at v2.6.13 465 lines 16 kB view raw
1/* 2 * linux/include/asm-arm/pgtable.h 3 * 4 * Copyright (C) 1995-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_PGTABLE_H 11#define _ASMARM_PGTABLE_H 12 13#include <asm-generic/4level-fixup.h> 14 15#include <asm/memory.h> 16#include <asm/proc-fns.h> 17#include <asm/arch/vmalloc.h> 18 19/* 20 * Just any arbitrary offset to the start of the vmalloc VM area: the 21 * current 8MB value just means that there will be a 8MB "hole" after the 22 * physical memory until the kernel virtual memory starts. That means that 23 * any out-of-bounds memory accesses will hopefully be caught. 24 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 25 * area for the same reason. ;) 26 * 27 * Note that platforms may override VMALLOC_START, but they must provide 28 * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space, 29 * which may not overlap IO space. 30 */ 31#ifndef VMALLOC_START 32#define VMALLOC_OFFSET (8*1024*1024) 33#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 34#endif 35 36/* 37 * Hardware-wise, we have a two level page table structure, where the first 38 * level has 4096 entries, and the second level has 256 entries. Each entry 39 * is one 32-bit word. Most of the bits in the second level entry are used 40 * by hardware, and there aren't any "accessed" and "dirty" bits. 41 * 42 * Linux on the other hand has a three level page table structure, which can 43 * be wrapped to fit a two level page table structure easily - using the PGD 44 * and PTE only. However, Linux also expects one "PTE" table per page, and 45 * at least a "dirty" bit. 46 * 47 * Therefore, we tweak the implementation slightly - we tell Linux that we 48 * have 2048 entries in the first level, each of which is 8 bytes (iow, two 49 * hardware pointers to the second level.) The second level contains two 50 * hardware PTE tables arranged contiguously, followed by Linux versions 51 * which contain the state information Linux needs. We, therefore, end up 52 * with 512 entries in the "PTE" level. 53 * 54 * This leads to the page tables having the following layout: 55 * 56 * pgd pte 57 * | | 58 * +--------+ +0 59 * | |-----> +------------+ +0 60 * +- - - - + +4 | h/w pt 0 | 61 * | |-----> +------------+ +1024 62 * +--------+ +8 | h/w pt 1 | 63 * | | +------------+ +2048 64 * +- - - - + | Linux pt 0 | 65 * | | +------------+ +3072 66 * +--------+ | Linux pt 1 | 67 * | | +------------+ +4096 68 * 69 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and 70 * PTE_xxx for definitions of bits appearing in the "h/w pt". 71 * 72 * PMD_xxx definitions refer to bits in the first level page table. 73 * 74 * The "dirty" bit is emulated by only granting hardware write permission 75 * iff the page is marked "writable" and "dirty" in the Linux PTE. This 76 * means that a write to a clean page will cause a permission fault, and 77 * the Linux MM layer will mark the page dirty via handle_pte_fault(). 78 * For the hardware to notice the permission change, the TLB entry must 79 * be flushed, and ptep_establish() does that for us. 80 * 81 * The "accessed" or "young" bit is emulated by a similar method; we only 82 * allow accesses to the page if the "young" bit is set. Accesses to the 83 * page will cause a fault, and handle_pte_fault() will set the young bit 84 * for us as long as the page is marked present in the corresponding Linux 85 * PTE entry. Again, ptep_establish() will ensure that the TLB is up to 86 * date. 87 * 88 * However, when the "young" bit is cleared, we deny access to the page 89 * by clearing the hardware PTE. Currently Linux does not flush the TLB 90 * for us in this case, which means the TLB will retain the transation 91 * until either the TLB entry is evicted under pressure, or a context 92 * switch which changes the user space mapping occurs. 93 */ 94#define PTRS_PER_PTE 512 95#define PTRS_PER_PMD 1 96#define PTRS_PER_PGD 2048 97 98/* 99 * PMD_SHIFT determines the size of the area a second-level page table can map 100 * PGDIR_SHIFT determines what a third-level page table entry can map 101 */ 102#define PMD_SHIFT 21 103#define PGDIR_SHIFT 21 104 105#define LIBRARY_TEXT_START 0x0c000000 106 107#ifndef __ASSEMBLY__ 108extern void __pte_error(const char *file, int line, unsigned long val); 109extern void __pmd_error(const char *file, int line, unsigned long val); 110extern void __pgd_error(const char *file, int line, unsigned long val); 111 112#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte_val(pte)) 113#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd_val(pmd)) 114#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd_val(pgd)) 115#endif /* !__ASSEMBLY__ */ 116 117#define PMD_SIZE (1UL << PMD_SHIFT) 118#define PMD_MASK (~(PMD_SIZE-1)) 119#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 120#define PGDIR_MASK (~(PGDIR_SIZE-1)) 121 122/* 123 * This is the lowest virtual address we can permit any user space 124 * mapping to be mapped at. This is particularly important for 125 * non-high vector CPUs. 126 */ 127#define FIRST_USER_ADDRESS PAGE_SIZE 128 129#define FIRST_USER_PGD_NR 1 130#define USER_PTRS_PER_PGD ((TASK_SIZE/PGDIR_SIZE) - FIRST_USER_PGD_NR) 131 132/* 133 * ARMv6 supersection address mask and size definitions. 134 */ 135#define SUPERSECTION_SHIFT 24 136#define SUPERSECTION_SIZE (1UL << SUPERSECTION_SHIFT) 137#define SUPERSECTION_MASK (~(SUPERSECTION_SIZE-1)) 138 139/* 140 * Hardware page table definitions. 141 * 142 * + Level 1 descriptor (PMD) 143 * - common 144 */ 145#define PMD_TYPE_MASK (3 << 0) 146#define PMD_TYPE_FAULT (0 << 0) 147#define PMD_TYPE_TABLE (1 << 0) 148#define PMD_TYPE_SECT (2 << 0) 149#define PMD_BIT4 (1 << 4) 150#define PMD_DOMAIN(x) ((x) << 5) 151#define PMD_PROTECTION (1 << 9) /* v5 */ 152/* 153 * - section 154 */ 155#define PMD_SECT_BUFFERABLE (1 << 2) 156#define PMD_SECT_CACHEABLE (1 << 3) 157#define PMD_SECT_AP_WRITE (1 << 10) 158#define PMD_SECT_AP_READ (1 << 11) 159#define PMD_SECT_TEX(x) ((x) << 12) /* v5 */ 160#define PMD_SECT_APX (1 << 15) /* v6 */ 161#define PMD_SECT_S (1 << 16) /* v6 */ 162#define PMD_SECT_nG (1 << 17) /* v6 */ 163#define PMD_SECT_SUPER (1 << 18) /* v6 */ 164 165#define PMD_SECT_UNCACHED (0) 166#define PMD_SECT_BUFFERED (PMD_SECT_BUFFERABLE) 167#define PMD_SECT_WT (PMD_SECT_CACHEABLE) 168#define PMD_SECT_WB (PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE) 169#define PMD_SECT_MINICACHE (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE) 170#define PMD_SECT_WBWA (PMD_SECT_TEX(1) | PMD_SECT_CACHEABLE | PMD_SECT_BUFFERABLE) 171 172/* 173 * - coarse table (not used) 174 */ 175 176/* 177 * + Level 2 descriptor (PTE) 178 * - common 179 */ 180#define PTE_TYPE_MASK (3 << 0) 181#define PTE_TYPE_FAULT (0 << 0) 182#define PTE_TYPE_LARGE (1 << 0) 183#define PTE_TYPE_SMALL (2 << 0) 184#define PTE_TYPE_EXT (3 << 0) /* v5 */ 185#define PTE_BUFFERABLE (1 << 2) 186#define PTE_CACHEABLE (1 << 3) 187 188/* 189 * - extended small page/tiny page 190 */ 191#define PTE_EXT_XN (1 << 0) /* v6 */ 192#define PTE_EXT_AP_MASK (3 << 4) 193#define PTE_EXT_AP0 (1 << 4) 194#define PTE_EXT_AP1 (2 << 4) 195#define PTE_EXT_AP_UNO_SRO (0 << 4) 196#define PTE_EXT_AP_UNO_SRW (PTE_EXT_AP0) 197#define PTE_EXT_AP_URO_SRW (PTE_EXT_AP1) 198#define PTE_EXT_AP_URW_SRW (PTE_EXT_AP1|PTE_EXT_AP0) 199#define PTE_EXT_TEX(x) ((x) << 6) /* v5 */ 200#define PTE_EXT_APX (1 << 9) /* v6 */ 201#define PTE_EXT_SHARED (1 << 10) /* v6 */ 202#define PTE_EXT_NG (1 << 11) /* v6 */ 203 204/* 205 * - small page 206 */ 207#define PTE_SMALL_AP_MASK (0xff << 4) 208#define PTE_SMALL_AP_UNO_SRO (0x00 << 4) 209#define PTE_SMALL_AP_UNO_SRW (0x55 << 4) 210#define PTE_SMALL_AP_URO_SRW (0xaa << 4) 211#define PTE_SMALL_AP_URW_SRW (0xff << 4) 212 213/* 214 * "Linux" PTE definitions. 215 * 216 * We keep two sets of PTEs - the hardware and the linux version. 217 * This allows greater flexibility in the way we map the Linux bits 218 * onto the hardware tables, and allows us to have YOUNG and DIRTY 219 * bits. 220 * 221 * The PTE table pointer refers to the hardware entries; the "Linux" 222 * entries are stored 1024 bytes below. 223 */ 224#define L_PTE_PRESENT (1 << 0) 225#define L_PTE_FILE (1 << 1) /* only when !PRESENT */ 226#define L_PTE_YOUNG (1 << 1) 227#define L_PTE_BUFFERABLE (1 << 2) /* matches PTE */ 228#define L_PTE_CACHEABLE (1 << 3) /* matches PTE */ 229#define L_PTE_USER (1 << 4) 230#define L_PTE_WRITE (1 << 5) 231#define L_PTE_EXEC (1 << 6) 232#define L_PTE_DIRTY (1 << 7) 233#define L_PTE_SHARED (1 << 10) /* shared between CPUs (v6) */ 234#define L_PTE_ASID (1 << 11) /* non-global (use ASID, v6) */ 235 236#ifndef __ASSEMBLY__ 237 238#include <asm/domain.h> 239 240#define _PAGE_USER_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_USER)) 241#define _PAGE_KERNEL_TABLE (PMD_TYPE_TABLE | PMD_BIT4 | PMD_DOMAIN(DOMAIN_KERNEL)) 242 243/* 244 * The following macros handle the cache and bufferable bits... 245 */ 246#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_CACHEABLE | L_PTE_BUFFERABLE 247#define _L_PTE_READ L_PTE_USER | L_PTE_EXEC 248 249extern pgprot_t pgprot_kernel; 250 251#define PAGE_NONE __pgprot(_L_PTE_DEFAULT) 252#define PAGE_COPY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) 253#define PAGE_SHARED __pgprot(_L_PTE_DEFAULT | _L_PTE_READ | L_PTE_WRITE) 254#define PAGE_READONLY __pgprot(_L_PTE_DEFAULT | _L_PTE_READ) 255#define PAGE_KERNEL pgprot_kernel 256 257#endif /* __ASSEMBLY__ */ 258 259/* 260 * The table below defines the page protection levels that we insert into our 261 * Linux page table version. These get translated into the best that the 262 * architecture can perform. Note that on most ARM hardware: 263 * 1) We cannot do execute protection 264 * 2) If we could do execute protection, then read is implied 265 * 3) write implies read permissions 266 */ 267#define __P000 PAGE_NONE 268#define __P001 PAGE_READONLY 269#define __P010 PAGE_COPY 270#define __P011 PAGE_COPY 271#define __P100 PAGE_READONLY 272#define __P101 PAGE_READONLY 273#define __P110 PAGE_COPY 274#define __P111 PAGE_COPY 275 276#define __S000 PAGE_NONE 277#define __S001 PAGE_READONLY 278#define __S010 PAGE_SHARED 279#define __S011 PAGE_SHARED 280#define __S100 PAGE_READONLY 281#define __S101 PAGE_READONLY 282#define __S110 PAGE_SHARED 283#define __S111 PAGE_SHARED 284 285#ifndef __ASSEMBLY__ 286/* 287 * ZERO_PAGE is a global shared page that is always zero: used 288 * for zero-mapped memory areas etc.. 289 */ 290extern struct page *empty_zero_page; 291#define ZERO_PAGE(vaddr) (empty_zero_page) 292 293#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 294#define pfn_pte(pfn,prot) (__pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))) 295 296#define pte_none(pte) (!pte_val(pte)) 297#define pte_clear(mm,addr,ptep) set_pte_at((mm),(addr),(ptep), __pte(0)) 298#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 299#define pte_offset_kernel(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) 300#define pte_offset_map(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) 301#define pte_offset_map_nested(dir,addr) (pmd_page_kernel(*(dir)) + __pte_index(addr)) 302#define pte_unmap(pte) do { } while (0) 303#define pte_unmap_nested(pte) do { } while (0) 304 305#define set_pte(ptep, pte) cpu_set_pte(ptep,pte) 306#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 307 308/* 309 * The following only work if pte_present() is true. 310 * Undefined behaviour if not.. 311 */ 312#define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT) 313#define pte_read(pte) (pte_val(pte) & L_PTE_USER) 314#define pte_write(pte) (pte_val(pte) & L_PTE_WRITE) 315#define pte_exec(pte) (pte_val(pte) & L_PTE_EXEC) 316#define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY) 317#define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG) 318 319/* 320 * The following only works if pte_present() is not true. 321 */ 322#define pte_file(pte) (pte_val(pte) & L_PTE_FILE) 323#define pte_to_pgoff(x) (pte_val(x) >> 2) 324#define pgoff_to_pte(x) __pte(((x) << 2) | L_PTE_FILE) 325 326#define PTE_FILE_MAX_BITS 30 327 328#define PTE_BIT_FUNC(fn,op) \ 329static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; } 330 331/*PTE_BIT_FUNC(rdprotect, &= ~L_PTE_USER);*/ 332/*PTE_BIT_FUNC(mkread, |= L_PTE_USER);*/ 333PTE_BIT_FUNC(wrprotect, &= ~L_PTE_WRITE); 334PTE_BIT_FUNC(mkwrite, |= L_PTE_WRITE); 335PTE_BIT_FUNC(exprotect, &= ~L_PTE_EXEC); 336PTE_BIT_FUNC(mkexec, |= L_PTE_EXEC); 337PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY); 338PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY); 339PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG); 340PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG); 341 342/* 343 * Mark the prot value as uncacheable and unbufferable. 344 */ 345#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) & ~(L_PTE_CACHEABLE | L_PTE_BUFFERABLE)) 346#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~L_PTE_CACHEABLE) 347 348#define pmd_none(pmd) (!pmd_val(pmd)) 349#define pmd_present(pmd) (pmd_val(pmd)) 350#define pmd_bad(pmd) (pmd_val(pmd) & 2) 351 352#define copy_pmd(pmdpd,pmdps) \ 353 do { \ 354 pmdpd[0] = pmdps[0]; \ 355 pmdpd[1] = pmdps[1]; \ 356 flush_pmd_entry(pmdpd); \ 357 } while (0) 358 359#define pmd_clear(pmdp) \ 360 do { \ 361 pmdp[0] = __pmd(0); \ 362 pmdp[1] = __pmd(0); \ 363 clean_pmd_entry(pmdp); \ 364 } while (0) 365 366static inline pte_t *pmd_page_kernel(pmd_t pmd) 367{ 368 unsigned long ptr; 369 370 ptr = pmd_val(pmd) & ~(PTRS_PER_PTE * sizeof(void *) - 1); 371 ptr += PTRS_PER_PTE * sizeof(void *); 372 373 return __va(ptr); 374} 375 376#define pmd_page(pmd) virt_to_page(__va(pmd_val(pmd))) 377 378/* 379 * Permanent address of a page. We never have highmem, so this is trivial. 380 */ 381#define pages_to_mb(x) ((x) >> (20 - PAGE_SHIFT)) 382 383/* 384 * Conversion functions: convert a page and protection to a page entry, 385 * and a page entry and page directory to the page they refer to. 386 */ 387#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 388 389/* 390 * The "pgd_xxx()" functions here are trivial for a folded two-level 391 * setup: the pgd is never bad, and a pmd always exists (as it's folded 392 * into the pgd entry) 393 */ 394#define pgd_none(pgd) (0) 395#define pgd_bad(pgd) (0) 396#define pgd_present(pgd) (1) 397#define pgd_clear(pgdp) do { } while (0) 398#define set_pgd(pgd,pgdp) do { } while (0) 399 400#define page_pte_prot(page,prot) mk_pte(page, prot) 401#define page_pte(page) mk_pte(page, __pgprot(0)) 402 403/* to find an entry in a page-table-directory */ 404#define pgd_index(addr) ((addr) >> PGDIR_SHIFT) 405 406#define pgd_offset(mm, addr) ((mm)->pgd+pgd_index(addr)) 407 408/* to find an entry in a kernel page-table-directory */ 409#define pgd_offset_k(addr) pgd_offset(&init_mm, addr) 410 411/* Find an entry in the second-level page table.. */ 412#define pmd_offset(dir, addr) ((pmd_t *)(dir)) 413 414/* Find an entry in the third-level page table.. */ 415#define __pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 416 417static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 418{ 419 const unsigned long mask = L_PTE_EXEC | L_PTE_WRITE | L_PTE_USER; 420 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 421 return pte; 422} 423 424extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 425 426/* Encode and decode a swap entry. 427 * 428 * We support up to 32GB of swap on 4k machines 429 */ 430#define __swp_type(x) (((x).val >> 2) & 0x7f) 431#define __swp_offset(x) ((x).val >> 9) 432#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((offset) << 9) }) 433#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 434#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 435 436/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 437/* FIXME: this is not correct */ 438#define kern_addr_valid(addr) (1) 439 440#include <asm-generic/pgtable.h> 441 442/* 443 * We provide our own arch_get_unmapped_area to cope with VIPT caches. 444 */ 445#define HAVE_ARCH_UNMAPPED_AREA 446 447/* 448 * remap a physical address `phys' of size `size' with page protection `prot' 449 * into virtual address `from' 450 */ 451#define io_remap_page_range(vma,from,phys,size,prot) \ 452 remap_pfn_range(vma, from, (phys) >> PAGE_SHIFT, size, prot) 453 454#define io_remap_pfn_range(vma,from,pfn,size,prot) \ 455 remap_pfn_range(vma, from, pfn, size, prot) 456 457#define MK_IOSPACE_PFN(space, pfn) (pfn) 458#define GET_IOSPACE(pfn) 0 459#define GET_PFN(pfn) (pfn) 460 461#define pgtable_cache_init() do { } while (0) 462 463#endif /* !__ASSEMBLY__ */ 464 465#endif /* _ASMARM_PGTABLE_H */