at v2.6.13 450 lines 15 kB view raw
1#ifndef _LINUX_JIFFIES_H 2#define _LINUX_JIFFIES_H 3 4#include <linux/kernel.h> 5#include <linux/types.h> 6#include <linux/time.h> 7#include <linux/timex.h> 8#include <asm/param.h> /* for HZ */ 9#include <asm/div64.h> 10 11#ifndef div_long_long_rem 12#define div_long_long_rem(dividend,divisor,remainder) \ 13({ \ 14 u64 result = dividend; \ 15 *remainder = do_div(result,divisor); \ 16 result; \ 17}) 18#endif 19 20/* 21 * The following defines establish the engineering parameters of the PLL 22 * model. The HZ variable establishes the timer interrupt frequency, 100 Hz 23 * for the SunOS kernel, 256 Hz for the Ultrix kernel and 1024 Hz for the 24 * OSF/1 kernel. The SHIFT_HZ define expresses the same value as the 25 * nearest power of two in order to avoid hardware multiply operations. 26 */ 27#if HZ >= 12 && HZ < 24 28# define SHIFT_HZ 4 29#elif HZ >= 24 && HZ < 48 30# define SHIFT_HZ 5 31#elif HZ >= 48 && HZ < 96 32# define SHIFT_HZ 6 33#elif HZ >= 96 && HZ < 192 34# define SHIFT_HZ 7 35#elif HZ >= 192 && HZ < 384 36# define SHIFT_HZ 8 37#elif HZ >= 384 && HZ < 768 38# define SHIFT_HZ 9 39#elif HZ >= 768 && HZ < 1536 40# define SHIFT_HZ 10 41#else 42# error You lose. 43#endif 44 45/* LATCH is used in the interval timer and ftape setup. */ 46#define LATCH ((CLOCK_TICK_RATE + HZ/2) / HZ) /* For divider */ 47 48/* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can 49 * improve accuracy by shifting LSH bits, hence calculating: 50 * (NOM << LSH) / DEN 51 * This however means trouble for large NOM, because (NOM << LSH) may no 52 * longer fit in 32 bits. The following way of calculating this gives us 53 * some slack, under the following conditions: 54 * - (NOM / DEN) fits in (32 - LSH) bits. 55 * - (NOM % DEN) fits in (32 - LSH) bits. 56 */ 57#define SH_DIV(NOM,DEN,LSH) ( ((NOM / DEN) << LSH) \ 58 + (((NOM % DEN) << LSH) + DEN / 2) / DEN) 59 60/* HZ is the requested value. ACTHZ is actual HZ ("<< 8" is for accuracy) */ 61#define ACTHZ (SH_DIV (CLOCK_TICK_RATE, LATCH, 8)) 62 63/* TICK_NSEC is the time between ticks in nsec assuming real ACTHZ */ 64#define TICK_NSEC (SH_DIV (1000000UL * 1000, ACTHZ, 8)) 65 66/* TICK_USEC is the time between ticks in usec assuming fake USER_HZ */ 67#define TICK_USEC ((1000000UL + USER_HZ/2) / USER_HZ) 68 69/* TICK_USEC_TO_NSEC is the time between ticks in nsec assuming real ACTHZ and */ 70/* a value TUSEC for TICK_USEC (can be set bij adjtimex) */ 71#define TICK_USEC_TO_NSEC(TUSEC) (SH_DIV (TUSEC * USER_HZ * 1000, ACTHZ, 8)) 72 73/* some arch's have a small-data section that can be accessed register-relative 74 * but that can only take up to, say, 4-byte variables. jiffies being part of 75 * an 8-byte variable may not be correctly accessed unless we force the issue 76 */ 77#define __jiffy_data __attribute__((section(".data"))) 78 79/* 80 * The 64-bit value is not volatile - you MUST NOT read it 81 * without sampling the sequence number in xtime_lock. 82 * get_jiffies_64() will do this for you as appropriate. 83 */ 84extern u64 __jiffy_data jiffies_64; 85extern unsigned long volatile __jiffy_data jiffies; 86 87#if (BITS_PER_LONG < 64) 88u64 get_jiffies_64(void); 89#else 90static inline u64 get_jiffies_64(void) 91{ 92 return (u64)jiffies; 93} 94#endif 95 96/* 97 * These inlines deal with timer wrapping correctly. You are 98 * strongly encouraged to use them 99 * 1. Because people otherwise forget 100 * 2. Because if the timer wrap changes in future you won't have to 101 * alter your driver code. 102 * 103 * time_after(a,b) returns true if the time a is after time b. 104 * 105 * Do this with "<0" and ">=0" to only test the sign of the result. A 106 * good compiler would generate better code (and a really good compiler 107 * wouldn't care). Gcc is currently neither. 108 */ 109#define time_after(a,b) \ 110 (typecheck(unsigned long, a) && \ 111 typecheck(unsigned long, b) && \ 112 ((long)(b) - (long)(a) < 0)) 113#define time_before(a,b) time_after(b,a) 114 115#define time_after_eq(a,b) \ 116 (typecheck(unsigned long, a) && \ 117 typecheck(unsigned long, b) && \ 118 ((long)(a) - (long)(b) >= 0)) 119#define time_before_eq(a,b) time_after_eq(b,a) 120 121/* 122 * Have the 32 bit jiffies value wrap 5 minutes after boot 123 * so jiffies wrap bugs show up earlier. 124 */ 125#define INITIAL_JIFFIES ((unsigned long)(unsigned int) (-300*HZ)) 126 127/* 128 * Change timeval to jiffies, trying to avoid the 129 * most obvious overflows.. 130 * 131 * And some not so obvious. 132 * 133 * Note that we don't want to return MAX_LONG, because 134 * for various timeout reasons we often end up having 135 * to wait "jiffies+1" in order to guarantee that we wait 136 * at _least_ "jiffies" - so "jiffies+1" had better still 137 * be positive. 138 */ 139#define MAX_JIFFY_OFFSET ((~0UL >> 1)-1) 140 141/* 142 * We want to do realistic conversions of time so we need to use the same 143 * values the update wall clock code uses as the jiffies size. This value 144 * is: TICK_NSEC (which is defined in timex.h). This 145 * is a constant and is in nanoseconds. We will used scaled math 146 * with a set of scales defined here as SEC_JIFFIE_SC, USEC_JIFFIE_SC and 147 * NSEC_JIFFIE_SC. Note that these defines contain nothing but 148 * constants and so are computed at compile time. SHIFT_HZ (computed in 149 * timex.h) adjusts the scaling for different HZ values. 150 151 * Scaled math??? What is that? 152 * 153 * Scaled math is a way to do integer math on values that would, 154 * otherwise, either overflow, underflow, or cause undesired div 155 * instructions to appear in the execution path. In short, we "scale" 156 * up the operands so they take more bits (more precision, less 157 * underflow), do the desired operation and then "scale" the result back 158 * by the same amount. If we do the scaling by shifting we avoid the 159 * costly mpy and the dastardly div instructions. 160 161 * Suppose, for example, we want to convert from seconds to jiffies 162 * where jiffies is defined in nanoseconds as NSEC_PER_JIFFIE. The 163 * simple math is: jiff = (sec * NSEC_PER_SEC) / NSEC_PER_JIFFIE; We 164 * observe that (NSEC_PER_SEC / NSEC_PER_JIFFIE) is a constant which we 165 * might calculate at compile time, however, the result will only have 166 * about 3-4 bits of precision (less for smaller values of HZ). 167 * 168 * So, we scale as follows: 169 * jiff = (sec) * (NSEC_PER_SEC / NSEC_PER_JIFFIE); 170 * jiff = ((sec) * ((NSEC_PER_SEC * SCALE)/ NSEC_PER_JIFFIE)) / SCALE; 171 * Then we make SCALE a power of two so: 172 * jiff = ((sec) * ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) >> SCALE; 173 * Now we define: 174 * #define SEC_CONV = ((NSEC_PER_SEC << SCALE)/ NSEC_PER_JIFFIE)) 175 * jiff = (sec * SEC_CONV) >> SCALE; 176 * 177 * Often the math we use will expand beyond 32-bits so we tell C how to 178 * do this and pass the 64-bit result of the mpy through the ">> SCALE" 179 * which should take the result back to 32-bits. We want this expansion 180 * to capture as much precision as possible. At the same time we don't 181 * want to overflow so we pick the SCALE to avoid this. In this file, 182 * that means using a different scale for each range of HZ values (as 183 * defined in timex.h). 184 * 185 * For those who want to know, gcc will give a 64-bit result from a "*" 186 * operator if the result is a long long AND at least one of the 187 * operands is cast to long long (usually just prior to the "*" so as 188 * not to confuse it into thinking it really has a 64-bit operand, 189 * which, buy the way, it can do, but it take more code and at least 2 190 * mpys). 191 192 * We also need to be aware that one second in nanoseconds is only a 193 * couple of bits away from overflowing a 32-bit word, so we MUST use 194 * 64-bits to get the full range time in nanoseconds. 195 196 */ 197 198/* 199 * Here are the scales we will use. One for seconds, nanoseconds and 200 * microseconds. 201 * 202 * Within the limits of cpp we do a rough cut at the SEC_JIFFIE_SC and 203 * check if the sign bit is set. If not, we bump the shift count by 1. 204 * (Gets an extra bit of precision where we can use it.) 205 * We know it is set for HZ = 1024 and HZ = 100 not for 1000. 206 * Haven't tested others. 207 208 * Limits of cpp (for #if expressions) only long (no long long), but 209 * then we only need the most signicant bit. 210 */ 211 212#define SEC_JIFFIE_SC (31 - SHIFT_HZ) 213#if !((((NSEC_PER_SEC << 2) / TICK_NSEC) << (SEC_JIFFIE_SC - 2)) & 0x80000000) 214#undef SEC_JIFFIE_SC 215#define SEC_JIFFIE_SC (32 - SHIFT_HZ) 216#endif 217#define NSEC_JIFFIE_SC (SEC_JIFFIE_SC + 29) 218#define USEC_JIFFIE_SC (SEC_JIFFIE_SC + 19) 219#define SEC_CONVERSION ((unsigned long)((((u64)NSEC_PER_SEC << SEC_JIFFIE_SC) +\ 220 TICK_NSEC -1) / (u64)TICK_NSEC)) 221 222#define NSEC_CONVERSION ((unsigned long)((((u64)1 << NSEC_JIFFIE_SC) +\ 223 TICK_NSEC -1) / (u64)TICK_NSEC)) 224#define USEC_CONVERSION \ 225 ((unsigned long)((((u64)NSEC_PER_USEC << USEC_JIFFIE_SC) +\ 226 TICK_NSEC -1) / (u64)TICK_NSEC)) 227/* 228 * USEC_ROUND is used in the timeval to jiffie conversion. See there 229 * for more details. It is the scaled resolution rounding value. Note 230 * that it is a 64-bit value. Since, when it is applied, we are already 231 * in jiffies (albit scaled), it is nothing but the bits we will shift 232 * off. 233 */ 234#define USEC_ROUND (u64)(((u64)1 << USEC_JIFFIE_SC) - 1) 235/* 236 * The maximum jiffie value is (MAX_INT >> 1). Here we translate that 237 * into seconds. The 64-bit case will overflow if we are not careful, 238 * so use the messy SH_DIV macro to do it. Still all constants. 239 */ 240#if BITS_PER_LONG < 64 241# define MAX_SEC_IN_JIFFIES \ 242 (long)((u64)((u64)MAX_JIFFY_OFFSET * TICK_NSEC) / NSEC_PER_SEC) 243#else /* take care of overflow on 64 bits machines */ 244# define MAX_SEC_IN_JIFFIES \ 245 (SH_DIV((MAX_JIFFY_OFFSET >> SEC_JIFFIE_SC) * TICK_NSEC, NSEC_PER_SEC, 1) - 1) 246 247#endif 248 249/* 250 * Convert jiffies to milliseconds and back. 251 * 252 * Avoid unnecessary multiplications/divisions in the 253 * two most common HZ cases: 254 */ 255static inline unsigned int jiffies_to_msecs(const unsigned long j) 256{ 257#if HZ <= 1000 && !(1000 % HZ) 258 return (1000 / HZ) * j; 259#elif HZ > 1000 && !(HZ % 1000) 260 return (j + (HZ / 1000) - 1)/(HZ / 1000); 261#else 262 return (j * 1000) / HZ; 263#endif 264} 265 266static inline unsigned int jiffies_to_usecs(const unsigned long j) 267{ 268#if HZ <= 1000000 && !(1000000 % HZ) 269 return (1000000 / HZ) * j; 270#elif HZ > 1000000 && !(HZ % 1000000) 271 return (j + (HZ / 1000000) - 1)/(HZ / 1000000); 272#else 273 return (j * 1000000) / HZ; 274#endif 275} 276 277static inline unsigned long msecs_to_jiffies(const unsigned int m) 278{ 279 if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) 280 return MAX_JIFFY_OFFSET; 281#if HZ <= 1000 && !(1000 % HZ) 282 return (m + (1000 / HZ) - 1) / (1000 / HZ); 283#elif HZ > 1000 && !(HZ % 1000) 284 return m * (HZ / 1000); 285#else 286 return (m * HZ + 999) / 1000; 287#endif 288} 289 290static inline unsigned long usecs_to_jiffies(const unsigned int u) 291{ 292 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) 293 return MAX_JIFFY_OFFSET; 294#if HZ <= 1000000 && !(1000000 % HZ) 295 return (u + (1000000 / HZ) - 1) / (1000000 / HZ); 296#elif HZ > 1000000 && !(HZ % 1000000) 297 return u * (HZ / 1000000); 298#else 299 return (u * HZ + 999999) / 1000000; 300#endif 301} 302 303/* 304 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note 305 * that a remainder subtract here would not do the right thing as the 306 * resolution values don't fall on second boundries. I.e. the line: 307 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. 308 * 309 * Rather, we just shift the bits off the right. 310 * 311 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec 312 * value to a scaled second value. 313 */ 314static __inline__ unsigned long 315timespec_to_jiffies(const struct timespec *value) 316{ 317 unsigned long sec = value->tv_sec; 318 long nsec = value->tv_nsec + TICK_NSEC - 1; 319 320 if (sec >= MAX_SEC_IN_JIFFIES){ 321 sec = MAX_SEC_IN_JIFFIES; 322 nsec = 0; 323 } 324 return (((u64)sec * SEC_CONVERSION) + 325 (((u64)nsec * NSEC_CONVERSION) >> 326 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 327 328} 329 330static __inline__ void 331jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) 332{ 333 /* 334 * Convert jiffies to nanoseconds and separate with 335 * one divide. 336 */ 337 u64 nsec = (u64)jiffies * TICK_NSEC; 338 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec); 339} 340 341/* Same for "timeval" 342 * 343 * Well, almost. The problem here is that the real system resolution is 344 * in nanoseconds and the value being converted is in micro seconds. 345 * Also for some machines (those that use HZ = 1024, in-particular), 346 * there is a LARGE error in the tick size in microseconds. 347 348 * The solution we use is to do the rounding AFTER we convert the 349 * microsecond part. Thus the USEC_ROUND, the bits to be shifted off. 350 * Instruction wise, this should cost only an additional add with carry 351 * instruction above the way it was done above. 352 */ 353static __inline__ unsigned long 354timeval_to_jiffies(const struct timeval *value) 355{ 356 unsigned long sec = value->tv_sec; 357 long usec = value->tv_usec; 358 359 if (sec >= MAX_SEC_IN_JIFFIES){ 360 sec = MAX_SEC_IN_JIFFIES; 361 usec = 0; 362 } 363 return (((u64)sec * SEC_CONVERSION) + 364 (((u64)usec * USEC_CONVERSION + USEC_ROUND) >> 365 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; 366} 367 368static __inline__ void 369jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) 370{ 371 /* 372 * Convert jiffies to nanoseconds and separate with 373 * one divide. 374 */ 375 u64 nsec = (u64)jiffies * TICK_NSEC; 376 value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_usec); 377 value->tv_usec /= NSEC_PER_USEC; 378} 379 380/* 381 * Convert jiffies/jiffies_64 to clock_t and back. 382 */ 383static inline clock_t jiffies_to_clock_t(long x) 384{ 385#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 386 return x / (HZ / USER_HZ); 387#else 388 u64 tmp = (u64)x * TICK_NSEC; 389 do_div(tmp, (NSEC_PER_SEC / USER_HZ)); 390 return (long)tmp; 391#endif 392} 393 394static inline unsigned long clock_t_to_jiffies(unsigned long x) 395{ 396#if (HZ % USER_HZ)==0 397 if (x >= ~0UL / (HZ / USER_HZ)) 398 return ~0UL; 399 return x * (HZ / USER_HZ); 400#else 401 u64 jif; 402 403 /* Don't worry about loss of precision here .. */ 404 if (x >= ~0UL / HZ * USER_HZ) 405 return ~0UL; 406 407 /* .. but do try to contain it here */ 408 jif = x * (u64) HZ; 409 do_div(jif, USER_HZ); 410 return jif; 411#endif 412} 413 414static inline u64 jiffies_64_to_clock_t(u64 x) 415{ 416#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 417 do_div(x, HZ / USER_HZ); 418#else 419 /* 420 * There are better ways that don't overflow early, 421 * but even this doesn't overflow in hundreds of years 422 * in 64 bits, so.. 423 */ 424 x *= TICK_NSEC; 425 do_div(x, (NSEC_PER_SEC / USER_HZ)); 426#endif 427 return x; 428} 429 430static inline u64 nsec_to_clock_t(u64 x) 431{ 432#if (NSEC_PER_SEC % USER_HZ) == 0 433 do_div(x, (NSEC_PER_SEC / USER_HZ)); 434#elif (USER_HZ % 512) == 0 435 x *= USER_HZ/512; 436 do_div(x, (NSEC_PER_SEC / 512)); 437#else 438 /* 439 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, 440 * overflow after 64.99 years. 441 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... 442 */ 443 x *= 9; 444 do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) 445 / USER_HZ)); 446#endif 447 return x; 448} 449 450#endif