at v2.6.13 12 kB view raw
1/* 2 * linux/include/asm-arm/cacheflush.h 3 * 4 * Copyright (C) 1999-2002 Russell King 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 */ 10#ifndef _ASMARM_CACHEFLUSH_H 11#define _ASMARM_CACHEFLUSH_H 12 13#include <linux/config.h> 14#include <linux/sched.h> 15#include <linux/mm.h> 16 17#include <asm/mman.h> 18#include <asm/glue.h> 19#include <asm/shmparam.h> 20 21#define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT) 22 23/* 24 * Cache Model 25 * =========== 26 */ 27#undef _CACHE 28#undef MULTI_CACHE 29 30#if defined(CONFIG_CPU_ARM610) || defined(CONFIG_CPU_ARM710) 31# ifdef _CACHE 32# define MULTI_CACHE 1 33# else 34# define _CACHE v3 35# endif 36#endif 37 38#if defined(CONFIG_CPU_ARM720T) 39# ifdef _CACHE 40# define MULTI_CACHE 1 41# else 42# define _CACHE v4 43# endif 44#endif 45 46#if defined(CONFIG_CPU_ARM920T) || defined(CONFIG_CPU_ARM922T) || \ 47 defined(CONFIG_CPU_ARM925T) || defined(CONFIG_CPU_ARM1020) 48# define MULTI_CACHE 1 49#endif 50 51#if defined(CONFIG_CPU_ARM926T) 52# ifdef _CACHE 53# define MULTI_CACHE 1 54# else 55# define _CACHE arm926 56# endif 57#endif 58 59#if defined(CONFIG_CPU_SA110) || defined(CONFIG_CPU_SA1100) 60# ifdef _CACHE 61# define MULTI_CACHE 1 62# else 63# define _CACHE v4wb 64# endif 65#endif 66 67#if defined(CONFIG_CPU_XSCALE) 68# ifdef _CACHE 69# define MULTI_CACHE 1 70# else 71# define _CACHE xscale 72# endif 73#endif 74 75#if defined(CONFIG_CPU_V6) 76//# ifdef _CACHE 77# define MULTI_CACHE 1 78//# else 79//# define _CACHE v6 80//# endif 81#endif 82 83#if !defined(_CACHE) && !defined(MULTI_CACHE) 84#error Unknown cache maintainence model 85#endif 86 87/* 88 * This flag is used to indicate that the page pointed to by a pte 89 * is dirty and requires cleaning before returning it to the user. 90 */ 91#define PG_dcache_dirty PG_arch_1 92 93/* 94 * MM Cache Management 95 * =================== 96 * 97 * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files 98 * implement these methods. 99 * 100 * Start addresses are inclusive and end addresses are exclusive; 101 * start addresses should be rounded down, end addresses up. 102 * 103 * See Documentation/cachetlb.txt for more information. 104 * Please note that the implementation of these, and the required 105 * effects are cache-type (VIVT/VIPT/PIPT) specific. 106 * 107 * flush_cache_kern_all() 108 * 109 * Unconditionally clean and invalidate the entire cache. 110 * 111 * flush_cache_user_mm(mm) 112 * 113 * Clean and invalidate all user space cache entries 114 * before a change of page tables. 115 * 116 * flush_cache_user_range(start, end, flags) 117 * 118 * Clean and invalidate a range of cache entries in the 119 * specified address space before a change of page tables. 120 * - start - user start address (inclusive, page aligned) 121 * - end - user end address (exclusive, page aligned) 122 * - flags - vma->vm_flags field 123 * 124 * coherent_kern_range(start, end) 125 * 126 * Ensure coherency between the Icache and the Dcache in the 127 * region described by start, end. If you have non-snooping 128 * Harvard caches, you need to implement this function. 129 * - start - virtual start address 130 * - end - virtual end address 131 * 132 * DMA Cache Coherency 133 * =================== 134 * 135 * dma_inv_range(start, end) 136 * 137 * Invalidate (discard) the specified virtual address range. 138 * May not write back any entries. If 'start' or 'end' 139 * are not cache line aligned, those lines must be written 140 * back. 141 * - start - virtual start address 142 * - end - virtual end address 143 * 144 * dma_clean_range(start, end) 145 * 146 * Clean (write back) the specified virtual address range. 147 * - start - virtual start address 148 * - end - virtual end address 149 * 150 * dma_flush_range(start, end) 151 * 152 * Clean and invalidate the specified virtual address range. 153 * - start - virtual start address 154 * - end - virtual end address 155 */ 156 157struct cpu_cache_fns { 158 void (*flush_kern_all)(void); 159 void (*flush_user_all)(void); 160 void (*flush_user_range)(unsigned long, unsigned long, unsigned int); 161 162 void (*coherent_kern_range)(unsigned long, unsigned long); 163 void (*coherent_user_range)(unsigned long, unsigned long); 164 void (*flush_kern_dcache_page)(void *); 165 166 void (*dma_inv_range)(unsigned long, unsigned long); 167 void (*dma_clean_range)(unsigned long, unsigned long); 168 void (*dma_flush_range)(unsigned long, unsigned long); 169}; 170 171/* 172 * Select the calling method 173 */ 174#ifdef MULTI_CACHE 175 176extern struct cpu_cache_fns cpu_cache; 177 178#define __cpuc_flush_kern_all cpu_cache.flush_kern_all 179#define __cpuc_flush_user_all cpu_cache.flush_user_all 180#define __cpuc_flush_user_range cpu_cache.flush_user_range 181#define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range 182#define __cpuc_coherent_user_range cpu_cache.coherent_user_range 183#define __cpuc_flush_dcache_page cpu_cache.flush_kern_dcache_page 184 185/* 186 * These are private to the dma-mapping API. Do not use directly. 187 * Their sole purpose is to ensure that data held in the cache 188 * is visible to DMA, or data written by DMA to system memory is 189 * visible to the CPU. 190 */ 191#define dmac_inv_range cpu_cache.dma_inv_range 192#define dmac_clean_range cpu_cache.dma_clean_range 193#define dmac_flush_range cpu_cache.dma_flush_range 194 195#else 196 197#define __cpuc_flush_kern_all __glue(_CACHE,_flush_kern_cache_all) 198#define __cpuc_flush_user_all __glue(_CACHE,_flush_user_cache_all) 199#define __cpuc_flush_user_range __glue(_CACHE,_flush_user_cache_range) 200#define __cpuc_coherent_kern_range __glue(_CACHE,_coherent_kern_range) 201#define __cpuc_coherent_user_range __glue(_CACHE,_coherent_user_range) 202#define __cpuc_flush_dcache_page __glue(_CACHE,_flush_kern_dcache_page) 203 204extern void __cpuc_flush_kern_all(void); 205extern void __cpuc_flush_user_all(void); 206extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int); 207extern void __cpuc_coherent_kern_range(unsigned long, unsigned long); 208extern void __cpuc_coherent_user_range(unsigned long, unsigned long); 209extern void __cpuc_flush_dcache_page(void *); 210 211/* 212 * These are private to the dma-mapping API. Do not use directly. 213 * Their sole purpose is to ensure that data held in the cache 214 * is visible to DMA, or data written by DMA to system memory is 215 * visible to the CPU. 216 */ 217#define dmac_inv_range __glue(_CACHE,_dma_inv_range) 218#define dmac_clean_range __glue(_CACHE,_dma_clean_range) 219#define dmac_flush_range __glue(_CACHE,_dma_flush_range) 220 221extern void dmac_inv_range(unsigned long, unsigned long); 222extern void dmac_clean_range(unsigned long, unsigned long); 223extern void dmac_flush_range(unsigned long, unsigned long); 224 225#endif 226 227/* 228 * flush_cache_vmap() is used when creating mappings (eg, via vmap, 229 * vmalloc, ioremap etc) in kernel space for pages. Since the 230 * direct-mappings of these pages may contain cached data, we need 231 * to do a full cache flush to ensure that writebacks don't corrupt 232 * data placed into these pages via the new mappings. 233 */ 234#define flush_cache_vmap(start, end) flush_cache_all() 235#define flush_cache_vunmap(start, end) flush_cache_all() 236 237/* 238 * Copy user data from/to a page which is mapped into a different 239 * processes address space. Really, we want to allow our "user 240 * space" model to handle this. 241 */ 242#define copy_to_user_page(vma, page, vaddr, dst, src, len) \ 243 do { \ 244 flush_cache_page(vma, vaddr, page_to_pfn(page));\ 245 memcpy(dst, src, len); \ 246 flush_dcache_page(page); \ 247 } while (0) 248 249#define copy_from_user_page(vma, page, vaddr, dst, src, len) \ 250 do { \ 251 flush_cache_page(vma, vaddr, page_to_pfn(page));\ 252 memcpy(dst, src, len); \ 253 } while (0) 254 255/* 256 * Convert calls to our calling convention. 257 */ 258#define flush_cache_all() __cpuc_flush_kern_all() 259 260static inline void flush_cache_mm(struct mm_struct *mm) 261{ 262 if (cpu_isset(smp_processor_id(), mm->cpu_vm_mask)) 263 __cpuc_flush_user_all(); 264} 265 266static inline void 267flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end) 268{ 269 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) 270 __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end), 271 vma->vm_flags); 272} 273 274static inline void 275flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn) 276{ 277 if (cpu_isset(smp_processor_id(), vma->vm_mm->cpu_vm_mask)) { 278 unsigned long addr = user_addr & PAGE_MASK; 279 __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags); 280 } 281} 282 283/* 284 * flush_cache_user_range is used when we want to ensure that the 285 * Harvard caches are synchronised for the user space address range. 286 * This is used for the ARM private sys_cacheflush system call. 287 */ 288#define flush_cache_user_range(vma,start,end) \ 289 __cpuc_coherent_user_range((start) & PAGE_MASK, PAGE_ALIGN(end)) 290 291/* 292 * Perform necessary cache operations to ensure that data previously 293 * stored within this range of addresses can be executed by the CPU. 294 */ 295#define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e) 296 297/* 298 * Perform necessary cache operations to ensure that the TLB will 299 * see data written in the specified area. 300 */ 301#define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size) 302 303/* 304 * flush_dcache_page is used when the kernel has written to the page 305 * cache page at virtual address page->virtual. 306 * 307 * If this page isn't mapped (ie, page_mapping == NULL), or it might 308 * have userspace mappings, then we _must_ always clean + invalidate 309 * the dcache entries associated with the kernel mapping. 310 * 311 * Otherwise we can defer the operation, and clean the cache when we are 312 * about to change to user space. This is the same method as used on SPARC64. 313 * See update_mmu_cache for the user space part. 314 */ 315extern void flush_dcache_page(struct page *); 316 317#define flush_dcache_mmap_lock(mapping) \ 318 write_lock_irq(&(mapping)->tree_lock) 319#define flush_dcache_mmap_unlock(mapping) \ 320 write_unlock_irq(&(mapping)->tree_lock) 321 322#define flush_icache_user_range(vma,page,addr,len) \ 323 flush_dcache_page(page) 324 325/* 326 * We don't appear to need to do anything here. In fact, if we did, we'd 327 * duplicate cache flushing elsewhere performed by flush_dcache_page(). 328 */ 329#define flush_icache_page(vma,page) do { } while (0) 330 331#define __cacheid_present(val) (val != read_cpuid(CPUID_ID)) 332#define __cacheid_vivt(val) ((val & (15 << 25)) != (14 << 25)) 333#define __cacheid_vipt(val) ((val & (15 << 25)) == (14 << 25)) 334#define __cacheid_vipt_nonaliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25)) 335#define __cacheid_vipt_aliasing(val) ((val & (15 << 25 | 1 << 23)) == (14 << 25 | 1 << 23)) 336 337#if defined(CONFIG_CPU_CACHE_VIVT) && !defined(CONFIG_CPU_CACHE_VIPT) 338 339#define cache_is_vivt() 1 340#define cache_is_vipt() 0 341#define cache_is_vipt_nonaliasing() 0 342#define cache_is_vipt_aliasing() 0 343 344#elif defined(CONFIG_CPU_CACHE_VIPT) 345 346#define cache_is_vivt() 0 347#define cache_is_vipt() 1 348#define cache_is_vipt_nonaliasing() \ 349 ({ \ 350 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 351 __cacheid_vipt_nonaliasing(__val); \ 352 }) 353 354#define cache_is_vipt_aliasing() \ 355 ({ \ 356 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 357 __cacheid_vipt_aliasing(__val); \ 358 }) 359 360#else 361 362#define cache_is_vivt() \ 363 ({ \ 364 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 365 (!__cacheid_present(__val)) || __cacheid_vivt(__val); \ 366 }) 367 368#define cache_is_vipt() \ 369 ({ \ 370 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 371 __cacheid_present(__val) && __cacheid_vipt(__val); \ 372 }) 373 374#define cache_is_vipt_nonaliasing() \ 375 ({ \ 376 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 377 __cacheid_present(__val) && \ 378 __cacheid_vipt_nonaliasing(__val); \ 379 }) 380 381#define cache_is_vipt_aliasing() \ 382 ({ \ 383 unsigned int __val = read_cpuid(CPUID_CACHETYPE); \ 384 __cacheid_present(__val) && \ 385 __cacheid_vipt_aliasing(__val); \ 386 }) 387 388#endif 389 390#endif