped into kernel virtual memory 250 * dynamically, so we need a place to store that address. 251 * Note that this field could be 16 bits on x86 ... ;) 252 * 253 * Architectures with slow multiplication can define 254 * WANT_PAGE_VIRTUAL in asm/page.h 255 */ 256#if defined(WANT_PAGE_VIRTUAL) 257 void *virtual; /* Kernel virtual address (NULL if 258 not kmapped, ie. highmem) */ 259#endif /* WANT_PAGE_VIRTUAL */ 260}; 261 262/* 263 * FIXME: take this include out, include page-flags.h in 264 * files which need it (119 of them) 265 */ 266#include <linux/page-flags.h> 267 268/* 269 * Methods to modify the page usage count. 270 * 271 * What counts for a page usage: 272 * - cache mapping (page->mapping) 273 * - private data (page->private) 274 * - page mapped in a task's page tables, each mapping 275 * is counted separately 276 * 277 * Also, many kernel routines increase the page count before a critical 278 * routine so they can be sure the page doesn't go away from under them. 279 * 280 * Since 2.6.6 (approx), a free page has ->_count = -1. This is so that we 281 * can use atomic_add_negative(-1, page->_count) to detect when the page 282 * becomes free and so that we can also use atomic_inc_and_test to atomically 283 * detect when we just tried to grab a ref on a page which some other CPU has 284 * already deemed to be freeable. 285 * 286 * NO code should make assumptions about this internal detail! Use the provided 287 * macros which retain the old rules: page_count(page) == 0 is a free page. 288 */ 289 290/* 291 * Drop a ref, return true if the logical refcount fell to zero (the page has 292 * no users) 293 */ 294#define put_page_testzero(p) \ 295 ({ \ 296 BUG_ON(page_count(p) == 0); \ 297 atomic_add_negative(-1, &(p)->_count); \ 298 }) 299 300/* 301 * Grab a ref, return true if the page previously had a logical refcount of 302 * zero. ie: returns true if we just grabbed an already-deemed-to-be-free page 303 */ 304#define get_page_testone(p) atomic_inc_and_test(&(p)->_count) 305 306#define set_page_count(p,v) atomic_set(&(p)->_count, v - 1) 307#define __put_page(p) atomic_dec(&(p)->_count) 308 309extern void FASTCALL(__page_cache_release(struct page *)); 310 311#ifdef CONFIG_HUGETLB_PAGE 312 313static inline int page_count(struct page *p) 314{ 315 if (PageCompound(p)) 316 p = (struct page *)p->private; 317 return atomic_read(&(p)->_count) + 1; 318} 319 320static inline void get_page(struct page *page) 321{ 322 if (unlikely(PageCompound(page))) 323 page = (struct page *)page->private; 324 atomic_inc(&page->_count); 325} 326 327void put_page(struct page *page); 328 329#else /* CONFIG_HUGETLB_PAGE */ 330 331#define page_count(p) (atomic_read(&(p)->_count) + 1) 332 333static inline void get_page(struct page *page) 334{ 335 atomic_inc(&page->_count); 336} 337 338static inline void put_page(struct page *page) 339{ 340 if (!PageReserved(page) && put_page_testzero(page)) 341 __page_cache_release(page); 342} 343 344#endif /* CONFIG_HUGETLB_PAGE */ 345 346/* 347 * Multiple processes may "see" the same page. E.g. for untouched 348 * mappings of /dev/null, all processes see the same page full of 349 * zeroes, and text pages of executables and shared libraries have 350 * only one copy in memory, at most, normally. 351 * 352 * For the non-reserved pages, page_count(page) denotes a reference count. 353 * page_count() == 0 means the page is free. 354 * page_count() == 1 means the page is used for exactly one purpose 355 * (e.g. a private data page of one process). 356 * 357 * A page may be used for kmalloc() or anyone else who does a 358 * __get_free_page(). In this case the page_count() is at least 1, and 359 * all other fields are unused but should be 0 or NULL. The 360 * management of this page is the responsibility of the one who uses 361 * it. 362 * 363 * The other pages (we may call them "process pages") are completely 364 * managed by the Linux memory manager: I/O, buffers, swapping etc. 365 * The following discussion applies only to them. 366 * 367 * A page may belong to an inode's memory mapping. In this case, 368 * page->mapping is the pointer to the inode, and page->index is the 369 * file offset of the page, in units of PAGE_CACHE_SIZE. 370 * 371 * A page contains an opaque `private' member, which belongs to the 372 * page's address_space. Usually, this is the address of a circular 373 * list of the page's disk buffers. 374 * 375 * For pages belonging to inodes, the page_count() is the number of 376 * attaches, plus 1 if `private' contains something, plus one for 377 * the page cache itself. 378 * 379 * All pages belonging to an inode are in these doubly linked lists: 380 * mapping->clean_pages, mapping->dirty_pages and mapping->locked_pages; 381 * using the page->list list_head. These fields are also used for 382 * freelist managemet (when page_count()==0). 383 * 384 * There is also a per-mapping radix tree mapping index to the page 385 * in memory if present. The tree is rooted at mapping->root. 386 * 387 * All process pages can do I/O: 388 * - inode pages may need to be read from disk, 389 * - inode pages which have been modified and are MAP_SHARED may need 390 * to be written to disk, 391 * - private pages which have been modified may need to be swapped out 392 * to swap space and (later) to be read back into memory. 393 */ 394 395/* 396 * The zone field is never updated after free_area_init_core() 397 * sets it, so none of the operations on it need to be atomic. 398 */ 399 400 401/* 402 * page->flags layout: 403 * 404 * There are three possibilities for how page->flags get 405 * laid out. The first is for the normal case, without 406 * sparsemem. The second is for sparsemem when there is 407 * plenty of space for node and section. The last is when 408 * we have run out of space and have to fall back to an 409 * alternate (slower) way of determining the node. 410 * 411 * No sparsemem: | NODE | ZONE | ... | FLAGS | 412 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 413 * no space for node: | SECTION | ZONE | ... | FLAGS | 414 */ 415#ifdef CONFIG_SPARSEMEM 416#define SECTIONS_WIDTH SECTIONS_SHIFT 417#else 418#define SECTIONS_WIDTH 0 419#endif 420 421#define ZONES_WIDTH ZONES_SHIFT 422 423#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 424#define NODES_WIDTH NODES_SHIFT 425#else 426#define NODES_WIDTH 0 427#endif 428 429/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 430#define SECTIONS_PGOFF ((sizeof(page_flags_t)*8) - SECTIONS_WIDTH) 431#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 432#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 433 434/* 435 * We are going to use the flags for the page to node mapping if its in 436 * there. This includes the case where there is no node, so it is implicit. 437 */ 438#define FLAGS_HAS_NODE (NODES_WIDTH > 0 || NODES_SHIFT == 0) 439 440#ifndef PFN_SECTION_SHIFT 441#define PFN_SECTION_SHIFT 0 442#endif 443 444/* 445 * Define the bit shifts to access each section. For non-existant 446 * sections we define the shift as 0; that plus a 0 mask ensures 447 * the compiler will optimise away reference to them. 448 */ 449#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 450#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 451#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 452 453/* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */ 454#if FLAGS_HAS_NODE 455#define ZONETABLE_SHIFT (NODES_SHIFT + ZONES_SHIFT) 456#else 457#define ZONETABLE_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 458#endif 459#define ZONETABLE_PGSHIFT ZONES_PGSHIFT 460 461#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 462#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 463#endif 464 465#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 466#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 467#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 468#define ZONETABLE_MASK ((1UL << ZONETABLE_SHIFT) - 1) 469 470static inline unsigned long page_zonenum(struct page *page) 471{ 472 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 473} 474 475struct zone; 476extern struct zone *zone_table[]; 477 478static inline struct zone *page_zone(struct page *page) 479{ 480 return zone_table[(page->flags >> ZONETABLE_PGSHIFT) & 481 ZONETABLE_MASK]; 482} 483 484static inline unsigned long page_to_nid(struct page *page) 485{ 486 if (FLAGS_HAS_NODE) 487 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 488 else 489 return page_zone(page)->zone_pgdat->node_id; 490} 491static inline unsigned long page_to_section(struct page *page) 492{ 493 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 494} 495 496static inline void set_page_zone(struct page *page, unsigned long zone) 497{ 498 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 499 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 500} 501static inline void set_page_node(struct page *page, unsigned long node) 502{ 503 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 504 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 505} 506static inline void set_page_section(struct page *page, unsigned long section) 507{ 508 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 509 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 510} 511 512static inline void set_page_links(struct page *page, unsigned long zone, 513 unsigned long node, unsigned long pfn) 514{ 515 set_page_zone(page, zone); 516 set_page_node(page, node); 517 set_page_section(page, pfn_to_section_nr(pfn)); 518} 519 520#ifndef CONFIG_DISCONTIGMEM 521/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 522extern struct page *mem_map; 523#endif 524 525static inline void *lowmem_page_address(struct page *page) 526{ 527 return __va(page_to_pfn(page) << PAGE_SHIFT); 528} 529 530#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 531#define HASHED_PAGE_VIRTUAL 532#endif 533 534#if defined(WANT_PAGE_VIRTUAL) 535#define page_address(page) ((page)->virtual) 536#define set_page_address(page, address) \ 537 do { \ 538 (page)->virtual = (address); \ 539 } while(0) 540#define page_address_init() do { } while(0) 541#endif 542 543#if defined(HASHED_PAGE_VIRTUAL) 544void *page_address(struct page *page); 545void set_page_address(struct page *page, void *virtual); 546void page_address_init(void); 547#endif 548 549#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 550#define page_address(page) lowmem_page_address(page) 551#define set_page_address(page, address) do { } while(0) 552#define page_address_init() do { } while(0) 553#endif 554 555/* 556 * On an anonymous page mapped into a user virtual memory area, 557 * page->mapping points to its anon_vma, not to a struct address_space; 558 * with the PAGE_MAPPING_ANON bit set to distinguish it. 559 * 560 * Please note that, confusingly, "page_mapping" refers to the inode 561 * address_space which maps the page from disk; whereas "page_mapped" 562 * refers to user virtual address space into which the page is mapped. 563 */ 564#define PAGE_MAPPING_ANON 1 565 566extern struct address_space swapper_space; 567static inline struct address_space *page_mapping(struct page *page) 568{ 569 struct address_space *mapping = page->mapping; 570 571 if (unlikely(PageSwapCache(page))) 572 mapping = &swapper_space; 573 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 574 mapping = NULL; 575 return mapping; 576} 577 578static inline int PageAnon(struct page *page) 579{ 580 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 581} 582 583/* 584 * Return the pagecache index of the passed page. Regular pagecache pages 585 * use ->index whereas swapcache pages use ->private 586 */ 587static inline pgoff_t page_index(struct page *page) 588{ 589 if (unlikely(PageSwapCache(page))) 590 return page->private; 591 return page->index; 592} 593 594/* 595 * The atomic page->_mapcount, like _count, starts from -1: 596 * so that transitions both from it and to it can be tracked, 597 * using atomic_inc_and_test and atomic_add_negative(-1). 598 */ 599static inline void reset_page_mapcount(struct page *page) 600{ 601 atomic_set(&(page)->_mapcount, -1); 602} 603 604static inline int page_mapcount(struct page *page) 605{ 606 return atomic_read(&(page)->_mapcount) + 1; 607} 608 609/* 610 * Return true if this page is mapped into pagetables. 611 */ 612static inline int page_mapped(struct page *page) 613{ 614 return atomic_read(&(page)->_mapcount) >= 0; 615} 616 617/* 618 * Error return values for the *_nopage functions 619 */ 620#define NOPAGE_SIGBUS (NULL) 621#define NOPAGE_OOM ((struct page *) (-1)) 622 623/* 624 * Different kinds of faults, as returned by handle_mm_fault(). 625 * Used to decide whether a process gets delivered SIGBUS or 626 * just gets major/minor fault counters bumped up. 627 */ 628#define VM_FAULT_OOM 0x00 629#define VM_FAULT_SIGBUS 0x01 630#define VM_FAULT_MINOR 0x02 631#define VM_FAULT_MAJOR 0x03 632 633/* 634 * Special case for get_user_pages. 635 * Must be in a distinct bit from the above VM_FAULT_ flags. 636 */ 637#define VM_FAULT_WRITE 0x10 638 639#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 640 641extern void show_free_areas(void); 642 643#ifdef CONFIG_SHMEM 644struct page *shmem_nopage(struct vm_area_struct *vma, 645 unsigned long address, int *type); 646int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); 647struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, 648 unsigned long addr); 649int shmem_lock(struct file *file, int lock, struct user_struct *user); 650#else 651#define shmem_nopage filemap_nopage 652#define shmem_lock(a, b, c) ({0;}) /* always in memory, no need to lock */ 653#define shmem_set_policy(a, b) (0) 654#define shmem_get_policy(a, b) (NULL) 655#endif 656struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 657 658int shmem_zero_setup(struct vm_area_struct *); 659 660static inline int can_do_mlock(void) 661{ 662 if (capable(CAP_IPC_LOCK)) 663 return 1; 664 if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) 665 return 1; 666 return 0; 667} 668extern int user_shm_lock(size_t, struct user_struct *); 669extern void user_shm_unlock(size_t, struct user_struct *); 670 671/* 672 * Parameter block passed down to zap_pte_range in exceptional cases. 673 */ 674struct zap_details { 675 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 676 struct address_space *check_mapping; /* Check page->mapping if set */ 677 pgoff_t first_index; /* Lowest page->index to unmap */ 678 pgoff_t last_index; /* Highest page->index to unmap */ 679 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 680 unsigned long truncate_count; /* Compare vm_truncate_count */ 681}; 682 683unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 684 unsigned long size, struct zap_details *); 685unsigned long unmap_vmas(struct mmu_gather **tlb, struct mm_struct *mm, 686 struct vm_area_struct *start_vma, unsigned long start_addr, 687 unsigned long end_addr, unsigned long *nr_accounted, 688 struct zap_details *); 689void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 690 unsigned long end, unsigned long floor, unsigned long ceiling); 691void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 692 unsigned long floor, unsigned long ceiling); 693int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 694 struct vm_area_struct *vma); 695int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, 696 unsigned long size, pgprot_t prot); 697void unmap_mapping_range(struct address_space *mapping, 698 loff_t const holebegin, loff_t const holelen, int even_cows); 699 700static inline void unmap_shared_mapping_range(struct address_space *mapping, 701 loff_t const holebegin, loff_t const holelen) 702{ 703 unmap_mapping_range(mapping, holebegin, holelen, 0); 704} 705 706extern int vmtruncate(struct inode * inode, loff_t offset); 707extern pud_t *FASTCALL(__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)); 708extern pmd_t *FASTCALL(__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)); 709extern pte_t *FASTCALL(pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)); 710extern pte_t *FASTCALL(pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, unsigned long address)); 711extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); 712extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); 713extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, unsigned long address, int write_access); 714 715static inline int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long address, int write_access) 716{ 717 return __handle_mm_fault(mm, vma, address, write_access) & (~VM_FAULT_WRITE); 718} 719 720extern int make_pages_present(unsigned long addr, unsigned long end); 721extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 722void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); 723 724int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 725 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 726 727int __set_page_dirty_buffers(struct page *page); 728int __set_page_dirty_nobuffers(struct page *page); 729int redirty_page_for_writepage(struct writeback_control *wbc, 730 struct page *page); 731int FASTCALL(set_page_dirty(struct page *page)); 732int set_page_dirty_lock(struct page *page); 733int clear_page_dirty_for_io(struct page *page); 734 735extern unsigned long do_mremap(unsigned long addr, 736 unsigned long old_len, unsigned long new_len, 737 unsigned long flags, unsigned long new_addr); 738 739/* 740 * Prototype to add a shrinker callback for ageable caches. 741 * 742 * These functions are passed a count `nr_to_scan' and a gfpmask. They should 743 * scan `nr_to_scan' objects, attempting to free them. 744 * 745 * The callback must return the number of objects which remain in the cache. 746 * 747 * The callback will be passed nr_to_scan == 0 when the VM is querying the 748 * cache size, so a fastpath for that case is appropriate. 749 */ 750typedef int (*shrinker_t)(int nr_to_scan, unsigned int gfp_mask); 751 752/* 753 * Add an aging callback. The int is the number of 'seeks' it takes 754 * to recreate one of the objects that these functions age. 755 */ 756 757#define DEFAULT_SEEKS 2 758struct shrinker; 759extern struct shrinker *set_shrinker(int, shrinker_t); 760extern void remove_shrinker(struct shrinker *shrinker); 761 762/* 763 * On a two-level or three-level page table, this ends up being trivial. Thus 764 * the inlining and the symmetry break with pte_alloc_map() that does all 765 * of this out-of-line. 766 */ 767/* 768 * The following ifdef needed to get the 4level-fixup.h header to work. 769 * Remove it when 4level-fixup.h has been removed. 770 */ 771#ifdef CONFIG_MMU 772#ifndef __ARCH_HAS_4LEVEL_HACK 773static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 774{ 775 if (pgd_none(*pgd)) 776 return __pud_alloc(mm, pgd, address); 777 return pud_offset(pgd, address); 778} 779 780static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 781{ 782 if (pud_none(*pud)) 783 return __pmd_alloc(mm, pud, address); 784 return pmd_offset(pud, address); 785} 786#endif 787#endif /* CONFIG_MMU */ 788 789extern void free_area_init(unsigned long * zones_size); 790extern void free_area_init_node(int nid, pg_data_t *pgdat, 791 unsigned long * zones_size, unsigned long zone_start_pfn, 792 unsigned long *zholes_size); 793extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); 794extern void mem_init(void); 795extern void show_mem(void); 796extern void si_meminfo(struct sysinfo * val); 797extern void si_meminfo_node(struct sysinfo *val, int nid); 798 799#ifdef CONFIG_NUMA 800extern void setup_per_cpu_pageset(void); 801#else 802static inline void setup_per_cpu_pageset(void) {} 803#endif 804 805/* prio_tree.c */ 806void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 807void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 808void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 809struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 810 struct prio_tree_iter *iter); 811 812#define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 813 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 814 (vma = vma_prio_tree_next(vma, iter)); ) 815 816static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 817 struct list_head *list) 818{ 819 vma->shared.vm_set.parent = NULL; 820 list_add_tail(&vma->shared.vm_set.list, list); 821} 822 823/* mmap.c */ 824extern int __vm_enough_memory(long pages, int cap_sys_admin); 825extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 826 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 827extern struct vm_area_struct *vma_merge(struct mm_struct *, 828 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 829 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 830 struct mempolicy *); 831extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 832extern int split_vma(struct mm_struct *, 833 struct vm_area_struct *, unsigned long addr, int new_below); 834extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 835extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 836 struct rb_node **, struct rb_node *); 837extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 838 unsigned long addr, unsigned long len, pgoff_t pgoff); 839extern void exit_mmap(struct mm_struct *); 840extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 841 842extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 843 844extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 845 unsigned long len, unsigned long prot, 846 unsigned long flag, unsigned long pgoff); 847 848static inline unsigned long do_mmap(struct file *file, unsigned long addr, 849 unsigned long len, unsigned long prot, 850 unsigned long flag, unsigned long offset) 851{ 852 unsigned long ret = -EINVAL; 853 if ((offset + PAGE_ALIGN(len)) < offset) 854 goto out; 855 if (!(offset & ~PAGE_MASK)) 856 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 857out: 858 return ret; 859} 860 861extern int do_munmap(struct mm_struct *, unsigned long, size_t); 862 863extern unsigned long do_brk(unsigned long, unsigned long); 864 865/* filemap.c */ 866extern unsigned long page_unuse(struct page *); 867extern void truncate_inode_pages(struct address_space *, loff_t); 868 869/* generic vm_area_ops exported for stackable file systems */ 870extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); 871extern int filemap_populate(struct vm_area_struct *, unsigned long, 872 unsigned long, pgprot_t, unsigned long, int); 873 874/* mm/page-writeback.c */ 875int write_one_page(struct page *page, int wait); 876 877/* readahead.c */ 878#define VM_MAX_READAHEAD 128 /* kbytes */ 879#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 880#define VM_MAX_CACHE_HIT 256 /* max pages in a row in cache before 881 * turning readahead off */ 882 883int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 884 unsigned long offset, unsigned long nr_to_read); 885int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 886 unsigned long offset, unsigned long nr_to_read); 887unsigned long page_cache_readahead(struct address_space *mapping, 888 struct file_ra_state *ra, 889 struct file *filp, 890 unsigned long offset, 891 unsigned long size); 892void handle_ra_miss(struct address_space *mapping, 893 struct file_ra_state *ra, pgoff_t offset); 894unsigned long max_sane_readahead(unsigned long nr); 895 896/* Do stack extension */ 897extern int expand_stack(struct vm_area_struct * vma, unsigned long address); 898 899/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 900extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 901extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 902 struct vm_area_struct **pprev); 903 904/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 905 NULL if none. Assume start_addr < end_addr. */ 906static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 907{ 908 struct vm_area_struct * vma = find_vma(mm,start_addr); 909 910 if (vma && end_addr <= vma->vm_start) 911 vma = NULL; 912 return vma; 913} 914 915static inline unsigned long vma_pages(struct vm_area_struct *vma) 916{ 917 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 918} 919 920extern struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr); 921 922extern struct page * vmalloc_to_page(void *addr); 923extern unsigned long vmalloc_to_pfn(void *addr); 924extern struct page * follow_page(struct mm_struct *mm, unsigned long address, 925 int write); 926extern int check_user_page_readable(struct mm_struct *mm, unsigned long address); 927int remap_pfn_range(struct vm_area_struct *, unsigned long, 928 unsigned long, unsigned long, pgprot_t); 929 930#ifdef CONFIG_PROC_FS 931void __vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 932#else 933static inline void __vm_stat_account(struct mm_struct *mm, 934 unsigned long flags, struct file *file, long pages) 935{ 936} 937#endif /* CONFIG_PROC_FS */ 938 939static inline void vm_stat_account(struct vm_area_struct *vma) 940{ 941 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file, 942 vma_pages(vma)); 943} 944 945static inline void vm_stat_unaccount(struct vm_area_struct *vma) 946{ 947 __vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file, 948 -vma_pages(vma)); 949} 950 951/* update per process rss and vm hiwater data */ 952extern void update_mem_hiwater(struct task_struct *tsk); 953 954#ifndef CONFIG_DEBUG_PAGEALLOC 955static inline void 956kernel_map_pages(struct page *page, int numpages, int enable) 957{ 958} 959#endif 960 961extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 962#ifdef __HAVE_ARCH_GATE_AREA 963int in_gate_area_no_task(unsigned long addr); 964int in_gate_area(struct task_struct *task, unsigned long addr); 965#else 966int in_gate_area_no_task(unsigned long addr); 967#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 968#endif /* __HAVE_ARCH_GATE_AREA */ 969 970/* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */ 971#define OOM_DISABLE -17 972 973#endif /* __KERNEL__ */ 974#endif /* _LINUX_MM_H */